CORSO SU CAMPI E.M. E SALUTE UMANA Ing. Francesco Falà

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO SU CAMPI E.M. E SALUTE UMANA Ing. Francesco Falà"

Transcript

1 CORSO SU CAMPI E.M. E SALUTE UMANA Ing. Francesco Falà Lezione n 1 Lezione n 2 Lezione n 3 Lezione n 4 Lezione n 1 EFFETTI DELLA CORRENTE SUL CORPO UMANO (Norma di riferimento CEI 64 Fasc.4985R) Considerazioni generali Il corpo umano è formato da ioni. Le varie cellule rispondono ad una curva di eccitabilità (fig.1). Perché una cellula si ecciti occorrono valori elevati del prodotto Ixt. I segnali a frequenza elevata (che hanno un periodo T piccolo) sono meno pericolosi perché eccitano di meno le cellule (occorrerebbero grosse correnti Con l elettrobisturi si iniettano correnti di frequenza 4-5Mhz senza problemi). Alle frequenze più elevate si manifesta anche un effetto pelle che fa passare la corrente verso l esterno del corpo senza interessare il cuore. I segnali più pericolosi sono quelli con frequenza compresa tra 10 e 1000 Hz. (Per la corrente continua vale un discorso a parte) Tipi di corrente più importanti corrente continua corrente alternata 50Hz impulsi unidirezionali di breve durata (condensatori) (Da notare che gli interruttori differenziali attualmente in uso sono insensibili agli impulsi unidirezionali) Nel corpo umano esistono già dei segnali di natura elettrica che determinano lo stimolo dei muscoli. Se a questi segnali se ne sovrappongono altri esterni si hanno alterazioni più o meno gravi. I danni possibili sono di tre tipi: Danni possibili 1-Interferenza con i segnali elettrobiologici delle fibre nervose e muscolari tetanizzazione (contrazione spasmodica dei muscoli) alterazioni della funzione respiratoria (asfissia dovuta all impossibilità di funzionamento dei muscoli del petto) lesioni neurologiche del midollo spinale (paralisi temporanee) fibrillazione cardiaca (contrazione scoordinata del muscolo cardiaco)

2 2-ustioni (sviluppo di calore per effetto Joule) ustioni nel punto di contatto (più tipici delle tensioni medie ed alte) 3-traumi per urti o cadute conseguenti all elettrocuzione Principali parametri I parametri che determinano la gravità degli effetti sono l intensità della corrente (Ampere) il percorso della corrente sul corpo umano la durata del contatto la frequenza della corrente (Hertz) (effetti più dannosi tra 10 e 1000Hz) In merito all intensità della corrente si possono distinguere due valori: corrente di soglia = minimo valore percepito corrente di rilascio = massima corrente che consente di interrompere il contatto Valori tipici delle correnti di soglia e di rilascio Corrente Continua (c.c.) Corrente alternata 50Hz (c.a.) Corrente di soglia (lingua) 45µA Corrente di soglia (polpastrelli) 0.5 ma Corrente di soglia (mani) 5.2 ma 1.1 ma Corrente di rilascio (uomo) 76 ma 16 ma Corrente di rilascio (donna) 51 ma 10 ma Fibrillazione cardiaca ma La corrente di rilascio corrisponde al massimo valore di corrente che non provoca paralisi delle mani o degli arti consentendo cosi di allontanarsi (per le correnti impulsive la corrente di rilascio è quella del dolore). E minore per donne, bambini e persone che pesano poco. Sopra tale valore l interruzione della corrente è affidata solamente all intervento degli interruttori (magnetotermici e differenziali). Sotto la soglia di rilascio NON sono necessari provvedimenti contro le tensioni di contatto Esaminiamo in dettaglio i danni: Dettaglio dei danni La tetanizzazione è prodotta dal passaggio della corrente (sia continua che

3 alternata) nei muscoli e può manifestarsi come: formicolio scossa dolorosa con possibilità di contrazioni e paralisi temporanea dei muscoli La alterazione della funzione respiratoria si verifica quando si supera la corrente di rilascio. ). Si hanno problemi di respirazione e asfissia (occorre una respirazione bocca a bocca entro 3-4 minuti) Anche le paralisi temporanee si hanno quando si supera la corrente di rilascio La fibrillazione cardiaca è essenzialmente dovuta al fatto che il cuore (che si contrae normalmente volte al minuto) è raggiunto da un segnale di 50Hz, che crea contrazioni indesiderate (fibrillazione). Occorre una grossa scarica elettrica per arrestare la fibrillazione (defibrillatore). In fig.2 è riportato il ciclo cardiaco in situazione di normalità. In esso si nota un momento critico in fase di recupero della eccitazione ventricolare. Se durante tale periodo (frazioni di secondo) arriva un altro impulso esterno, si innescano oscillazioni disordinate (fibrillazione) che continuano anche al cessare del disturbo. Cade la pressione del sangue con effetti spesso letali.(fig-3) Per avere fibrillazione irreversibile (arrestabile solo con defribillatore) bastano correnti dell ordine di decine di ma applicate al cuore per 0.1msec. Le ustioni si hanno quando la densità di corrente è superiore a 50mA per ogni mm 2 di pelle. In genere si determina la rottura delle arterie ed emorragia. In fig.4 sono riportati gli effetti della corrente alternata sinusoidale (50Hz) sul corpo umano (effetti analoghi si producono per correnti continue o per impulsi unidirezionali). Caratteristiche tempo-corrente Esistono dei diagrammi che legano la corrente alternata (10-100Hz) alla durata del passaggio nel corpo umano (percorso mano-piedi) e che indicano i valori pericolosi. (fig.5) Zona 1 Assenza di reazioni Zona 2 Nessun effetto pericoloso (l infortunato rilascia subito il contatto) Zona 3 Contrazioni muscolari - Difficoltà di respirazione (per contatti di durata 3-4minuti)- Arresti cardiaci senza fibrillazione-aumento della pressione Zona 4 Pericolo di fibrillazione ventricolare - Arresto del cuore-ustioni

4 Da notare che in c.c non si ha la sensazione della scossa ma quella di una fitta dolorosa la fibrillazione inizia per correnti di circa 150mA in c.c. e dell ordine di 40-50mA in a.c. la tensioni di sicurezza in c.c. è 120V e in a.c. 50V per tempi di passaggio della corrente nel corpo umano pari a 50msec occorrono 100mA per avere la fibrillazione i differenziali intervengono per correnti alternate inferiori a 30mA in tempi minori di 40msec. i differenziali non funzionano in continua e funzionano male per correnti impulsive Fattori di percorso I punti di ingresso e di uscita della corrente influiscono sulla probabilità di attraversamento del cuore e quindi sulla probabilità di fibrillazione (fig.6). Per valutare ciò vengono presi in esame i diversi possibili percorsi della corrente sul corpo umano e viene definito un fattore di percorso F Percorso Fattore F Valutazione Mano sinistra-piede sinistro 1 Situazione di perfetta equivalenza Mano sinistra-piede destro 1 Mano sinistra-entrambi i piedi Mano destra-piede sinistro 0.8 Situazioni meno pericolose Mano destra-piede destro 0.8 Mano destra-entrambi i piedi 0.8 Schiena - mano sinistra 0.7 Glutei - mani 0.7 Mano sinistra mano destra 0.4 Schiena - mano destra 0.3 Torace - mano sinistra 1.5 Situazioni più pericolose Torace - mano destra 1.3 Fattori di frequenza La frequenza più usata è 50Hz ma ci sono settori che usano valori diversi. Ad esempio l elettroterapia, la saldatura, la fusione elettrica dei metalli, motori a velocità variabile, aeronautica (400Hz). Al crescere della frequenza si verificano due fenomeni contraddittori: effetto pelle (diminuisce la possibilità di fibrillazione) riduzione dell impedenza del corpo umano (aumento della corrente a parità

5 di tensione) (infatti il corpo umano equivale elettricamente ad un circuito composto da Resistenze e Condensatori in parallelo e la reattanza del condensatore è inversamente proporzionale alla frequenza) Comunque globalmente il pericolo diminuisce al crescere della frequenza. Sopra 500Hz (soglia di fibrillazione 300mA) alla tensione di 220V il pericolo di morte è in pratica nullo. Valori tipici della resistenza del corpo umano misurata tra due mani Tensione (V) Resistenza del corpo umano R c (Ω) I valori indicati sono riferiti a mani asciutte e sono relativi ad una percentuale di persone compresa tra il 50% e il 95%. Fattori di forma d onda Ci si può chiedere se esistano delle forme d onda che siano più pericolose di altre. Poiché gli effetti sulle persone sono legati al valore efficace più che alla forma d onda, allo stato attuale delle conoscenze sembra che non ci sia un nesso significativo tra pericolo e forma d onda. Un discorso a parte si può fare per la scarica dei condensatori. Risulta statisticamente che la percezione della scarica (per tensioni di 220V) inizia con capacità dell ordine di 2-40pF mentre la soglia del dolore inizia con capacità di 70pF. Per avere fibrillazione occorrerebbero valori efficaci di 500mA (valori di picco 1225mA) che non possono essere raggiunti, in ambienti asciutti, con tensioni di 220V. Tensioni sicure La normativa attuale individua in 50V il valore di tensione sotto il quale non ci sono effetti sul corpo umano. Si ricorda che in Italia le linee elettriche aeree sono divise nelle seguenti classi (legge

