APPUNTI DI ELETTRONICA ANALOGGICA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "APPUNTI DI ELETTRONICA ANALOGGICA"

Transcript

1 00 SCHEDA 01 : INDICE GRANDEZZE ELETTRICHE, MULTIPLI E SOTTOMULTIPLI. LEGGE DI OHM CADUTA DI TENSIONE SERIE DI RESISTENZE E CAPACITA' PARALLELO DI RESISTENZE E CAPACITA' SCHEDA 02 : CODICE COLORE VALORI STANDARD DI RESISTENZE E CAPACOTA' SCHEDA 03 : DIODI DIODI LED DIODI ZENER SCHEDA 04 : DIODO VARICAP TRANSISTOR GENERALITA' SCHEDA 05 : TRANSISTOR POLARIZZAZIONE SCHEDA 06 : SCHEDA 07 : TIPI DI POLARIZZAZIONI DEI TRANSISTOR FET GENERALITA' FET POLARIZZAZIONI SCHEDA 08 : FET POLARIZZAZIONI II PARTE SCHEDA 09 : TIPI DI POLARIZZAZIONI DEI FET SCHEDA 10 : SCR 03/2008 PAG. 1 A 02/08/2008

2 00 SCHEDA 11 : INDICE TRIAC SCHEDA 12 : OPERAZIONALI GENERALITA' SCHEDA13 : (OPERAZIONALI) INGRESSO "NON INVERTENTE" CON ALIMENTAZIONE DUALE SCHEDA14 : (OPERAZIONALI) INGRESSO "INVERTENTE" CON ALIMENTAZIONE DUALE SCHEDA15 : (OPERAZIONALI) INGRESSO "NON INVERTENTE" CON ALIMENTAZIONE SINGOLA SCHEDA16 : (OPERAZIONALI) INGRESSO "INVERTENTE" CON ALIMENTAZIONE SINGOLA SCHEDA17 : (OPERAZIONALI) ALCUNI TIPI SCHEDA18 : (OPERAZIONALI) VANTAGGI (OPERAZIONALI) AMPLIFICATORE CON INGRESSO NON INVERTENTE SCHEDA19 : (OPERAZIONALI) AMPLIFICATORE CON INGRESSO INVERTENTE (OPERAZIONALI) AMPLIFICATORE ALTRI SCHEMI SCHEDA20 : (OPERAZIONALI) AMPLIFICATORE ALTRI SCHEMI 2 SCHEDA21 : (OPERAZIONALI) AMPLIFICATORE ALTRI SCHEMI 3 03/2008 PAG. 1 B 02/08/2008

3 00 SCHEDA 22: INDICE (OPERAZIONALI) AMPLIFICATORE ALTRI SCHEMI 4 (OPERAZIONALI) GBW TIPICI (OPERAZIONALI) DUE STADI INGRESSO "NON INVERTENTE ALIM DUALE SCHEDA 23: (OPERAZIONALI) DUE STADI INGRESSO "NON INVERTENTE ALIM DUALE 2 (OPERAZIONALI) DUE STADI INGRESSO " INVERTENTE ALIM DUALE 03/2008 PAG. 1 C 02/08/2008

4 TENSIONE CORRENTE POTENZA RESISTENZA GRANDEZZE ELETTRICHE, MULTIPLI E SOTTOMULTIPLI. V Volt V FREQUENZA F Herz Hz I Ampere A CAPACITA' C Farad F P Watt W INDUTTANZA L Henry H R Ohm Ω G M K m m η ρ Giga Mega Kilo milli micro nano pico 1X X10 9 1X10 6 1X10-3 1X10-6 1X10-9 1X ,001 0, , , LEGGE DI OHM R = V / I I = V / R P = V * I R = P / I 2 I = P / V P = V 2 / R R = V 2 / P I = RDQ ( P / R ) P = R * I 2 V = R * I V = P / I V = RDQ ( P * R ) 1.30 CADUTA DI TENSIONE R T = R 1 + R 2 = = 690 Ω I = V / R T = 15 / 690 = 0,02 A V R2 = I * R 2 = 0,02 * 220 = 4,78 V 1.40 SERIE DI RESISTENZE E CAPACITA' R T = R 1 + R 2 C T = ( C 1 * C 2 ) / ( C 1 + C 2 ) C 1 = ( C T * C 2 ) / ( C 2 - C T ) 1.50 PARALLELO DI RESISTENZE E CAPACITA' R T = ( R 1 * R 2 ) / ( R 1 + R 2 ) R 1 = (R T * R 2 ) / (R 2 - R T ) C T = C 1 + C 2 03/2008 PAG. 2 02/08/2008

5 CODICE COLORE Colore Valore Moltiplicat Tolleranz (%) Nero Marrone 1 1 ±1 Rosso 2 2 ±2 Arancio 3 3 ±0.05 Giallo Verde 5 5 ±0.5 Blue 6 6 ±0.25 Violetto 7 7 ±0.1 Grigio Bianco Oro - -1 ±5 Argento - -2 ±10 Niente - - ± VALORI STANDARD DI RESISTENZE E CAPACOTA' 1 Ω 10 Ω 100 Ω Ω Ω Ω 1 ΜΩ 1,2 Ω 1,5 Ω 1,8 Ω 12 Ω 15 Ω 18 Ω 120 Ω 150 Ω 180 Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω 1,2 ΜΩ 1,5 ΜΩ 1,8 ΜΩ 2,2 Ω 22 Ω 220 Ω Ω Ω Ω 2,2 ΜΩ 2,7 Ω 27 Ω 270 Ω Ω Ω Ω 2,7 ΜΩ 3,3 Ω 33 Ω 330 Ω Ω Ω Ω 3,3 ΜΩ 3,9 Ω 39 Ω 390 Ω Ω Ω Ω 3,9 ΜΩ 4,7 Ω 47 Ω 470 Ω Ω Ω Ω 4,7 ΜΩ 5,6 Ω 56 Ω 560 Ω Ω Ω Ω 5,6 ΜΩ 6,8 Ω 68 Ω 680 Ω Ω Ω Ω 6,8 ΜΩ 8,2 Ω 82 Ω 820 Ω Ω Ω Ω 8,2 ΜΩ 1 pf 10 pf 100 pf pf pf pf 1 µf 1,2 pf 12 pf 120 pf pf pf pf 1,2 µf 1,5 pf 15 pf 150 pf pf pf pf 1,5 µf 1,8 pf 18 pf 180 pf pf pf pf 1,8 µf 2,2 pf 22 pf 220 pf pf pf pf 2,2 µf 2,7 pf 27 pf 270 pf pf pf pf 2,7 µf 3,3 pf 33 pf 330 pf pf pf pf 3,3 µf 3,9 pf 39 pf 390 pf pf pf pf 3,9 µf 4,7 pf 47 pf 470 pf pf pf pf 4,7 µf 5,6 pf 56 pf 560 pf pf pf pf 5,6 µf 6,8 pf 68 pf 680 pf pf pf pf 6,8 µf 8,2 pf 82 pf 820 pf pf pf pf 8,2 µf 03/2008 PAG. 3 02/08/2008