6 n e DM n 449 del ) classe 0 Linee telefoniche e di segnalazione o comando a distanza classe I Linee di trasporto o distribuzione di energia elettrica con tensione < 1000V classe II Linee di trasporto o distribuzione di energia elettrica con tensione 1kV-30kV classe III Linee di trasporto o distribuzione di energia elettrica con tensione > 30kV Dispositivi di sicurezza contro il rischio elettrico Per evitare effetti pericolosi derivanti dalla corrente si devono prendere dei provvedimenti contro i contatti diretti ed indiretti con parti in tensione. La normativa cita i seguenti: isolamento dei conduttori e delle apparecchiature collegamento a terra delle masse metalliche suscettibili di andare sotto tensione uso di interruttori magnetotermici (es. sistemi TN) uso di interruttori differenziali Si ricorda che l interruttore differenziale NON interviene nel caso che si tocchino contemporaneamente i due conduttori di fase e neutro NON evita la scossa (occorre la presenza del conduttore di terra) interviene se un cavo tocca una massa metallica ed evita quindi che avvenga il contatto umano con tensioni pericolose va periodicamente provato tramite il tasto di prova

7 Fig.2 CICLO CARDIACO Fig.3 FIBRILLAZIONE Fig.4 EFFETTI DELLA CORRENTE ALTERNATA A 50Hz Fig.5 CARATTERISTICA TEMPO CORRENTE

8 CORSO SU CAMPI E.M. E SALUTE UMANA Ing. Francesco Falà Lezione n 1 Lezione n 2 Lezione n 3 Lezione n 4 Lezione n 2 NOZIONI VARIE SUI SEGNALI E SUI CAMPI ELETTROMAGNETICI Spettro delle frequenze La frequenza di un segnale periodico indica il numero di volte che il segnale si ripete completamente (periodo) in un secondo. Essa si esprime in Hz (Hertz) e rappresenta l inverso del periodo del segnale f = 1/T Anche i campi elettromagnetici (CEM) sono caratterizzati da una frequenza che viene scelta in base al tipo di trasmissione da effettuare. Poiché i CEM si propagano nello spazio libero con una velocità che è pari a quella della luce (la luce è un CEM che si propaga ad una velocità c = km/sec) essi percorrono uno spazio in un certo tempo. Si definisce lunghezza d onda λ lo spazio che un CEM percorre in un tempo pari al suo periodo. La lunghezza d onda si esprime in metri. per cui c = λ/t T = 1/f λ = c/f [m] Ogni CEM ha una frequenza e quindi una lunghezza d onda associata. Facendo riferimento alla fig.1 spettro delle frequenze, si possono notare le seguenti cose: tutto lo spettro è diviso in due zone 1- radiazioni NON ionizzanti 2- radiazioni ionizzanti la luce ha delle frequenze non ionizzanti ed altre (gli ultravioletti) si i campi elettromagnetici a frequenze industriali (30-300Hz) (ELF Extremely Low Frequency) hanno una elevatissima lunghezza d onda Campi elettrici e magnetici 1-Campo elettrico E [V/m]

9 Un campo elettrico è una regione di spazio dove si manifestano forze sulle cariche elettriche, dando possibilmente origine, se le cariche sono libere di muoversi, a delle correnti elettriche. Applicando una differenza di potenziale (tensione ) V tra due punti distanti d si ottiene un campo elettrico E pari a: E = V/d [V/m] Si può notare come il campo elettrico decresca all aumentare della distanza e come sia più intenso al crescere della tensione. 2-Campo magnetico H [A/m] Un campo magnetico è una regione di spazio dove si manifestano forze sui dipoli magnetici e sui conduttori percorsi da correnti elettriche. Il campo H è in grado di generare correnti nei materiali conduttori poiché determina in essi un campo elettrico E indotto. (i tessuti umani sono buoni conduttori) Facendo circolare una corrente I su un conduttore, in un punto distante d dal conduttore si ottiene un campo magnetico H pari a: H = I/2πd [A/m] Si può notare come il campo magnetico decresca all aumentare della distanza e come sia più intenso al crescere della corrente. 3-Induzione magnetica B Normalmente invece del campo magnetico H si prende in esame la densità di flusso magnetico B (detta anche induzione magnetica). L induzione magnetica B è definita come la forza esercitata su una carica che si muove nel campo H. Essa si misura in TESLA [T], un Tesla è equivalente a 1Vsec/ m 2 o ad 1 Weber/m 2. Il valore di B è legato a quello di H tramite una costante µ (permeabilità magnetica del mezzo) B = µh

10 Il valore di µ dipende dal mezzo in esame e per il vuoto vale µ 0 = 12, [Henry/ m] Per esemplificare si può dire che nel vuoto, nell aria, nel tessuto biologico esistano le seguenti corrispondenze: 1Tesla A/m 1 mt 800 A/m 1 µt 800 ma/m 100 µt 80 A/m 4-Legami tra E ed H Quando la frequenza di E ed H è uguale a 0Hz si parla di campi statici. Quando E ed H sono variabili la presenza di un campo elettrico determina sempre anche la presenza di un campo magnetico variabile e viceversa (la cosa non vale per i campi statici che possono esistere anche in modo indipendente). Tale fenomeno si accresce con la frequenza. Impedenza del vuoto η Nel vuoto (ma anche nell aria) il valore di E ed H sono legati dalla relazione η = E/H = 377Ω detta impedenza caratteristica del vuoto. Ciò ci permette di misurare in genere solo E e di calcolare poi H. Densità di potenza S In ogni punto dello spazio ove è presente un CEM esiste una densità di potenza espressa in [W/m 2 ] che è data da: S = ExH Ovviamente ad E ed H occorre associare i valori efficaci [nel caso si utilizzino i valori massimi il valore di S è dato da S = (E M x H M )/2]. Vale la relazione V eff = V M

11 Polarizzazione E ed H giacciono sempre su due piani perpendicolari tra di loro. La posizione del piano ove si trova E determina la polarizzazione del CEM. Si parla di polarizzazione orizzontale se E si trova su un piano orizzontale e di polarizzazione verticale se si trova su un piano verticale Zona di campo vicino Zona che va dall antenna trasmittente fino ad una distanza di alcune lunghezze d onda da essa. Dipende dalla frequenza trasmessa. In questa zona il CEM non ha le caratteristiche dell onda piana. Zona di campo lontano Zona che si stende oltre alcune lunghezze d onda dall antenna trasmittente. Normalmente le considerazioni e le misure sui CEM sono relative a questa zona. Considerazioni preliminari sugli effetti biologici dei CEM Poiché in qualunque sistema biologico (corpo umano compreso) contiene cariche elettriche, appare chiaro che l esposizione ad un campo esterno può dare luogo in qualche misura ad effetti biologici. In alcune situazioni gli effetti biologici possono trasformarsi in effetti sanitari (danni alla salute) Definizione di effetto biologico (Organismo Mondiale della Sanità OMS) Un effetto biologico si verifica quando la esposizione alle onde elettromagnetiche provoca qualche variazione fisiologica notevole o rilevabile in un sistema biologico.un effetto di danno alla salute si verifica quando l effetto biologico è al di fuori dell intervallo in cui l organismo può naturalmente compensarlo e ciò porta a qualche condizione di detrimento della salute. Alcuni effetti biologici possono essere innocui.. altri vantaggiosi.. ed altri ancora conducono a danni per la salute. (Progetto Internazionale CEM Promemoria N 182 Campi elettromagnetici e salute pubblica) La natura e l entità degli effetti biologici dipendono dalle seguenti caratteristiche del campo esterno:

12 intensità frequenza polarizzazione forma d onda sequenza temporale Per quanto riguarda l intensità è ovvio che una sua crescita produce un aumento degli effetti del campo. Per quanto riguarda la frequenza, ai fini degli effetti dei campi elettromagnetici, si prendono in esame quelle estremamente basse (ELF) (normalmente 50Hz) e quelle a radiofrequenza e microonde (per le altre non ci sono studi significativi) La polarizzazione di un campo elettromagnetico è data dalla posizione che assume il campo elettrico (orizzontale o verticale) e dipende da come è posizionata l antenna o il conduttore che genera il campo.essa pur essendo importante per le trasmissioni, ha influenza marginale sugli effetti biologici. La forma d onda rappresenta in qualche modo la modulazione (AM FM PM o altre digitali) con cui viene trasmesso il segnale. Anche essa influisce in qualche modo sugli effetti biologici. (I CEM a frequenze industriali NON sono modulati) La sequenza temporale indica in che modo, al variare del tempo, viene irradiato il campo. (ad esempio i radar emettono treni di impulsi) La normativa attuale non si occupa ancora delle trasmissioni radar. Per quanto riguarda gli effetti dei CEM possiamo parlare di: effetti diretti effetti indiretti Effetti diretti sono quelli che risultano dall accoppiamento diretto fra un CEM e il corpo umano. Effetti indiretti sono quelli che risultano dall accoppiamento di un CEM con un oggetto (es. struttura metallica) e successivamente con una persona che tocca quell oggetto. L effetto diretto di un CEM tipo ELF sull organismo umano consiste nella induzione di correnti all interno del corpo, distribuite in vari modi in dipendenza all intensità dei campi esterni, alla resistività dei tessuti corporei ed alla posizione del corpo. Ciò da luogo ad effetti biologici (solo per valori elevati della densità di corrente) dovuti alla stimolazione di tessuti elettricamente eccitabili (tessuto muscolare e nervoso).

13 (da notare che in bassa frequenza il campo elettrico e quello magnetico, pur essendo sempre contemporaneamente presenti, sono disaccoppiati e quindi vanno valutati separatamente. Entrambi provocano correnti nel corpo umano ma con meccanismi diversi, infatti un campo elettrico E variabile produce delle correnti di spostamento mentre un campo magnetico H induce delle correnti elettriche al variare del flusso magnetico) Un campo elettrico ELF induce sul corpo esposto una carica superficiale che può dare origine ad un formicolio nella pelle, ad una vibrazione dei peli e a piccole scariche (es. elettricità statica tra vestiario e corpo) Un intenso campo magnetico statico (frequenza prossima a zero) può causare vertigini o nausea ad una persona che si muova nel campo stesso. Per quanti riguarda invece i CEM ad alta frequenza, la loro interazione con il corpo umano consiste nell assorbimento della energia elettromagnetica incidente. Tale energia viene dissipata sotto forma di calore.gli effetti biologici sono in sostanza legati all innalzamento della temperatura locale o globale (effetti termici) (in alta frequenza i campi E ed H sono sempre contemporaneamente presenti e vanno valutati globalmente) Sempre per quanto riguarda gli effetti dei CEM essi si possono ulteriormente dividere in: effetti acuti (immediati) (più facilmente osservabili) effetti differiti (a lungo termine) (difficilmente valutabili) Per i CEM di tipo ELF gli effetti acuti si manifestano come semplici fastidi o addirittura come paralisi cardiaca Per i CEM a RF gli effetti acuti si manifestano come innalzamento della temperatura Per quanto riguarda gli effetti a lungo termine (individuabili solo con indagini epidemiologiche) essi saranno analizzati nelle prossime lezioni. Per completare l informazione sugli effetti biologici dei CEM vediamo quale è la situazione per diversi agenti in base alla loro cancerogenicità (fonte IARC Agenzia internazionale per la Ricerca sul Cancro) Classificazione degli agenti Gruppo 1 L agente è cancerogeno per l uomo Questa categoria è usata quando esiste una evidenza sufficiente di cancerogenicità nell uomo

14 Gruppo 2A L agente è probabilmente cancerogeno per l uomo Gruppo 2B L agente è possibilmente cancerogeno per l uomo Gruppo 3 L agente non è classificabile quanto alla sua cangerogenicità per l uomo Gruppo 4 L agente è probabilmente non Questa categoria è usata quando esiste una evidenza limitata di cancerogenicità nell uomo ed una evidenza sufficiente di cancerogenicità nell animale Questa categoria è usata quando esiste una evidenza limitata di cancerogenicità nell uomo ed una evidenza meno che sufficiente di cancerogenicità nell animale Questa categoria è usata quando esiste una evidenza inadeguata di cancerogenicità sia nell uomo che nell animale Questa categoria è usata quando le evidenze suggeriscono l assenza di cancerogenicità sia nell uomo che nell animale cancerogeno per l uomo N.B. non esiste un gruppo di agenti NON CANCEROGENI in quanto, per principio, non si può provare l assenza assoluta di rischio Esempi di classificazione di alcuni elementi Gruppo 1 Asbesto Cancerogeni Radon Radiazioni solari Bevande alcoliche Fumo di tabacco Gruppo 2A Probabilmente cancerogeni Gruppo 2B Possibilmente cancerogeni Benzene Formaldeide Gas di scarico dei motori diesel Lavoro da parrucchiere Lampade solari Atrazina DDT Gas di scarico dei motori a benzina Saccarina Caffè Falegnameria Campi CEM tipo ELF Gruppo 3 Lampade fluorescenti Non classificabilifibre acriliche Cloruro di vinile Bitume Tè Gruppo 4 Probabilmente non cancerogeni Caprolattame (unico agente presente) N:B la classificazione per i CEM tipo ELF è stata fatta nel 1998 da un gruppo di esperti convocati dall Ente Statale per la Salute degli USA (NIEHS)

15 Questo gruppo ha riscontrato: limitata evidenza di leucemie infantili associate ad esposizioni per residenti debole evidenza di leucemie linfatiche acute per lavoratori professionalmente esposti inadeguata o addirittura assente la evidenza scientifica per tutte le altre forme di tumore e per tutti gli altri effetti a lungo termine Notare che mancano i CEM a RF per i quali ancora NON esistono studi epidemiologici sufficienti. Per essi l OMS ha recentemente concluso che: NON c è nessuna evidenza convincente che la esposizione a CEM a RF abbrevi la vita o conduca al cancro (Promemoria n 183) Comunque l OMS assieme all Agenzia Internazionale di Ricerca sul Cancro ha predisposto un calendario che prevede: nel 2001 la valutazione degli effetti cancerogeni dei CEM ELF nel 2002 la valutazione degli altri effetti sulla salute dei CEM ELF nel 2003 la valutazione degli effetti cancerogeni dei CEM RF nel 2004 la valutazione degli altri effetti sulla salute dei CEM RF Principali grandezze La natura e la entità degli effetti biologici dipendono da una serie di parametri e quindi NON possono essere valutati calcolando direttamente l intensità del CEM. Occorre introdurre altre grandezze di valutazione più significative. Campi elettromagnetici ELF Per i CEM ELF si introduce il concetto di densità di corrente J [A/m 2 ] che rappresenta la corrente elettrica che fluisce attraverso una sezione unitaria di tessuto corporeo posta perpendicolarmente al flusso di carica Campi elettromagnetici RF Per i CEM a radiofrequenza e a microonde si introduce il concetto di tasso di assorbimento specifico SAR (Specific Absorption Rate) [W/kg] che rappresenta la potenza assorbita nell unità di massa corporea

16 Nonostante la loro importanza teorica però le grandezze indicate non sono facilmente misurabili all interno del corpo umano. Ci si pone allora il problema di collegare tali grandezze (difficilmente misurabili) a quelle (che le determinano) che sono facilmente misurabili (campo elettrico E (V/m) campo magnetico H (A/m) induzione magnetica B (T) densità del campo elettromagnetico S (w/m 2 )) (nelle prossime lezioni saranno illustrati i metodi e le relazioni utilizzate) Per ora possiamo anticipare che sono stati introdotti dei metodi numerici di simulazione al computer o sono stati creati dei fantocci con sembianze umane realizzati con dei gel riproducenti le caratteristiche dielettriche dei tessuti (DOSIMETRIA) (fig.2) Da notare che l alternativa ai sistemi di simulazione per valutare gli effetti biologici, rimane la sperimentazione diretta sull uomo. Campi elettromagnetici naturali In natura esistono campi elettrici e magnetici con i quali il nostro corpo convive fin dalla nascita. Per quanto riguarda il campo elettrico naturale (di fondo) esso vale circa 130V/m al livello del suolo e aumenta di circa 130V/m per ogni metro di altezza. Sulle persone si distribuisce in modo tale da creare una differenza di potenziale tra testa (potenziale positivo) e piedi (terra) (potenziale negativo) Per quanto riguarda il campo magnetico naturale (di fondo), che deriva dalla presenza di un polo Nord e Sud magnetici (campo magnetico terrestre), esso produce una induzione naturale B di valore compreso tra 40-70µT (corrispondenti ad un campo H di circa 50 A/m) Per cominciare a dare degli esempi si può notare come un bimbo che corra entro il campo magnetico naturale (che è statico), subisca delle correnti indotte maggiori di quelle provocate da un campo artificiale a 50Hz e di induzione pari a 0.5µT. Enti e/o organizzazioni e principali grandezze fisiche Sigla ICRP ICNIRP OMS ISS CENELEC CEI ISPESL ARPA ANSI/IEEE Ente Commissione Internazionale Radiazioni Ionizzanti Commissione Internazionale Radiazioni Non ionizzanti Organismo Mondiale della Sanità Istituto Superiore di Sanità Commissione Europea per la Standardizzazione Elettrica Comitato Elettrotecnico Italiano Istituto Superiore per la Prevenzione e la Sicurezza sul Lavoro Agenzia Regionale Protezione Ambientale Ente Americano degli Standard Grandezze fisiche secondo il Sistema Internazionale (SI)

17 Grandezza Simbolo Unità di misura Simbolo Densità di corrente J Ampere per metro quadro A/m 2 Intensità di campo elettrico E Volt per metro V/m Induzione elettrica D Coulomb per metro quadro C/m 2 Conducibilità elettrica σ Siemens per metro S/m Frequenza f Hertz Hz Intensità di campo magnetico H Ampere per metro A/m Induzione magnetica B Tesla T Permeabilità magnetica µ Henry per metro H/m Costante dielettrica ε Farad per metro F/m Densità di potenza S Watt per metro quadro W/m 2 Tasso di assorbimento specifico SAR Watt per chilogrammo W/kg Lunghezza d onda λ Metro m Densità di energia Joule per metro quadro J/m 2 Costanti fisiche Costante fisica Simbolo Valore Velocità della luce c 2, m/s Costante dielettrica del vuoto ε 0 8, F/m Permeabilità magnetica del vuoto µ 0 12, H/m Impedenza caratteristica del vuoto η 377 Ω