6 DIODI 3.20 DIODI LED R C = ( V - V L ) / I L = 12-1,4 / 0,02 = 530 Ω 3.30 DIODI ZENER IL ZENER E' UNO STABILIZZATORE DI TENSIONE CONTINUA. I DIODI ZENER COLLEGATI IN SERIE TRA LORO SI OTTIENE UNA TENSIONE STABILIZATA PARI ALLA SOMMA DELLE VZ R 1 = ( V - Vz ) / 0,025 = 12-5,6 / 0,025 = 256,0 Ω V Z SIGLA V MIN V MAX V Z SIGLA V MIN V MAX V Z SIGLA V MIN V MAX V Z SIGLA V MIN V MAX 2,7 2V7 2,5 2,9 5,1 5V1 4,8 5, ,4 10, , V0 2,8 3,2 5,6 5V6 5, ,4 11, ,8 23 3,3 3V3 3,1 3,5 6,2 6V2 5,8 6, ,4 12, ,8 26 3,6 3V6 3, ,8 6V8 6,4 7, ,4 14, ,1 29 3,9 3V9 3,7 4,1 7,5 7V5 7 7, ,8 15, ,3 4V3 8,2 8V2 7,7 8, ,3 17,1 4,7 4V7 9,1 9V1 8,5 9, ,8 19,1 03/2008 PAG. 4 02/08/2008

7 DIODO VARICAP TENSIONE CAPACITA' 0 60 pf 2 50 pf 4 40 pf 6 20 pf 8 18 pf pf 14 8 pf TENSIONE CAPACITA' 16 6 pf 18 5 pf 20 4 pf 22 3 pf 24 2 pf 25 1,8 pf LA RESISTENZA DI CARICO E' SEMPRE DI Ω 4.20 TRANSISTOR GENERALITA' 03/2008 PAG. 5 02/08/2008

8 TRANSISTOR POLARIZZAZIONE R C = R U / 5 = 1000 / 5 = 200 Ω e Ω R E = R C / Guad = 180 / 4 = 45 Ω e 47 Ω I C = ((Vcc / 2) / (R C + R E )) * 1000 = ((20 / 2) / ( )) * 1000 = 44,05 ma V RE = I C * R E / 1000 = 44,05 * 47 / 1000 = 2,07 V R BE = hfe * R E / 10 = 30 * 47 / 10 = 141 Ω e 150 Ω R Bc = ((Vcc * R E ) / (0,65 + V RE )) * R BE = ((20 * 47) / (0, ,07)) * 150 = 51838,24 Ω e e ΚΩ ING MAX GUAD MAX = V CC * 0,8 / GUAD = 20 * 0,8 / 4 = 4,00 V PP ING MAX = V CC * 0,8 / = 20 * 0,8 / 4 = 4,00 V EF = V PP / 2,82 IL FATTORE DI MOLTIPLICAZIONE 0,8 SI UTILIZZAPER EVITARE DI TOSARE LE ESTREMITA DELL'ONDA A CAUSA DEGGLI EVENTUALI ERRORI DI CALCOLO DELLA V RE DOVUTO ALLA TOLLERANZA DELLE RESISTENZE. 03/2008 PAG. 6 02/08/2008

9 TIPI DI POLARIZZAZIONI DEI TRANSISTOR GUADAGNO IN TENSIONE GUADAGNO IN CORRENTE GUADAGNO IN POTENZA EMETTER COMMON MEDIO MEDIO ALTO COLLECTOR COMMON NULLO MEDIO BASSO BASE COMMON ELEVATO NULLO MEDIO IMPEDENZA D' INGRESSO IMPEDENZA D' USCITA INVERSIONE DI FASE MEDIA ELEVATA SI ELEVATA BASSA NO BASSA ELEVATA NO 6.20 FET GENERALITA' 03/2008 PAG. 7 02/08/2008

10 FET POLARIZZAZIONE Vgs 0FF NON CONOSCENDO LA Vgs Vgs = / 2 = 3,60 / 2,00 = 1,80 V V Ds = V RD = (V CC - Vgs) / 2 = (15-1,8) / 2 = 6,60 V Ids = 4,00 ma = Ids = 1,00 ma = BASSO GAIN ALTO GAIN R D = (V DS / Ids) * 1000 = (6-1) * 1000 = 5000,00 Ω e e 4,7 5,6 ΚΩ R S = (V GS / Ids) * 1000 = (1,8-1) * 1000 = 800,00 Ω e e 820 Ω ms GAIN = ((R D - R S ) * Yfs) / 1000 = (( ) * 6) / R G = CONOSCENDO LA Vgs / 1000 = 23,28 VOLTE DETERMINA IL VALORE DELL'IMPEDENZA DI INGRESSO CHE POTRA' ESSERE SCELTO TRA UN VALORE TIPICO DI 47 KΩ A 1MΩ R D = R USC / 10 = / 10 = 4700 Ω V Ds = V RD = (V CC - Vgs) / 2 = (15-1,8) / 2 = 6,60 V I Ds = (V RD / R D ) * 1000 = (6,6 / 4700) * 1000 = 1,40 ma R S = (V GS / Ids) * 1000 = (1,8 / 1,4) * 1000 = 1285,71 Ω e e 1200 Ω % 03/2008 PAG. 8 03/08/2008

11 FET POLARIZZAZIONE II PART. V IMAX = (V CC / GUAD) * 0,8 = (15 / 23,28) * 0,8 = 0,52 V PP V UMAX = (V CC - V GS ) * 0,8 = (15-1,8) * 0,8 = 10,6 V PP V EF = V PP / 2,82 IL FATTORE DI MOLTIPLICAZIONE 0,8 SI UTILIZZAPER EVITARE DI TOSARE LE ESTREMITA DELL'ONDA A CAUSA DEGGLI EVENTUALI ERRORI DI CALCOLO DELLA V RE DOVUTO ALLA TOLLERANZA DELLE RESISTENZE. 03/2008 PAG. 9 03/08/2008

12 TIPI DI POLARIZZAZIONI DEI FET SOURCE COMMON DRAIN COMMON GATE COMMON GUADAGNO IN TENSIONE MEDIO NULLO ELEVATO GUADAGNO IN CORRENTE MEDIO MEDIO NULLO GUADAGNO IN POTENZA ALTO BASSO MEDIO IMPEDENZA D' INGRESSO MEDIA ELEVATA BASSA IMPEDENZA D' USCITA ELEVATA BASSA ELEVATA INVERSIONE DI FASE SI NO NO 03/2008 PAG /08/2008

13 SCR 03/2008 PAG /08/2008

14 TRIAC DIAC PERMETTE IL PASSAGGIO DI UN IMPULSO SOLO AL RAG. DI UNA DET. SOGGLIA 03/2008 PAG /08/2008

15 OPERAZIONALI GENERALITA' 03/2008 PAG /08/2008

16 (OPERAZIONALI) INGRESSO "NON INVERTENTE" CON ALIMENTAZIONE DUALE 03/2008 PAG /08/2008

17 (OPERAZIONALI) INGRESSO "INVERTENTE" CON ALIMENTAZIONE DUALE 03/2008 PAG /08/2008

18 (OPERAZIONALI) INGRESSO "NON INVERTENTE" CON ALIMENTAZIONE SINGOLA 03/2008 PAG /08/2008

19 (OPERAZIONALI) INGRESSO "INVERTENTE" CON ALIMENTAZIONE SINGOLA 03/2008 PAG /08/2008

20 (OPERAZIONALI) ALCUNI TIPI 03/2008 PAG /08/2008

21 (OPERAZIONALI) VANTAGGI (OPERAZIONALI) AMPLIFICATORE CON INGRESSO NON INVERTENTE R 1 = ,00 Ω GUAD=(R3/R2)+1 = 2200 / = 7,67 R 2 =R 3 /(GUAD-1) = 2200 / 7,67-1 = 330 Ω R 3 =R 2 *(GUAD-1) = 330 / 7,67-1 = 49,5 Ω F MAX =( /GUAD)*GBW = / 7,67 * 1 = ,78 Η Ζ mv GUAD MAX =(V CC *0,85)/(V IN )*1000 = 12 * 0,85 / 700 * 1000 = 14,57 03/2008 PAG /08/2008

22 (OPERAZIONALI) AMPLIFICATORE CON INGRESSO INVERTENTE GUAD=(R 3 /R 2 ) R 2 =R 3 /(GUAD) R 3 =R 2 *(GUAD) F MAX =( /GUAD)*GBW GUAD MAX =(V CC *0,85)/(V IN )*1000 = 2200 / 330 = 6,67 = 2200 / 6,67 = 330 Ω = 330 * 6,67 = 2200 Ω = / 6,67 * 1 = ,00 Η Ζ mv = 12 * 0,9 / 700 * 1000 = 14, (OPERAZIONALI) AMPLIFICATORE ALTRI SCHEMI 03/2008 PAG /08/2008

23 (OPERAZIONALI) AMPLIFICATORE ALTRI SCHEMI 2 C 1 = 4,7 µf R 2 = 3300 Ω C 3 =159000/(R 2 *F MIN ) = / / 3300 * 15 = 3, µf F=159000/(R 2 *C 3 ) = / / 3300 * 3,21 = 15 Hz C 2 =159000/((R 3 /1000)*F) = / / 2200 / 1000 * 25 = 2890,909 ρf F=159000/((R 3 /1000)*C 2 ) = / / 2200 / 1000 * 2890,909 = 25 KHz 03/2008 PAG /08/2008

24 (OPERAZIONALI) AMPLIFICATORE ALTRI SCHEMI 3 03/2008 PAG /08/2008

25 (OPERAZIONALI) AMPLIFICATORE ALTRI SCHEMI (OPERAZIONALI) GBW TIPICI OP AMP µa.741 µa.748 TL.081 TL.082 LF.351 GBW GBW 1MHz GBW 1MHz GBW 4MHz GBW 3.5MHz GBW 4MHz OP AMP LF.356 LM.358 CA.3130 NE.5532 GBW GBW 5MHz GBW 1MHz GBW 15MHz GBW 10MHz (OPERAZIONALI) DUE STADI INGRESSO "NON INVERTENTE ALIM DUALE 03/2008 PAG /08/2008

26 (OPERAZIONALI) DUE STADI INGRESSO "NON INVERTENTE ALIM DUALE (OPERAZIONALI) DUE STADI INGRESSO " INVERTENTE ALIM DUALE 03/2008 PAG /08/2008

Misure su linee di trasmissione

Misure su linee di trasmissione Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo Esercitazione 3 Biagio Provinzano Aprile 005 Esercizio I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo V A, β = 00, V BE = 0.7V in zona attiva ed infine Cπ = C µ =0pF.

Dettagli

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esonero del 14 giugno 2006

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esonero del 14 giugno 2006 Esonero del 14 giugno 2006 Dato il circuito di figura C 2 R 3 OP v IN C 1 v o in cui = =0.5K!, R 3 =250!, C 1 =1µF, C 2 =1nF e v IN (V) 2 1 2 t (µs) 2 determinare l evoluzione temporale di V 0, supponendo

Dettagli

Dispositivi elettronici Esperienze di laboratorio

Dispositivi elettronici Esperienze di laboratorio Dispositivi elettronici Esperienze di laboratorio Universitá degli Studi di L Aquila Massimo Lucresi Luigi Pilolli Mariano Spadaccini maggio 2002 Esperienza n. 1 Analisi della risposta in frequenza di

Dettagli

figura 4.20 La formula generale del rivelatore, valida per segnali d ingresso sinusoidali, è data dall espressione:

figura 4.20 La formula generale del rivelatore, valida per segnali d ingresso sinusoidali, è data dall espressione: 4.12 Il circuito rivelatore La funzione svolta da un circuito rivelatore è simile al processo di raddrizamento svolto da un diodo così come illustrato nel paragrafo 2.3; la differenza sostanziale tra un