18 CORSO SU CAMPI E.M. E SALUTE UMANA Ing. Francesco Falà Lezione n 1 Lezione n 2 Lezione n 3 Lezione n 4 Lezione n 3 CAMPI ELETTROMAGNETICI A BASSE FREQUENZE Come si svolge una ricerca e come nasce una norma di sicurezza Per individuare i limiti di sicurezza occorrerebbe applicare il cosiddetto principio ALARA (As Low As Reasonably Achievable) che consiglia di fissare i limiti al più basso livello ragionevolmente ottenibile. Ciò significa che, se possiamo fare a meno dell agente di cui ci si deve difendere, allora il limite di sicurezza deve porsi a zero. (es. amianto, che è stato completamente vietato) Se invece l agente da cui dobbiamo difenderci ha una insostituibile utilità sociale allora bisognerebbe valutare il costo sociale in funzione dei limiti di sicurezza. Questa via però non è facilmente percorribile e quindi per i CEM si è utilizzato un approccio un po diverso dal principio ALARA. Le procedure seguite per individuare i limiti di sicurezza sono le seguenti: si sono presi in considerazione gli effetti noti che derivano dalle esposizioni si è cercato di individuare le intensità dei CEM al di sotto delle quali non si sono verificati effetti si è imposto un margine di sicurezza per tenere conto delle varie incertezze; si è ottenuto cosi il limite per le persone professionalmente esposte si è imposto un ulteriore margine di sicurezza individuando cosi il limite per la popolazione (imponendo ulteriori margini di sicurezza si ottengono i limiti per le categorie protette (bimbi, malati, anziani)) Il problema è quindi stato spostato nell individuare le intensità minime dei CEM al di sotto delle quali non si verificano effetti. Occorre quindi fare distinzione (già fatta in precedenza) tra effetti acuti ed effetti differiti. Molte norme o leggi sono state scritte solo sulla base degli effetti acuti in quanto immediatamente determinabili. Risultati delle ricerche per campi elettrici e magnetici

19 1-CAMPI ELETTRICI E MAGNETICI STATICI Non esistono oggi validi risultati sperimentali per gli effetti acuti e differiti dovuti a campi elettrici e magnetici statici per cui per essi l INIRP non ha emanato alcuna raccomandazione. (L INIRC è l unica organizzazione riconosciuta dall OMS) Le attuali conoscenze scientifiche sono soprattutto rivolte al campo magnetico statico per il quale si può rilevare che (per l induzione B): non ci sono effetti nocivi fino a 2T ( Gauss in alcuni paesi) (1G=100µT) l INIRP ritiene che il limite per esposizioni professionali possa essere fissato in 200mT (fattore di sicurezza 10) nell arco delle 8 ore con un massimo di 2T utilizzando un ulteriore fattore di sicurezza uguale a 5 per la popolazione si ottiene un limite per la esposizione continua pari a 40mT Sono da fare, per il campo magnetico statico, alcune precisazioni: le persone con pacemaker potrebbero essere non adeguatamente protette (gli attuali pacemaker sono insensibili a induzioni fino a 0.5mT) quando si superano i 3mT si devono prendere delle precauzioni per i rischi dovuti ad oggetti metallici in rapido movimento nel campo le carte di credito, i nastri magnetici, gli Hard-disk dei computer possono essere danneggiati da esposizioni superiori a 1mT vanno esposti cartelli monitori quando in ambiente di lavoro si superano 0.5mT per campi elettrici statici minori 25kV/m NON si verificano percezioni di cariche elettriche superficiali sulle persone 2-CAMPI ELETTROMAGNETICI VARIABILI (ELF) A-Risultati per gli effetti acuti A1-valore della densità di corrente Per i CEM di tipo ELF, al fine di individuare le intensità minime, si è partiti dai risultati ottenuti dal ricercatore tedesco Jurgen Bernhardt che ha dimostrato come la totalità degli effetti acuti dei CEM tipo ELF è dovuta alla densità di corrente (J [A/m 2 ]) indotta dai CEM nei tessuti degli organismi esposti. I CEM tipo ELF, secondo il ricercatore, producono una stimolazione delle cellule nervose e muscolari. Gli effetti acuti che si verificano a livelli più bassi di esposizione consistono in: interferenze nella percezione sensoriale a livello oculare (percezione di lampi

20 luminosi e colorati detti FOSFENI) sensazione di pizzicore A livelli di esposizione più elevati le correnti indotte possono causare: extrasistole cardiache contrazioni muscolari fibrillazione ventricolare sensazione di calore Dall analisi dei risultati sperimentali per CEM variabili (di frequenza compresa tra 4Hz e 1kHz) risulta che nessun effetto acuto si manifesta con valore di soglia < 10mA/m 2. Tale valore è assunto dall INIRC come base per i limiti di sicurezza. (Per valori minori di 4Hz il valore è 40/f [ma/m 2 ] dipende cioè dalla frequenza) Si sono poi adottati dei margini di sicurezza per tenere conto dei fattori di incertezza e si è arrivati a ritenere sicuro, per le esposizioni delle persone professionalmente esposte, il valore di 1mA/m 2 Con la introduzione di ulteriori margini di sicurezza si sono individuati i limiti di esposizione della popolazione. A2-Valori del campo elettrico e magnetico Calcolare il valore del campo elettrico e magnetico che porta ad una densità di corrente prefissata è compito della Dosimetria. Per i campi elettrici ELF si sono effettuati studi dal 1970 al 1980, per i campi magnetici ELF a partire dal Tali studi sono stati condotti con l uso di fantocci che simulavano gli organismi umani e tramite calcoli numerici. Il risultato (vedere capitoli successivi) è stato che le densità di corrente indotte da E ed H risultano proporzionali alla frequenza ed alla intensità dei campi stessi. Le costanti di proporzionalità dipendono dalle condizioni di esposizione, dalla localizzazione dell organo interessato e dalle sue caratteristiche elettriche. La conoscenza di queste costanti ha permesso di esprimere graficamente (cosa più agevole da interpretare) i limiti di sicurezza in funzione di E ed H invece che di J Ovviamente, con le stesse considerazioni di partenza e con gli stessi processi logici, si possono ottenere risultati diversi a seconda di come si scelgono i margini di sicurezza. Come esempio, per i campi a 50Hz, sono riportati in tab.1 i valori dei limiti di

EFFETTI BIOLOGICI DEI CAMPI ELETTROMAGNETICI

EFFETTI BIOLOGICI DEI CAMPI ELETTROMAGNETICI EFFETTI BIOLOGICI DEI CAMPI ELETTROMAGNETICI In questo capitolo analizzeremo le problematiche legate agli effetti che i campi elettromagnetici a radiofrequenza possono avere nei confronti dell uomo. Verranno,

Dettagli

LE AREE TEMATICHE : L INQUINAMENTO ELETTROMAGNETICO

LE AREE TEMATICHE : L INQUINAMENTO ELETTROMAGNETICO LE AREE TEMATICHE : L INQUINAMENTO ELETTROMAGNETICO Quando si parla di inquinamento elettromagnetico o più comunemente elettrosmog ci si riferisce alle alterazioni del campo magnetico naturale generate

Dettagli

EFFETTI FISIOPATOLOGICI DELLA CORRENTE ELETTRICA SUL CORPO UMANO

EFFETTI FISIOPATOLOGICI DELLA CORRENTE ELETTRICA SUL CORPO UMANO EFFETTI FISIOPATOLOGICI DELLA CORRENTE ELETTRICA SUL CORPO UMANO Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. 2005/2006 Facoltà d

Dettagli

CORSO DI IMPIANTI ELETTRICI

CORSO DI IMPIANTI ELETTRICI CORSO DI IMPIANTI ELETTRICI Fondamenti di sicurezza elettrica PERICOLOSITA DELLA CORRENTE ELETTRICA STUDIO DI INGEGENERIA MAGRINI POLLONI MARCO VIA SAN CARLO 5 27100 PAVIA TEL. 0382-21902 Impianti elettrici

Dettagli

Le grosse elettrocalamite per il sollevamento o la cernita di materiali ferrosi rientrano tra le sorgenti pericolose?

Le grosse elettrocalamite per il sollevamento o la cernita di materiali ferrosi rientrano tra le sorgenti pericolose? Un antenna WiFi posizionata nella tromba delle scale, che quindi fornisce il segnale a più piani, può causare danni alle persone e in particolare ai bambini? Non ci sono evidenze scientifiche di danni

Dettagli

Prof. Ing. Luigi Maffei. Impienti elettrici e speciali

Prof. Ing. Luigi Maffei. Impienti elettrici e speciali Conduttori: sostanze nelle quali alcune o tutte le cariche elettriche possono muoversi liberamente sotto l'azione di forze elettriche (es: metalli, soluzioni acquose). Isolanti (dielettrici): materiali

Dettagli

Campi elettrici, magnetici ed elettromagnetici

Campi elettrici, magnetici ed elettromagnetici Campi elettrici, magnetici ed elettromagnetici Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campo Elettrico: si definisce campo elettrico il fenomeno fisico che conferisce

Dettagli

Campi elettrici, magnetici ed elettromagnetici. Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo

Campi elettrici, magnetici ed elettromagnetici. Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campi elettrici, magnetici ed elettromagnetici Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campo Elettrico: si definisce campo elettrico il fenomeno fisico che conferisce

Dettagli

Anno 1. ELETTROSMOG ( Inquinamento elettromagnetico )

Anno 1. ELETTROSMOG ( Inquinamento elettromagnetico ) Anno 1 ELETTROSMOG ( Inquinamento elettromagnetico ) Dispense preparate da : Tiziano Guerzoni In collaborazione con Sergio Berti ORGANIZZAZIONE DELLE DISPENSE Basi propedeutiche Effetti 1 BASI PROPEDEUTICHE

Dettagli

CAMPI ELETTROMAGNETICI

CAMPI ELETTROMAGNETICI Riferimenti Normativi Decreto Legislativo 81/2008 come modificato da D. Lgs. 106/09 TITOLO VIII AGENTI FISICI Capo IV Protezione dei lavoratori dai rischi di esposizione a campi elettromagnetici Art. 207

Dettagli

La valutazione dei rischi da campi elettromagnetici in ambiente lavorativo

La valutazione dei rischi da campi elettromagnetici in ambiente lavorativo La valutazione dei rischi da campi elettromagnetici in ambiente lavorativo Generalità sui campi elettromagnetici (CEM) Campi elettromagnetici naturali Campo elettrico Campo magnetico Campi elettromagnetici