Dettagli

Banda passante di un amplificatore

Banda passante di un amplificatore Banda passante di un amplificatore Amplificatore ideale da 40 db con cella RC passa basso e passa alto. La cella passa basso determina la fequenza di taglio superiore fh, mentre la cella passa alto determina

Dettagli

Piano di lavoro preventivo

Piano di lavoro preventivo I S T I T U T O T E C N I C O I N D U S T R I A L E S T A T A L E G u g l i e l m o M a r c o n i V e r o n a Piano di lavoro preventivo Anno Scolastico 2015/16 1 Materia Classe Docenti Materiali didattici

Dettagli

P4 OSCILLATORI SINUSOIDALI

P4 OSCILLATORI SINUSOIDALI P4 OSILLATOI SINUSOIDALI P4. Dimensionare un oscillatore a ponte di Wien con amplificatore operazionale, per una frequenza f 6 khz, utilizzando un termistore NT per il controllo automatico di guadagno.

Dettagli

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013 I.T.I.. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 03/4 OGNOME E NOME Data: 7//03 Quesito ) (50%) Dato il circuito qui a fianco che rappresenta un oscillatore sinusoidale a ponte

Dettagli

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:.

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:. POR FSE 04-00 PARTE : LEGGI I SEGUENTI CAPITOLI DEL LIBRO DEL LIBRO L ENERGIA ELETTRICA, E RISPONDI ALLE DOMANDE. Capitoli 0- del libro L energia elettrica.. Che cosa è il magnetismo?e cosa si intende

Dettagli

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati Elettronica per telecomunicazioni 1 Contenuto dell unità A Informazioni logistiche e organizzative Applicazione di riferimento caratteristiche e tipologie di moduli Circuiti con operazionali reazionati

Dettagli

Lezione A3 - DDC

Lezione A3 - DDC Elettronica per le telecomunicazioni Unità A: Amplificatori, oscillatori, mixer Lezione A.3 Punto di funzionamento, guadagno e banda distorsioni, rumore, 1 Contenuto dell unità A Lezione A3 Informazioni

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo

Dettagli

OSCILLATORE A SFASAMENTO

OSCILLATORE A SFASAMENTO Elettronica Applicata a.a. 2013/2014 Esercitazione N 5 OSCILLATORE A SFASAMENTO Fabio Cioria Andrea Giombetti Giulio Pelosi (fabio.cioria@insono.com) (giombetti@unifi.it) (giulio.pelosi@insono.it) www.echommunity.com/courses.htm

Dettagli

Operazioni di misura(1) A. Misura di tensione DC e AC (vedi figura 3)

Operazioni di misura(1) A. Misura di tensione DC e AC (vedi figura 3) Operazioni di misura(1) A. Misura di tensione DC e AC (vedi figura 3) Al fine di evitare lesioni personali dovute a scosse elettriche o danni allo strumento, anche se si possono ottenere delle letture,

Dettagli

3.1 Verifica qualitativa del funzionamento di un FET

3.1 Verifica qualitativa del funzionamento di un FET Esercitazione n. 3 Circuiti con Transistori Rilevamento delle curve caratteristiche Questa esercitazione prevede il rilevamento di caratteristiche V(I) o V2(V1). In entrambi i casi conviene eseguire la

Dettagli

I parametri dell amplificatore operazionale reale

I parametri dell amplificatore operazionale reale I parametri dell amplificatore operazionale reale Gli amplificatori operazionali disponibili in commercio sono realizzati mediante circuiti integrati monolitici e hanno un funzionamento che si avvicina

Dettagli

Amplificatori a Transistori con controreazione

Amplificatori a Transistori con controreazione Amplificatori a Transistori con controreazione Esempi di amplificatori inertenti (CS e CE) con controreazione. G. Martines 1 G. Martines 2 Modello equialente a piccolo segnale e guadagno di tensione be

Dettagli

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A Copyright 006 he McGraw-Hill Companies srl SOLUZIONI DI ESERCIZI - Elettronica Digitale III ed. Capitolo Esercizio. V OH 5 V, V OL 0.5 V; NM H V OH - V IH V; NM L V IH - V IL.5 V. Esercizio.3 Il percorso

Dettagli

TRASFORMATORE AUDIO 100 VOLT MANUALE PER IL COLLEGAMENTO

TRASFORMATORE AUDIO 100 VOLT MANUALE PER IL COLLEGAMENTO TRASFORMATORE AUDIO 100 VOLT MANUALE PER IL COLLEGAMENTO UTILIZZO DI PIU ALTOPARLANTI IN PARALLELO Quando in un impianto audio si devono collegare più diffusori acustici in parallelo, l impedenza totale

Dettagli

Esperimentazioni di Fisica II. Esercitazione 0 Utilizzo strumentazione di laboratorio. Misure di resistenze.

Esperimentazioni di Fisica II. Esercitazione 0 Utilizzo strumentazione di laboratorio. Misure di resistenze. Esperimentazioni di Fisica II Esercitazione 0 Utilizzo strumentazione di laboratorio. Misure di resistenze. Codice colori delle resistenze Le resistenze possiedono 4 bande colorate (5 bande le resistenze

Dettagli

Relazione di Laboratorio Elettronica

Relazione di Laboratorio Elettronica Relazione di Laboratorio Elettronica OGGETTO: Funzionamento di un circuito derivatore con amplificatore operazionale DATI INIZIALI: Vcc = ±15V f 1 = 400Hz f 2 = 1KHz f 3 = 30KHz RIFERIMENTI TEORICI: Derivatore

Dettagli

4.13 Il circuito comparatore

4.13 Il circuito comparatore 4.13 Il circuito comparatore Il circuito comparatore è utile in tutti quei casi in cui si debba eseguire un controllo d ampiezza di tensioni continue; il dispositivo si realizza, generalmente, con un microamplificatore

Dettagli

APPUNTI del CORSO di TEORIA dei CIRCUITI 2 Oscillatore di Colpitts

APPUNTI del CORSO di TEORIA dei CIRCUITI 2 Oscillatore di Colpitts Università degli Studi di Trieste Facoltà di Ingegneria Laurea in Ingegneria dell Informazione a.a. 2004/2005 APPUNTI del CORSO di TEORIA dei CIRCUITI 2 Oscillatore di Colpitts docente: Stefano Pastore

Dettagli

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009 Esame del 19 febbraio 2009 Nel circuito di figura Is è un generatore di corrente con l andamento temporale riportato nel grafico. Determinare l'evoluzione temporale della V out e disegnarne il grafico

Dettagli

Richiesta preventivo materiale elettronica:

Richiesta preventivo materiale elettronica: Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per il Lazio ISTITUTO TECNICO INDUSTRIALE STATALE E.MAJORANA CASSINO (FR) Richiesta preventivo materiale elettronica:

Dettagli

PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M

PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M. 270/04) 27/01/2017 [B] ESERCIZIO 1 [A] [B] DATI: β = 100; k = 4 ma/v 2 ; VTH

Dettagli

Amplificatore logaritmico

Amplificatore logaritmico Elettronica delle Telecomunicazioni Esercitazione 2 mplificatore logaritmico ev 1 981208 GV, S ev 2 990617 DDC Specifiche di progetto Progettare un amplificatore con funzione di trasferimento logaritmica

Dettagli

Laboratorio di Elettronica T Esperienza 7 Circuiti a diodi 2

Laboratorio di Elettronica T Esperienza 7 Circuiti a diodi 2 Laboratorio di Elettronica T Esperienza 7 Circuiti a diodi 2 Cognome Nome Matricola Postazione N 1 Misura delle resistenze La corrente nei circuiti che dovrete analizzare nel seguito verranno misurate

Dettagli

ESAME di STATO 2009 ISTITUTO PROFESSIONALE per l INDUSTRIA e l ARTIGIANATO

ESAME di STATO 2009 ISTITUTO PROFESSIONALE per l INDUSTRIA e l ARTIGIANATO ESAME di STATO 2009 ISTITUTO PROFESSIONALE per l INDUSTRIA e l ARTIGIANATO Materia: ELETTRONICA TELECOMUNICAZIONI & APPLICAZIONI Il circuito proposto appare abbastanza semplice perché si tratta di un dispositivo

Dettagli

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA UNITA DI APPRENDIMENTO 1: RETI ELETTRICHE IN DC E AC Essere capace di applicare i metodi di analisi e di risoluzione riferiti alle grandezze

Dettagli

= A v1 A v2 R o1 + R i2 A v A v1 A v2. se R i2 R o1

= A v1 A v2 R o1 + R i2 A v A v1 A v2. se R i2 R o1 Amplificatori a due stadi STADIO 1 STADIO 2 R s R o1 R o2 v s + _ vi1 R i1 + A v1 v i1 _ v i2 R i2 + Av2vi2 _ vo2 RL A v v o2 v i1 = A v1 A v2 R i2 R o1 + R i2 A v A v1 A v2 se R i2 R o1 A.Nigro Laboratorio

Dettagli

BREADBOARD. saldare tutti i collegamenti, rendendo: estremamente laboriosa la modifica dei cablaggi, spesso non riutilizzabile la basetta.

BREADBOARD. saldare tutti i collegamenti, rendendo: estremamente laboriosa la modifica dei cablaggi, spesso non riutilizzabile la basetta. Breadboard BREADBOARD La costruzione di circuiti elettronici passa spesso per la costruzione di prototipi che possono richiedere più tentativi di cablaggio e messa a punto. Se il circuito prototipo fosse

Dettagli

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Oscillatori sinusoidali

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Oscillatori sinusoidali RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Oscillatori sinusoidali Nome: Samuele Sandrini 4AT 7/3/5 Gli oscillatori sinusoidali sono circuiti che producono un segnale sinusoidale di ampiezza e

Dettagli

Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza

Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza C. Del Turco 2007 Indice : Cap. 1 I componenti di base (12) 1.1 Quali sono i componenti di base (12) 1.2 I resistori (12)

Dettagli

OSCILLATORE A PONTE DI WIEN

OSCILLATORE A PONTE DI WIEN Istituto Professionale di Stato per l Industria e l Artigianato MOETTO Via Apollonio n BESCIA OSCILLATOE A PONTE DI WIEN Gruppo di lavoro : UDELLI ELIO VASSALINI GIUSEPPE Classe 5AI TIEE corso per Tecnici

Dettagli

Stadi Amplificatori di Base

Stadi Amplificatori di Base Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro

Dettagli

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 2009 Amplificatore operazionale perché? Moltiplicazione

Dettagli

SCUOLE MANZONI FONDAZIONE MALAVASI Via Scipione dal Ferro, 10/2 Bologna

SCUOLE MANZONI FONDAZIONE MALAVASI Via Scipione dal Ferro, 10/2 Bologna SCUOLE MANZONI FONDAZIONE MALAVASI Via Scipione dal Ferro, 10/2 Bologna ISTITUTO TECNICO AERONAUTICO DEI TRASPORTI E DELLA LOGISTICA CORSO DI ELETTROTECNICA, ELETTRONICA E AUTOMAZIONE CLASSE 4 I.T.T.L.

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Caratteristiche degli OpAmp OpAmp ideali e Retroazione Offset di tensione e di corrente Alimentazione

Dettagli

Appunti T.P.S. I.T.S. Einaudi

Appunti T.P.S. I.T.S. Einaudi APPUNTI ALIMENTATORI 1. Vi = (1,5 2) Vomax 2. PQ1 = (Vi Vo) IL = (Vi Vo) Ic1 3. Vz 0,5 Vo 4. Ib2 = Ib = Ic1 / hfetot = IL / (hfe1 hfe2) 5. Ic3 = (1 5)mA 6. I = Ib + Ic3 7. Rb = [Vi (Vo + 1,4)] / I 8. Ib3

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 1:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 1: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte E: Circuiti misti analogici e digitali Lezione n. 19 - E - 1: Comparatori di soglia Comparatori con isteresi Circuiti misti analogici

Dettagli

Corso di Elettronica Industriale

Corso di Elettronica Industriale Università degli studi di Firenze, anno accademico 2006 2007 Corso di Elettronica Industriale Gruppo N 4: Davide Cesare Tamburini Cristian Castellucci Ilaria Questo documento è rilasciato con licenza di

Dettagli

PROGRAMMAZIONE DIPARTIMENTO T.E.E. CLASSE V. ( Manutentore elettronico)

PROGRAMMAZIONE DIPARTIMENTO T.E.E. CLASSE V. ( Manutentore elettronico) Materia: TECNOLOGIA ELETTRICO ELETTRONICA E APPLICAZIONI - 201/15 PROGRAMMAZIONE DIPARTIMENTO T.E.E. (TECNOLOGIE ELETTRICO - ELETTRONICHE ) CLASSE V ( Manutentore elettronico) 1 Materia: TECNOLOGIA ELETTRICO

Dettagli

Misure voltamperometriche su dispositivi ohmici e non ohmici

Misure voltamperometriche su dispositivi ohmici e non ohmici Misure voltamperometriche su dispositivi ohmici e non ohmici Laboratorio di Fisica - Liceo Scientifico G.D. Cassini Sanremo 7 ottobre 28 E.Smerieri & L.Faè Progetto Lauree Scientifiche 6-9 Ottobre 28 -

Dettagli

Cos è un alimentatore?