Dettagli

SICUREZZA NEGLI EDIFICI AD USO CIVILE IL RISCHIO ELETTRICO

SICUREZZA NEGLI EDIFICI AD USO CIVILE IL RISCHIO ELETTRICO SICUREZZA NEGLI EDIFICI AD USO CIVILE IL RISCHIO ELETTRICO Il rischio elettrico coinvolge tutti coloro che a qualsiasi titolo vengono a contatto con gli impianti e gli utilizzatori elettrici. Il contatto

Dettagli

LO SHOCK ELETTRICO PARTE 1 MODALITÀ DI ACCADIMENTO ED EFFETTI

LO SHOCK ELETTRICO PARTE 1 MODALITÀ DI ACCADIMENTO ED EFFETTI LO SHOCK ELETTRICO PARTE 1 MODALITÀ DI ACCADIMENTO ED EFFETTI Premessa Il passaggio di corrente attraverso il corpo umano causato dal contatto contemporaneo con parti a tensione differente può determinare

Dettagli

CAMPI ELETTROMAGNETICI

CAMPI ELETTROMAGNETICI CAMPI ELETTROMAGNETICI Che cos è un campo elettromagnetico? Un campo elettromagnetico è una regione dello spazio in cui c è tensione elettrica. È il caso, ad esempio, della regione di spazio in cui vi

Dettagli

Campi elettromagnetici: conoscenze attuali e misure a Pavia

Campi elettromagnetici: conoscenze attuali e misure a Pavia Campi elettromagnetici: conoscenze attuali e misure a Pavia Gli esseri viventi sono da sempre esposti alle radiazioni naturali prodotte dalla Terra, dall atmosfera e dal Sole: raggi cosmici, radiazioni

Dettagli

si intende il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, definito ai fini della tutela della

si intende il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, definito ai fini della tutela della 1 2 si intende il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, definito ai fini della tutela della salute da effetti acuti, che non deve essere superato

Dettagli

ONDE IN CHIARO. Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto. A proposito di. inquinamento elettromagnetico

ONDE IN CHIARO. Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto. A proposito di. inquinamento elettromagnetico Ns.rif.:web/banca_dati/linee_guida/elettrosmog/Anno2004/018 ONDE IN CHIARO Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto A proposito di. inquinamento elettromagnetico Termini

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE Sono parte integrante dell ambiente in cui viviamo e lavoriamo Di origine artificiale (per esempio le onde radio, radar e nelle telecomunicazioni) Di origine

Dettagli

Viaggio tra le ONDE PER SAPERNE DI PIU

Viaggio tra le ONDE PER SAPERNE DI PIU PER SAPERNE DI PIU Su queste tematiche esiste una notevole pubblicistica, di seguito si segnalano alcuni siti web di valenza istituzionale, che si occupano di salute e di ambiente e quindi anche dell argomento

Dettagli

elettrosmog radiazioni elettromagnetiche non ionizzanti frequenze.

elettrosmog radiazioni elettromagnetiche non ionizzanti frequenze. Con il termine elettrosmog si intende l'inquinamento elettromagnetico derivante da radiazioni elettromagnetiche non ionizzanti quali quelle prodotte dalle infrastrutture di telecomunicazioni come la radiodiffusione

Dettagli

RISCHI DA CAMPI ELETTROMAGNETICI E SISTEMI WI-FI

RISCHI DA CAMPI ELETTROMAGNETICI E SISTEMI WI-FI RISCHI DA CAMPI ELETTROMAGNETICI E SISTEMI WI-FI PRINCIPALI FONTI DI CAMPI ELETTROMAGNETICI: ELETTRODOTTI ELETTRODOMESTICI TELEFONIA MOBILE RETI DATI WIRELESS ANTENNE RADIO BC 1 IL CAMPO ELETTRICO È una

Dettagli

CAMPI ELETTROMAGNETICI

CAMPI ELETTROMAGNETICI CAMPI ELETTROMAGNETICI EFFETTI SANITARI Nembro 9 ottobre 2007 Dr. Pietro Imbrogno Dr.ssa Lucia Antonioli Area Dipartimentale SALUTE E AMBIENTE Esposizione ai campi elettromagnetici L umanità è sempre stata

Dettagli

ONDE ELETTROMAGNETICHE: RISCHIO PER LA SALUTE? Il dibattito circa l influenza delle onde eletromagnetiche sulla nostra salute permane vivace e

ONDE ELETTROMAGNETICHE: RISCHIO PER LA SALUTE? Il dibattito circa l influenza delle onde eletromagnetiche sulla nostra salute permane vivace e ONDE ELETTROMAGNETICHE: RISCHIO PER LA SALUTE? Il dibattito circa l influenza delle onde eletromagnetiche sulla nostra salute permane vivace e controverso e provoca ricorrenti allarmismi nell opinione

Dettagli

Definizione. La terra. Folgorazione. Rischi elettrico. Effetti. Tipi di corrente elettrica. Cavi. Adempimenti Primo Soccorso

Definizione. La terra. Folgorazione. Rischi elettrico. Effetti. Tipi di corrente elettrica. Cavi. Adempimenti Primo Soccorso 1 Tipi di corrente elettrica Rischi elettrico Definizione Cavi La terra Folgorazione Effetti Adempimenti Primo Soccorso 2 Possiamo paragonare la corrente elettrica ad una cascata e l energia trasferita

Dettagli

Onde in chiaro. Onde in chiaro. Area Tecnico-Scientifica Osservatorio Agenti Fisici. A proposito di... inquinamento elettromagnetico.

Onde in chiaro. Onde in chiaro. Area Tecnico-Scientifica Osservatorio Agenti Fisici. A proposito di... inquinamento elettromagnetico. Onde in chiaro A proposito di... inquinamento elettromagnetico Onde in chiaro A proposito di... inquinamento elettromagnetico a cura di: Arpav Area Tel. +39 045 807 43 51 ARPAV Agenzia Regionale per la

Dettagli

Campi Elettromagnetici in Alta Frequenza. Sorgenti, Misure, Effetti, Normativa

Campi Elettromagnetici in Alta Frequenza. Sorgenti, Misure, Effetti, Normativa Campi Elettromagnetici in Alta Frequenza Sorgenti, Misure, Effetti, Normativa Campi elettromagnetici ad alta frequenza I campi elettromagnetici non ionizzanti (sorgenti NIR) hanno una banda compresa tra

Dettagli

Effetti fisiopatologici della corrente elettrica sul corpo umano

Effetti fisiopatologici della corrente elettrica sul corpo umano Effetti fisiopatologici della corrente elettrica sul corpo umano La vita è regolata a livello cerebrale, muscolare e biologico da impulsi di natura elettrica. Il cervello è collegato ai muscoli ed a tutti

Dettagli

ALLEGATO XXXVI CAMPI ELETTROMAGNETICI

ALLEGATO XXXVI CAMPI ELETTROMAGNETICI ALLEGATO XXXVI CAMPI ELETTROMAGNETICI Le seguenti grandezze fisiche sono utilizzate per descrivere l'esposizione ai campi elettromagnetici: Corrente di contatto (I(base)C). La corrente che fluisce al contatto

Dettagli

Sicurezza nel Laboratorio: Radiazioni non ionizzanti

Sicurezza nel Laboratorio: Radiazioni non ionizzanti Sicurezza nel Laboratorio: Radiazioni non ionizzanti Per questo corso non si consiglia nessun libro di testo t pertanto t il file contiene sia pagine didattiche sia pagine di approfondimento messe a punto

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

1 Ruolo di ARPA 2 Normativa di riferimento 3 Realizzazione di una misura 4 Strumentazione di misura

1 Ruolo di ARPA 2 Normativa di riferimento 3 Realizzazione di una misura 4 Strumentazione di misura CAMPI ELETTROMAGNETICI 1 Ruolo di ARPA 2 Normativa di riferimento 3 Realizzazione di una misura 4 Strumentazione di misura 5 Come si ottiene una misura 6 Comunicazione con il pubblico 7 Percezione del

Dettagli

SICUREZZA ELETTRICA. 1. Elementi di elettrofisiologia (effetti della corrente sul corpo umano). 2. Correnti e tensioni pericolose.

SICUREZZA ELETTRICA. 1. Elementi di elettrofisiologia (effetti della corrente sul corpo umano). 2. Correnti e tensioni pericolose. 1. Elementi di elettrofisiologia (effetti della corrente sul corpo umano). 2. Correnti e tensioni pericolose. 3. Contatti pericolosi 4. Metodi di protezione 1. Elementi di elettrofisiologia (effetti della

Dettagli

RELAZIONE DI IMPATTO AMBIENTALE

RELAZIONE DI IMPATTO AMBIENTALE RELAZIONE DI IMPATTO AMBIENTALE Fattori di impatto ambientale Un sistema fotovoltaico non crea un impatto ambientale importante, visto che tale tecnologia è utilizzata per il risparmio energetico. I fattori

Dettagli

DECRETO LEGISLATIVO 19 novembre 2007, n. 257

DECRETO LEGISLATIVO 19 novembre 2007, n. 257 DECRETO LEGISLATIVO 19 novembre 2007, n. 257 Attuazione della direttiva 2004/40/CE sulle prescrizioni minime di sicurezza e di salute relative all esposizione dei lavoratori ai rischi derivanti dagli agenti

Dettagli

Verifica sperimentale della schermatura dei campi magnetici a 50Hz

Verifica sperimentale della schermatura dei campi magnetici a 50Hz Verifica sperimentale della schermatura dei campi magnetici a 50Hz A cura di: Cappellazzo Luca Con la collaborazione di: Dott. Ing. Roberto Piccin EUROCEMIS - Ponzano Veneto (TV) piccin@eurocemis.it Pagina

Dettagli

Analisi Ambientale del Distretto Conciario Toscano. Scheda 3 Inquinamento elettromagnetico

Analisi Ambientale del Distretto Conciario Toscano. Scheda 3 Inquinamento elettromagnetico Analisi Ambientale del Distretto Conciario Toscano Scheda 3 Inquinamento elettromagnetico Indice 1. Basse frequenze... 79 2. RadioFrequenze e MicroOnde... 84 3. Attività ARPAT nel Distretto, Pareri SRB...