Cos è un alimentatore? Alimentatori Cos è un alimentatore? Apparato in grado di fornire una o più tensioni richieste al funzionamento di altre attrezzature, partendo dalla rete elettrica (in Europa: alternata a 220 V, 50 Hz).

Dettagli

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590 CIRCUITO DI CONDIZIONAMENTO PER IL ASDUTTORE DI TEMPERATURA AD590 Gruppo n 5 Urbini Andrea Marconi Simone Classe 5C 2001/2002 SPECIFICHE DEL PROGETTO: realizzare un circuito in grado di trasformare una

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2016/2017 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,

Dettagli

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39 Indice generale Prefazione xi Capitolo 1. Richiami di analisi dei circuiti 1 1.1. Bipoli lineari 1 1.1.1. Bipoli lineari passivi 2 1.1.2. Bipoli lineari attivi 5 1.2. Metodi di risoluzione delle reti 6

Dettagli

A.R.I. - Sezione di Parma. Corso di preparazione esame patente radioamatore Semiconduttori. Carlo Vignali, I4VIL

A.R.I. - Sezione di Parma. Corso di preparazione esame patente radioamatore Semiconduttori. Carlo Vignali, I4VIL A.R.I. - Sezione di Parma Corso di preparazione esame patente radioamatore 2017 Semiconduttori Carlo Vignali, I4VIL SEMICONDUTTORI Un semiconduttore è un materiale che ha un apprezzabile conducibilità

Dettagli

Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA

Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 A COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA MATRICOLA: Negli esercizi, ove necessario e salvo indicazioni contrarie, si consideri che i circuiti

Dettagli

Condensatori elettrolitici al tantalio

Condensatori elettrolitici al tantalio Condensatori elettrolitici al tantalio 10 "F 35VL 3 a Cifra 471 "F 15VL 471 "F 15VL cifre moltiplicatore di lavoro Nero 0 x 1 10 V Marrone 1 x 10 Rosso 2 x 100 35 V Arancio 3 Giallo 4 6 V Verde 5 15 V

Dettagli

Oscillatori elevatori di tensione per il recupero di micropotenze ambientali da sorgenti a radiofrequenza

Oscillatori elevatori di tensione per il recupero di micropotenze ambientali da sorgenti a radiofrequenza 1/ 16 Oscillatori elevatori di tensione per il recupero di micropotenze ambientali da sorgenti a radiofrequenza Marco Alessandrini Università di Bologna Sede di Cesena Seconda Facoltà di Ingegneria Corso

Dettagli

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica Macro unità n 1 Classe IV specializzazione elettronica Elettrotecnica ed elettronica Reti elettriche, segnali e diodi Leggi fondamentali: legge di Ohm, principi di Kirchhoff, teorema della sovrapposizione

Dettagli

Istituto Professionale di Stato per l'industria e l'artigianato MORETTO Via Luigi Apollonio, 21 BRESCIA. Luci. Psichedeliche.

Istituto Professionale di Stato per l'industria e l'artigianato MORETTO Via Luigi Apollonio, 21 BRESCIA. Luci. Psichedeliche. Istituto Professionale di Stato per l'industria e l'artigianato MORETTO Via Luigi Apollonio, 2 BRESCIA Luci Psichedeliche Realizzazione Matteo Tamussi Marco Botta Paolo Bianchini Aldo Lagorio della classe

Dettagli

Diodi e transistor sono spesso utilizzati in circuiti ad elementi discreti, insieme a R, C, L. Il diodo è spesso utilizzato nei circuiti

Diodi e transistor sono spesso utilizzati in circuiti ad elementi discreti, insieme a R, C, L. Il diodo è spesso utilizzato nei circuiti Diodi e transistor sono spesso utilizzati in circuiti ad elementi discreti, insieme a R, C, L. Il diodo è spesso utilizzato nei circuiti raddrizzatori per convertire la corrente alternata, fornita dalla

Dettagli

Laboratorio II, modulo Amplificatori operazionali (cfr.

Laboratorio II, modulo Amplificatori operazionali (cfr. Laboratorio II, modulo 2 20152016 Amplificatori operazionali (cfr. http://physics.ucsd.edu/~tmurphy/phys121/phys121.html) Amplificatori operazionali Amplificatori operazionali sono disegnati come triangoli

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

6. GENERATORI DI SEGNALI DIGITALI

6. GENERATORI DI SEGNALI DIGITALI 6. GENERATORI DI SEGNALI DIGITALI MULTIVIBRATORE Dispositivo analogico attivo che genera un segnale binario (due possibili livelli di tensione). E realizzabile con un Amplificatore reazionato positivamente

Dettagli

IL TEMPORIZZATORE 555 COME OSCILLATORE

IL TEMPORIZZATORE 555 COME OSCILLATORE IL TEMPORIZZATORE 555 COME OSCILLATORE di Biagio Laureti Il timer integrato chiamato comunemente 555, è un temporizzatore monolitico realizzato sia nel contenitore circolare a 8 piedini tipo TO-99 sia

Dettagli

Schemi e caratteristiche dei principali amplificatori a BJT

Schemi e caratteristiche dei principali amplificatori a BJT Schemi e caratteristiche dei principali amplificatori a BJT Sommario argomenti trattati Schemi e caratteristiche dei principali amplificatori a BJT... 1 Amplificatore emettitore comune o EC... 1 Amplificatore

Dettagli

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - +

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + µa741 Cos'è l'amplificazione: Amplificare un segnale significa aumentarne il livello e di conseguenza la potenza. Il fattore