Dettagli

COMUNE DI ERACLEA DOCUMENTO DI VALUTAZIONE DEI RISCHI DA CAMPI ELETTROMAGNETICI

COMUNE DI ERACLEA DOCUMENTO DI VALUTAZIONE DEI RISCHI DA CAMPI ELETTROMAGNETICI SEDE LEGALE: piazza Garibaldi, 54 30020 Eraclea (VE) DOCUMENTO VALUTAZIONE DEI RISCHI DA CAMPI ELETTROMAGNETICI Redatto ai sensi: Titolo VIII, Capitolo IV del D.Lgs. 9 aprile 2008 n. 81 e s.m.i. Prot.

Dettagli

CAMPI ELETTROMAGNETICI. Massimo Telesca ARPA FVG Indirizzo tecnicoscientifico. e coordinamento dei Dipartimenti provinciali

CAMPI ELETTROMAGNETICI. Massimo Telesca ARPA FVG Indirizzo tecnicoscientifico. e coordinamento dei Dipartimenti provinciali CAMPI ELETTROMAGNETICI 209 CAMPI ELETTROMAGNETICI La crescente domanda di accesso in mobilità al mondo delle informazioni e dell intrattenimento sta comportando l aumento del numero di impianti per la

Dettagli

Con il termine elettrosmogsi designa il presunto inquinamento derivante dalla formazione di campi elettromagnetici (CEM) dovuti a radiazioni

Con il termine elettrosmogsi designa il presunto inquinamento derivante dalla formazione di campi elettromagnetici (CEM) dovuti a radiazioni ELETTROSMOG Con il termine elettrosmogsi designa il presunto inquinamento derivante dalla formazione di campi elettromagnetici (CEM) dovuti a radiazioni elettromagnetiche non ionizzanti, quali quelle prodotte

Dettagli

ARI LOANO (SV) 20.05.2011 IK1HLG

ARI LOANO (SV) 20.05.2011 IK1HLG ARI LOANO (SV) Utilizzare un Generatore Elettrico in Sicurezza ovvero "come proteggersi dai contatti diretti ed indiretti quando si usa un generatore di corrente elettrica con motore a scoppio". 20.05.2011

Dettagli

Master MEDEA. Corso di Economia e Politica dell Ambiente. Elettrosmog. Cristian Masini Edoardo Patriarca

Master MEDEA. Corso di Economia e Politica dell Ambiente. Elettrosmog. Cristian Masini Edoardo Patriarca Master MEDEA Corso di Economia e Politica dell Ambiente Elettrosmog Cristian Masini Edoardo Patriarca Agenda Incremento Rumore di Fondo e timore EM Campi Elettromagnetici (CEM): grandezze Effetti dei CEM

Dettagli

Relazione sullo Stato dell Ambiente Comuni di Capurso (capofila), Cellamare e Triggiano Bozza Aprile 2006

Relazione sullo Stato dell Ambiente Comuni di Capurso (capofila), Cellamare e Triggiano Bozza Aprile 2006 11. INQUINAMENTO ELETTROMAGNETICO 11.1. Inquadramento Le radiazioni elettromagnetiche sono presenti in natura sotto forma di emissioni solari, terrestri, delle galassie ed in generale vengono emesse da

Dettagli

3-Effetti biologici e sanitari indotti da campi elettromagnetici a bassa frequenza

3-Effetti biologici e sanitari indotti da campi elettromagnetici a bassa frequenza 3-Effetti biologici e sanitari indotti da campi elettromagnetici a bassa frequenza 3.1 Effetti biologici dei campi elettromagnetici I campi elettromagnetici a bassa frequenza ELF, dall inglese Extremly

Dettagli

I.P.S.I.A. Di BOCCHIGLIERO. ---- Sicurezza elettrica ---- Materia: Elettronica, Telecomunicazioni ed applicazioni. prof. Ing.

I.P.S.I.A. Di BOCCHIGLIERO. ---- Sicurezza elettrica ---- Materia: Elettronica, Telecomunicazioni ed applicazioni. prof. Ing. I.P.S.I.A. Di BOCCHIGLIERO a.s. 2011/2012 -classe IV- Materia: Elettronica, Telecomunicazioni ed applicazioni ---- Sicurezza elettrica ---- alunni Paletta Francesco Scalise Pietro Iacoi Domenico Turco

Dettagli

Lo sviluppo tecnologico, con il relativo aumento esponenziale del rischio da esposizione, non e stato seguito da adeguate misure preventive.

Lo sviluppo tecnologico, con il relativo aumento esponenziale del rischio da esposizione, non e stato seguito da adeguate misure preventive. AGENTI FISICI IL RUMORE INTRODUZIONE Il rumore negli ambienti di lavoro è ormai diventato uno dei problemi più importanti tra quelli compresi nell igiene del lavoro. La continua meccanizzazione della produzione

Dettagli

ALLEGATO XXXVI VALORI LIMITE DI ESPOSIZIONE E VALORI DI AZIONE PER I CAMPI ELETTROMAGNETICI CAMPI ELETTROMAGNETICI

ALLEGATO XXXVI VALORI LIMITE DI ESPOSIZIONE E VALORI DI AZIONE PER I CAMPI ELETTROMAGNETICI CAMPI ELETTROMAGNETICI ALLEGATO XXXVI VALORI LIMITE DI ESPOSIZIONE E VALORI DI AZIONE PER I CAMPI ELETTROMAGNETICI CAMPI ELETTROMAGNETICI Le seguenti grandezze fisiche sono utilizzate per descrivere l'esposizione ai campi elettromagnetici:

Dettagli

Effetti fisiopatologici della corrente elettrica

Effetti fisiopatologici della corrente elettrica Sicurezza elettrica: Effetti fisiopatologici della corrente elettrica Effetti della corrente sul corpo umano folgorazione ed arco elettrico - Protezione dai contatti elettrici - Aspetti costruttivi degli

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

Energetic Building Biology. Energia Elettromagnetica

Energetic Building Biology. Energia Elettromagnetica Energetic Building Biology Energia Elettromagnetica CEM - effetti sulla salute umana, cenni sulle indagini epidemiologiche e sui test biologici Negli anni 50 l inquinamento elettromagnetico (il cosiddetto

Dettagli

CEM: EFFETTI SULLA SALUTE E SORVEGLIANZA SANITARIA. dott. Pierantonio Zanon SPISAL ULSS n. 6 VICENZA 8 ottobre 2012

CEM: EFFETTI SULLA SALUTE E SORVEGLIANZA SANITARIA. dott. Pierantonio Zanon SPISAL ULSS n. 6 VICENZA 8 ottobre 2012 CEM: EFFETTI SULLA SALUTE E SORVEGLIANZA SANITARIA dott. Pierantonio Zanon SPISAL ULSS n. 6 VICENZA 8 ottobre 2012 D.Lgs. 81/08 Articolo 206 - Campo di applicazione 1. Il presente capo determina i requisiti

Dettagli

Radiazioni non ionizzanti

Radiazioni non ionizzanti 12. Da sempre sulla Terra è presente un fondo naturale di radiazione elettromagnetica non ionizzante dovuto ad emissioni del sole, della Terra stessa e dell atmosfera. Il progresso tecnologico ha aggiunto

Dettagli

17/09/2015 TETANIZZAZIONE ARRESTO DELLA RESPIRAZIONE FIBRILLAZIONE VENTRICOLARE USTIONI

17/09/2015 TETANIZZAZIONE ARRESTO DELLA RESPIRAZIONE FIBRILLAZIONE VENTRICOLARE USTIONI PRINCIPALI EFFETTI PRODOTTI DALLA CORRENTE ELETTRICA SUL CORPO UMANO TETANIZZAZIONE ARRESTO DELLA RESPIRAZIONE FIBRILLAZIONE VENTRICOLARE USTIONI 1 CONSEGUENZE DELLE CORRENTI ELETTRICHE SUL CORPO UMANO

Dettagli

RICHIAMI DI ELETTROTECNICA

RICHIAMI DI ELETTROTECNICA RICHIAMI DI ELETTROTECNICA Premessa Per comprendere gli argomenti presentati nelle pagine dell area tematica sul rischio elettrico, è necessario conoscere il significato di alcune grandezze elettriche

Dettagli

Il Radon è un gas naturale radioattivo inodore, insapore e incolore. Tale gas, proveniente principalmente dal terreno, si propaga facilmente nell

Il Radon è un gas naturale radioattivo inodore, insapore e incolore. Tale gas, proveniente principalmente dal terreno, si propaga facilmente nell Il Radon è un gas naturale radioattivo inodore, insapore e incolore. Tale gas, proveniente principalmente dal terreno, si propaga facilmente nell ambiente diffondendosi nell aria. In spazi aperti è diluito

Dettagli

Sicurezza negli impianti elettrici

Sicurezza negli impianti elettrici Sicurezza negli impianti elettrici L energia elettrica, necessaria per la maggior parte delle attività dell uomo, costituisce un enorme vantaggio ma anche un elemento di rischio e di pericolosità. Per

Dettagli

4.5 IMPIANTI ED APPARECCHIATURE ELETTRICHE

4.5 IMPIANTI ED APPARECCHIATURE ELETTRICHE 4.5 IMPIANTI ED APPARECCHIATURE ELETTRICHE Con il termine impianto elettrico si intende l insieme di apparecchiature elettriche, meccaniche e fisiche atte alla trasmissione e all'utilizzo di energia elettrica.