Dettagli

PRIMI PASSI CON ARDUINO

PRIMI PASSI CON ARDUINO PRIMI PASSI CON ARDUINO 1) Accensione e spegnimento del led presente sulla scheda Arduino. La scheda Arduino presenta, a bordo, alcuni led uno dei quali può essere controllato dal pin digitale 13; quando

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "G. VERONESE - G. MARCONI" SEZIONE ASSOCIATA G. MARCONI

ISTITUTO D ISTRUZIONE SUPERIORE G. VERONESE - G. MARCONI SEZIONE ASSOCIATA G. MARCONI ISTITUTO D ISTRUZIONE SUPERIORE "G. VERONESE - G. MARCONI" SEZIONE ASSOCIATA G. MARCONI Via T. Serafin, 15-30014 CAVARZERE (VE) Tel. 0426/51151 - Fax 0426/310911 E-mail: ipsiamarconi@ipsiamarconi.it -

Dettagli

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni Tektronix CFG280 Generatore di Funzioni Tektronix CFG280 Genera i segnali di tensione

Dettagli

I.I.S.S. G. CIGNA MONDOVI

I.I.S.S. G. CIGNA MONDOVI I.I.S.S. G. CIGNA MONDOVI PROGRAMMAZIONE INDIVIDUALE ANNO SCOLASTICO 2016-2017 CLASSE QUARTA A TRIENNIO TECNICO-ELETTRICO MATERIA ELETTROTECNICA ED ELETTRONICA DOCENTE BONGIOVANNI DARIO MATTEO LIBRI DI

Dettagli

Convertitori Elettronici di Potenza

Convertitori Elettronici di Potenza Convertitori Elettronici di Potenza Generatore Blocco di Potenza (commutazione) Carico/Rete V 1, f 1 V 2, f 2 Blocco di Controllo Schema di principio di un convertitore di potenza Classificazione dei Convertitori

Dettagli

Convertitore Temperatura Frequenza

Convertitore Temperatura Frequenza Convertitore Temperatura Frequenza sintesi di un progetto scolastico Specifiche: ivelazione della temperatura tramite sensore a semiconduttore a giunzione. Temperatura di misurabile 0-00 gradi. Guadagno

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte A: Transistori in commutazione Lezione n. 3 - A - 3: Transistori MOS in commutazione Elettronica II - Dante Del Corso - Gruppo A - 8 n.

Dettagli

Serie FA LASER Sensori Fotoelettrici cilindrici M18 DC LASER

Serie FA LASER Sensori Fotoelettrici cilindrici M18 DC LASER caratteristiche Serie FA Sensori Fotoelettrici cilindrici M8 DC garanzia garanzia Serie completa di sensori M8 con alimentazione...3 Vcc Ottica assiale e radiale con superficie piatta Modelli ad emissione

Dettagli

Laboratorio di Elettronica A.A. 2001/2002. Calendario delle Esperienze. 04/03 Inizio dei corsi salta - 22/04 RECUPERO delle lezioni precedenti -

Laboratorio di Elettronica A.A. 2001/2002. Calendario delle Esperienze. 04/03 Inizio dei corsi salta - 22/04 RECUPERO delle lezioni precedenti - Laboratorio di Elettronica A.A. 2/22 Calendario delle Esperienze Data Info File /3 Inizio dei corsi salta /3 Descrizione strumentazione prova su breadboard E_ 8/3 Amplificatore a opamp. Banda passante

Dettagli

ITA. Modello DT Manuale d'uso

ITA. Modello DT Manuale d'uso PINZA AMPEROMETRICA DIGLE Modello DT-3340 Manuale d'uso A volte la verifica della presenza di tensione su certi tipi di terminazioni elettriche può risultare difficoltoso a causa della posizione dei contatti

Dettagli

Condizionatori di segnale.

Condizionatori di segnale. Condizionatori di segnale installabili su guida DIN. A/IN A/OT Serie DRG-SC Disponibili modelli per termocoppie, RTD, tensione e corrente CC, frequenza, ponte estensimetro, tensione e corrente CA. Intervalli

Dettagli

FARO STROBOSCOPICO A LED MULTIFUNZIONE

FARO STROBOSCOPICO A LED MULTIFUNZIONE presenta FARO STROBOSCOPICO A LED MULTIFUNZIONE Per altri progetti visita www.sebaseraelettronica.altervista.org AVVERTENZE Tutto il materiale presente in questa relazione ha scopo puramente illustrativo,

Dettagli

Laboratorio di Elettronica T Esperienza 5 PSPICE

Laboratorio di Elettronica T Esperienza 5 PSPICE Laboratorio di Elettronica T Esperienza 5 PSPICE Postazione N Cognome Nome Matricola 1) Misura della resistenza La corrente nel circuito che dovrete analizzare nel seguito verrà misurata indirettamente

Dettagli

RICEVITORE A RAGGI INFRAROSSI

RICEVITORE A RAGGI INFRAROSSI Istituto Professionale di Stato per l Industria e l Artigianato MORETTO Via Apollonio n 21 BRESCIA RICEVITORE A RAGGI INFRAROSSI Gruppo di lavoro : FRANZONI FABIO MARINI MARCO Classe 5AI TIEE corso per

Dettagli

Regolatori di tensione dissipativi. Regolatori LDO. Schema elettrico. Stabilità LDO Politecnico di Torino 1

Regolatori di tensione dissipativi. Regolatori LDO. Schema elettrico. Stabilità LDO Politecnico di Torino 1 Regolatori di tensione dissipativi 1 Schema elettrico Stabilità LDO 2 2003 Politecnico di Torino 1 Schema elettrico 3 Efficienza La tensione di headroom crea dei problemi: Alta potenza dissipata (necessita

Dettagli

POSIWIRE. WS17KT Sensore di posizione. Sensori di posizione a filo. Scheda tecnica

POSIWIRE. WS17KT Sensore di posizione. Sensori di posizione a filo. Scheda tecnica Sensori di posizione a filo Sensore di posizione Scheda tecnica Copyright ASM GmbH Am Bleichbach 18-24 85452 Moosinning Germania I dati tecnici menzionati in questa scheda tecnica sono forniti puramente

Dettagli

CIRCUITO DI CONDIZIONAMENTO PER ESTENSIMETRI

CIRCUITO DI CONDIZIONAMENTO PER ESTENSIMETRI CICUITO DI CONDIZIONAMENTO PE ESTENSIMETI Gruppo n 5 Urbini Andrea Marconi Simone Classe 5C 2001/2002 SPECIFICHE DEL POGETTO: realizzare un circuito in grado di misurare una variazione di lunghezza fornendo

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO

ISTITUTO TECNICO INDUSTRIALE STATALE G. MARCONI Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : iti@marconipontedera.it - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO

Dettagli

1 I nomi vanno sempre scritti in carattere minuscolo, compresa la lettera iniziale, privi di accenti o altri segni grafici ( ampere, volt, ohm).