Dettagli

CAPITOLO VII COMPONENTI DELL IMPIANTO: IMPIANTI DI TERRA

CAPITOLO VII COMPONENTI DELL IMPIANTO: IMPIANTI DI TERRA CAPITOLO VII COMPONENTI DELL IMPIANTO: IMPIANTI DI TERRA 1. Premessa Le definizioni sono riportate nell Appendice A. 1.1 Tipi di messa a terra I tipi di messa a terra sono: messa a terra di protezione,

Dettagli

D.to Lg.vo n.81/08 CORSO DI FORMAZIONE PER LAVORATORI

D.to Lg.vo n.81/08 CORSO DI FORMAZIONE PER LAVORATORI D.to Lg.vo n.81/08 CORSO DI FORMAZIONE PER LAVORATORI PARTE SPECIFICA RISCHI: MECCANICO ED ELETTRICO CLASSIFICAZIONE DEI RISCHI RISCHIO DA AMBIENTI DI LAVORO RISCHIO ELETTRICO RISCHIO MECCANICO, MACCHINE

Dettagli

PROCEDURA DI SICUREZZA UTILIZZO DELLE APPARECCHIATURE ELETTRICHE NEGLI UFFICI

PROCEDURA DI SICUREZZA UTILIZZO DELLE APPARECCHIATURE ELETTRICHE NEGLI UFFICI SERVIZIO DI PREVENZIONE E PROTEZIONE DAI RISCHI Pagina 1 di 6 PROCEDURA DI SICUREZZA 1. UTILIZZO DELLE APPARECCHIATURE ELETTRICHE NEGLI UFFICI 2. Revisione numero Data emissione e/o ultima modifica Approvata

Dettagli

CORRENTE ELETTRICA E CORPO UMANO

CORRENTE ELETTRICA E CORPO UMANO CONTATTI ELETTRICI DIRETTI E INDIRETTI CORRENTE ELETTRICA E CORPO UMANO 2 CORRENTE ELETTRICA E CORPO UMANO Effetti fisiopatologici della corrente elettrica sul corpo umano Il passaggio di corrente elettrica

Dettagli

ESPOSIZIONE A CAMPI ELETTROMAGNETICI NEI LUOGHI DI LAVORO

ESPOSIZIONE A CAMPI ELETTROMAGNETICI NEI LUOGHI DI LAVORO Via Cassala 88 Brescia Tel. 030.47488 info@cbf.191.it ESPOSIZIONE A CAMPI ELETTROMAGNETICI NEI LUOGHI DI LAVORO DECRETO LEGISLATIVO 81/2008 TITOLO VIII CAPO IV Le onde elettromagnetiche sono un fenomeno

Dettagli

CEM: rischio o risorsa? Impieghi ed effetti biologici

CEM: rischio o risorsa? Impieghi ed effetti biologici A N P E Q -- Protezione dalle radiazioni ionizzanti Associazione Nazionale Professionale Esperti Mercoledì 14 ottobre 2015 ore 14:30 18:15 MILANO V.le G. D Annunzio, 15 Centro per la Cultura della Prevenzione

Dettagli

Fisica Applicata, Area Infermieristica, M. Ruspa ELETTROMAGNETISMO

Fisica Applicata, Area Infermieristica, M. Ruspa ELETTROMAGNETISMO ELETTROMAGNETISMO Seconda legge di Ohm Seconda legge di Ohm La resistenza elettrica di un conduttore di sezione S e lunghezza l si calcola come: Unità di misura: R = resistenza elettrica in Ω l = lunghezza

Dettagli

CAMPI ELETTROMAGNETICI E SALUTE PUBBLICA

CAMPI ELETTROMAGNETICI E SALUTE PUBBLICA Promemoria n. 263 Ottobre 2001 CAMPI ELETTROMAGNETICI E SALUTE PUBBLICA Campi a frequenza estremamente bassa e cancro Nel 1996, l Organizzazione Mondiale della Sanità (OMS) ha avviato il Progetto internazionale

Dettagli

Per i rischi di natura elettrica vanno tenuti in considerazione tre aspetti fondamentali :

Per i rischi di natura elettrica vanno tenuti in considerazione tre aspetti fondamentali : RISCHIO ELETTRICO L art. 80 del D. Lgs. 81/08, modificato dal D. Lgs. 106/09, introduce l esplicito obbligo a carico del. datore di lavoro di effettuare una valutazione del rischio elettrico al quale sono

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE

UNIVERSITÀ DEGLI STUDI DI UDINE UNIVERSITÀ DEGLI STUDI DI UDINE Corso di formazione per i Rappresentanti del Lavoratori per la sicurezza eireferentiperlaprevenzione e sicurezza dei dipartimenti SICUREZZA AMBIENTE IENE IG SERVIZI INTEGRATI

Dettagli

Campi elettromagnetici e radiazioni ionizzanti

Campi elettromagnetici e radiazioni ionizzanti RSA rovincia di Milano Campi elettromagnetici e radiazioni ionizzanti L insieme di tutte le onde elettromagnetiche, classificate in base alla loro frequenza, costituisce lo spettro elettromagnetico, che

Dettagli

CORSO RSPP modulo B SAFETY CONTACT SRL RISCHIO ELETTRICO. Consulenza e servizi Divisione Antinfortunistica Antincendio

CORSO RSPP modulo B SAFETY CONTACT SRL RISCHIO ELETTRICO. Consulenza e servizi Divisione Antinfortunistica Antincendio SAFETY CONTACT SRL CORSO RSPP modulo B RISCHIO ELETTRICO D.Lgs. 81/08. IGIENE SICUREZZA AMBIENTE CERTIFICAZIONI ANTINCENDIO MEDICINA del LAVORO PRIVACY Divisione Consulenza e servizi Divisione Antinfortunistica

Dettagli

PROGETTO DI LINEA ELETTRICA MT-BT IN CAVO SOTTERRANEO E N 1 CABINA DI TRASFORMAZIONE MT-BT IN LOCALITA GOLGO IN AGRO DEL COMUNE DI BAUNEI (OG)

PROGETTO DI LINEA ELETTRICA MT-BT IN CAVO SOTTERRANEO E N 1 CABINA DI TRASFORMAZIONE MT-BT IN LOCALITA GOLGO IN AGRO DEL COMUNE DI BAUNEI (OG) PROGETTO DI LINEA ELETTRICA MT-BT IN CAVO SOTTERRANEO E N 1 CABINA DI TRASFORMAZIONE MT-BT IN LOCALITA GOLGO IN AGRO DEL COMUNE DI BAUNEI (OG) RELAZIONE DI VALUTAZIONE PREVISIONALE CAMPO ELETTRICO E MAGNETICO

Dettagli

La formazione nell ambito della norma CEI 11-27 e la valutazione del rischio campi elettromagnetici

La formazione nell ambito della norma CEI 11-27 e la valutazione del rischio campi elettromagnetici La formazione nell ambito della norma CEI 11-27 e la valutazione del rischio campi elettromagnetici Ing. Ciro Ruocco Responsabile ANCORS Angri CR Elettroambiente relation1@tin.it Battipaglia, 21 Maggio

Dettagli

I CAMPI AD ALTA FREQUENZA

I CAMPI AD ALTA FREQUENZA MERCOLEDÌ 14 OTTOBRE 2015 CAMPI ELETTROMAGNETICI (CEM) IN CASA, NELL AMBIENTE, NELLA SANITÀ, NELL INDUSTRIA: NOI IN UN MONDO DI ONDE I CAMPI AD ALTA FREQUENZA RELATORE: FEDERICO MOLINA DR.SSA ANNA MARIA

Dettagli

Sorgenti di campi elettrici, magnetici ed elettromagnetici nelle attività lavorative

Sorgenti di campi elettrici, magnetici ed elettromagnetici nelle attività lavorative Sorgenti di campi elettrici, magnetici ed elettromagnetici nelle attività lavorative Gian Marco Contessa Rosaria Falsaperla gianmarco.contessa@ispesl.it Lunghezza d onda Frequenza m Hz RADIAZIONI IONIZZANTI

Dettagli

SOMMARIO GENERALE. Capitolo 3: Normative sui campi elettromagnetici, Luisa Biazzi Le raccomandazioni internazionali ed europee, le leggi italiane

SOMMARIO GENERALE. Capitolo 3: Normative sui campi elettromagnetici, Luisa Biazzi Le raccomandazioni internazionali ed europee, le leggi italiane SOMMARIO GENERALE INDICE SPECIFICO 2-4 Introduzione generale, Giovanni Bellenda, Rino Pavanello 5-48 Capitolo 1: Principi fisici-interazioni-effetti, Luisa Biazzi Premessa: quale elettrosmog?, fisica dei

Dettagli

IMPIANTI ELETTRICI ENERGIA ELETTRICA

IMPIANTI ELETTRICI ENERGIA ELETTRICA IMPIANTI ELETTRICI ENERGIA ELETTRICA forma di energia più conosciuta ed utilizzata facilmente trasportabile facilmente trasformabile in energia meccanica, termica, chimica, luce pericolosa in caso di guasti,

Dettagli

RELAZIONE VCEM: VALUTAZIONE COMPATIBILITA' ELETTROMAGNETICA DELLA CABINA ELETTRICA DI TRASFORMAZIONE VA.I.04 - GENNAIO 2014...

RELAZIONE VCEM: VALUTAZIONE COMPATIBILITA' ELETTROMAGNETICA DELLA CABINA ELETTRICA DI TRASFORMAZIONE VA.I.04 - GENNAIO 2014... RELAZIONE VCEM: VALUTAZIONE COMPATIBILITA' ELETTROMAGNETICA DELLA CABINA ELETTRICA DI TRAFORMAZIONE VA.I.04 - GENNAIO 2014... I N D I C E 1. OGGETTO... 2 1.1. DOCUMENTI DI RIFERIMENTO... 2 1.2. DEFINIZIONI...

Dettagli

STUDIO d INGEGNERIA Dr. Ing. ANTONIO VELE via Campizze. 37-83017 - Rotondi AV

STUDIO d INGEGNERIA Dr. Ing. ANTONIO VELE via Campizze. 37-83017 - Rotondi AV STUDIO d INGEGNERIA Dr. Ing. ANTONIO VELE via Campizze. 37-83017 - Rotondi AV COMUNE DI SCAMPITELLA E VALLATA (AVELLINO) PROGETTO DI UN CAMPO EOLICO DA 48 MW VALUTAZIONE DEI CAMPI ELETTRICI E MAGNETICI

Dettagli

NUMERO DI SITI DI TELEFONIA CELLULARE E RADIOTELEVISIVI PRESENTI NEL LAZIO

NUMERO DI SITI DI TELEFONIA CELLULARE E RADIOTELEVISIVI PRESENTI NEL LAZIO NUMERO DI SITI DI TELEFONIA CELLULARE E RADIOTELEVISIVI PRESENTI NEL LAZIO Anno 2014 Inquadramento del tema L esposizione a campi elettromagnetici (CEM) associata al rischio per la salute rappresenta una

Dettagli

Misure di prevenzione Misure di prevenzione. o Aumento distanza dalla fonte.

Misure di prevenzione Misure di prevenzione. o Aumento distanza dalla fonte. LEZIONE 11 Le radiazioni ionizzanti i rischi Particolarità o La loro rilevazione risulta complessa o Necessaria in contesti chimici, sanitari e nucleari. I rischi per la salute dei lavoratori o Apparato

Dettagli

EFFETTI DELL'ESPOSIZIONE DEL CORPO UMANO AI CAMPI ELETTROMAGNETICI 1

EFFETTI DELL'ESPOSIZIONE DEL CORPO UMANO AI CAMPI ELETTROMAGNETICI 1 Bruno Orsini (orsinibruno) EFFETTI DELL'ESPOSIZIONE DEL CORPO UMANO AI CAMPI ELETTROMAGNETICI 7 October 2013 Il rapido e diffuso aumento delle tecnologie di comunicazione che utilizzano l energia elettrica

Dettagli

per la telefonia mobile

per la telefonia mobile stazioni radio base per la telefonia mobile Sesto San Giovanni 13 aprile 2015 1 INTERAZIONE campo elettrico e magnetico La presenza di una carica elettrica provoca nello spazio circostante una perturbazione:

Dettagli

RAPPORTO SULLO STATO DELL AMBIENTE DEL COMUNE DI SCANZOROSCIATE 11. LE RADIAZIONI

RAPPORTO SULLO STATO DELL AMBIENTE DEL COMUNE DI SCANZOROSCIATE 11. LE RADIAZIONI 11. LE RADIAZIONI 11.1. Premessa Le radiazioni si distinguono in radiazioni ionizzanti e radiazioni non ionizzanti. Con il termine radiazioni ionizzanti si intendono le radiazioni in grado di rimuovere

Dettagli

Politecnico di Milano

Politecnico di Milano Politecnico di Milano Facoltà di Ingegneria - Anno Accademico 1998-99 Corso di Elettrotecnica - Prof.ssa Margherita Pillan Inquinamento da campi elettromagnetici ed impatto ambientale Massimo Bottelli

Dettagli

ASPETTI DI SICUREZZA ELETTRICA IN IMPIANTI FOTOVOLTAICI

ASPETTI DI SICUREZZA ELETTRICA IN IMPIANTI FOTOVOLTAICI ASPETTI DI SICUREZZA ELETTRICA IN IMPIANTI FOTOVOLTAICI Ing. Domenico Corbo Siena, 24 ottobre 2014 SICUREZZA ELETTRICA IN IMPIANTI FOTOVOLTAICI perche' e' necessario parlarne? per i seguenti motivi : sempre

Dettagli

CAMPI ELETTROMAGNETICI: MISURE ED ESPERIMENTI COSA SONO I CAMPI ELETTROMAGNETICI (CEM): UNA BREVISSIMA INTRODUZIONE.

CAMPI ELETTROMAGNETICI: MISURE ED ESPERIMENTI COSA SONO I CAMPI ELETTROMAGNETICI (CEM): UNA BREVISSIMA INTRODUZIONE. CAMPI ELETTROMAGNETICI: MISURE ED ESPERIMENTI F. Bersani, P. Mesirca, D. Platano (mesirca@df.unibo.it; 051 2095304) COSA SONO I CAMPI ELETTROMAGNETICI (CEM): UNA BREVISSIMA INTRODUZIONE. Da sempre esistono

Dettagli

MISURE DI CAMPO ELETTROMAGNETICO E VALUTAZIONE DEI LIVELLI DI ESPOSIZIONE

MISURE DI CAMPO ELETTROMAGNETICO E VALUTAZIONE DEI LIVELLI DI ESPOSIZIONE MISURE DI CAMPO ELETTROMAGNETICO E VALUTAZIONE DEI LIVELLI DI ESPOSIZIONE RILASCIATA A: Sena Facility Management Soc. Cons. a r.l. via A. Rosi, 58-53100 - Siena IDENTIFICAZIONE DEL SITO: Azienda Regionale

Dettagli

IL RISCHIO ELETTRICO NELL AMBIENTE DOMESTICO

IL RISCHIO ELETTRICO NELL AMBIENTE DOMESTICO ORDINE DEGLI INGEGNERI della Provincia di Latina Piazza Celli, 3-04100 Latina (LT) Tel. 0773.694208 - Fax 0773.662628 IL RISCHIO ELETTRICO NELL AMBIENTE DOMESTICO Relatore: Ing. Giovanni Andrea POL Ordine

Dettagli

Sicurezza degli Impianti Elettrici

Sicurezza degli Impianti Elettrici FACOLTÁ DI INGEGNERIA UNIVERSITÁ DEGLI STUDI DI ROMA TOR VERGATA Sicurezza degli Impianti Elettrici Prof. Dott. Ing. Roberto Mugavero tel/fax 06-72597320 e-mail mugavero@ing.uniroma2.it Definizione di

Dettagli

Caratterizzazione dell esposizione ai campi elettromagnetici in ambito ospedaliero F.Bonutti Fisica Sanitaria AOUSMM Udine NORMATIVA

Caratterizzazione dell esposizione ai campi elettromagnetici in ambito ospedaliero F.Bonutti Fisica Sanitaria AOUSMM Udine NORMATIVA Caratterizzazione dell esposizione ai campi elettromagnetici in ambito ospedaliero F.Bonutti Fisica Sanitaria AOUSMM Udine NORMATIVA Esposizione occupazionale ai campi elettromagnetici (cem) : direttiva

Dettagli

IL TRASFORMATORE. A cosa serve un trasformatore. Allegato 1

IL TRASFORMATORE. A cosa serve un trasformatore. Allegato 1 Allegato 1 IL TRASFORMATORE Una notevole distanza intercorre, spesso, tra il luogo in cui l energia elettrica viene prodotta (la centrale elettrica) e quello in cui viene utilizzata (industrie, abitazioni,

Dettagli

Liceo Scientifico Statale R.L. Satriani di Petilia Policastro (KR)

Liceo Scientifico Statale R.L. Satriani di Petilia Policastro (KR) Liceo Scientifico Statale R.L. Satriani di Petilia Policastro (KR) Progetto Nazionale SeT progetto nazionale per l educazione scientifica e tecnologica - Annualità 2004 Monitoriamo l ambiente del Parco

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il campo magnetico 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz 1 Lezione 1 - Fenomeni magnetici I campi magnetici possono essere

Dettagli

Fondazione Ordine degli Ingegneri

Fondazione Ordine degli Ingegneri Istituto Nazionale B. Ramazzini Centro di Ricerca sul Cancro Cesare Maltoni Effetti sulla salute dei campi elettromagnetici ad alta frequenza Fondazione Ordine degli Ingegneri Milano, 16 maggio 2014 Dott.

Dettagli

Disturbi e schermature

Disturbi e schermature Disturbi e schermature Introduzione Cause di degrado di un segnale: il rumore,, un contributo legato alla fisica del moto dei portatori di carica nei dispositivi, descritto da leggi statistiche; Filtraggio

Dettagli

INQUINAMENTO ELETTROMAGNETICO

INQUINAMENTO ELETTROMAGNETICO Programma Regionale I.N.F.E.A. Informazione Formazione ed Educazione Ambientale PROGETTO GEO Sensibilizzazione alla sostenibilità ambientale INQUINAMENTO ELETTROMAGNETICO Dott. A.Zari - Dipartimento A.R.P.A.T.

Dettagli

Misure di compatibilità elettromagnetica (EMC: ElectroMagnetic Compatibility)

Misure di compatibilità elettromagnetica (EMC: ElectroMagnetic Compatibility) Misure di compatibilità elettromagnetica (EMC: ElectroMagnetic Compatibility) Compatibilità Elettromagnetica sta ad indicare l idoneità di un apparecchio o di un sistema a funzionare nel proprio campo

Dettagli