1 I nomi vanno sempre scritti in carattere minuscolo, compresa la lettera iniziale, privi di accenti o altri segni grafici ( ampere, volt, ohm). Quante volte è capitato di sentir dire, soprattutto dagli addetti ai lavori vorrei una lampadina da 220 volts (plurale), oppure di ricevere documenti con le unità di misura scritte in modo scorretto (A16,

Dettagli

Comprendere il funzionamento dei convertitori Saper effettuare misure di collaudo

Comprendere il funzionamento dei convertitori Saper effettuare misure di collaudo SCH 35 Convertitore A/D Obiettivi Comprendere il funzionamento dei convertitori Saper effettuare misure di collaudo Strumenti e componenti IC1 LM 35 IC2 LM 158 IC3 ADC 0804 IC4 74LS244 R 1 = 75 Ω R 2 =

Dettagli

Sistemi elettronici di conversione

Sistemi elettronici di conversione Sistemi elettronici di conversione (conversione ac-dc, ac-ac, dc-dc, dc-ac) C. Petrarca Cenni su alcuni componenti elementari Diodo, tiristore, contattore statico, transistore Interruttore ideale interruttore

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Dispositivi e Tecnologie Elettroniche. Stadi Amplificatori MOSFET

Dispositivi e Tecnologie Elettroniche. Stadi Amplificatori MOSFET Dispositivi e Tecnologie Elettroniche Stadi Amplificatori MOSFET Esercizio 1: si consideri il seguente circuito per la polarizzazione del MOSFET: VDD=15 V R2=560K RD=2.2 K G R1=180K D B VTn=1.5V Βn=20mA/V^2

Dettagli

Laboratorio di Elettronica T Esperienza 6 Circuiti a diodi 1

Laboratorio di Elettronica T Esperienza 6 Circuiti a diodi 1 Laboratorio di Elettronica T Esperienza 6 Circuiti a diodi 1 Cognome Nome Matricola Postazione N 1 Misura delle resistenze La corrente nei circuiti che dovrete analizzare nel seguito verranno misurate

Dettagli

ELETTRONICA APPLICATA E MISURE

ELETTRONICA APPLICATA E MISURE Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO De3 ESERCIZI PARTI B e D» Esempi di esercizi da scritti di esame AA 2015-16 01/12/2015-1 ElapDe2-2014 DDC Page 1 2014 DDC 1 De3:

Dettagli

Manuale d istruzione 1. Generalità 2. Avvertenze di sicurezza 3. Specifiche 3.1 Generalità

Manuale d istruzione 1. Generalità 2. Avvertenze di sicurezza 3. Specifiche 3.1 Generalità Manuale d istruzione 1. Generalità Il multimetro Pocket è un maneggevole multimetro tascabile a pile con un display LCD alto 26 mm e di facile lettura. L apparecchio offre le seguenti funzioni: DCV, ACV,

Dettagli

SCALA PARLANTE V2T RIFERIMENTI GENERALITA

SCALA PARLANTE V2T RIFERIMENTI GENERALITA V2T RIFERIMENTI Genere DATA Generalità Note Distribuzione RADIO 11 RX V2T CORREZIONE AL DOC WORD AF SITO GENERALITA Si tratta di un telaio ricevente per onde medie e corte di probabile costruzione scolastica,

Dettagli

La legge di Ohm, polarizzazione.

La legge di Ohm, polarizzazione. La legge di Ohm, polarizzazione. In elettronica una delle prime e più basilari cose che serve fare è provocare una caduta di tensione, di voltaggio per intenderci; ovvero serve ridurre la quantità di corrente

Dettagli

Amplificatori elementari con carico attivo MOSFET E connesso a diodo

Amplificatori elementari con carico attivo MOSFET E connesso a diodo Amplificatori elementari con carico attio MOSFET E connesso a diodo i ( ) = K g = µ C W L I V t m n OX G. Martines MOSFET DE connesso a diodo GS = 0, il transistore può funzionare in regione di triodo

Dettagli

Corrente alternata. Capitolo 3. 3.1 Grandezze utilizzate. Simbolo Definizione Unità di misura Simbolo unità di misura. I Corrente ampere A

Corrente alternata. Capitolo 3. 3.1 Grandezze utilizzate. Simbolo Definizione Unità di misura Simbolo unità di misura. I Corrente ampere A Capitolo 3 Corrente alternata 3. Grandezze utilizzate Simbolo Definizione Unità di misura Simbolo unità di misura I Corrente ampere A V Tensione volt V R Resistenza ohm Ω C Capacità farad F L Induttanza

Dettagli

Il Diodo LED. di Andrea Fiorillo 2017 Tutti i diritti sono riservati

Il Diodo LED. di Andrea Fiorillo 2017 Tutti i diritti sono riservati Il diodo led è un componente elettronico caratterizzato da due morsetti, il morsetto positivo è chiamato ANODO e va collegato al morsetto positivo del generatore di tensione (BATTERIA), mentre il morsetto

Dettagli

I Transistor. Sia i FET che i BJT, nel tempo, hanno dato origine a molti tipi diversi di transistor, usati per gli scopi più svariati.

I Transistor. Sia i FET che i BJT, nel tempo, hanno dato origine a molti tipi diversi di transistor, usati per gli scopi più svariati. I Transistor I transistor vengono impiegati in ambito elettronico, principalmente, come amplificatori di segnali elettrici o come interruttori elettronici comandati da segnali elettrici ed hanno sostituito

Dettagli

Il controllo è stato progettato e realizzato manipolando solo segnali analogici.

Il controllo è stato progettato e realizzato manipolando solo segnali analogici. Con questo sistema automatico, é possibile forzare a gradini la ventilazione di un ambiente aperto, con l ausilio di una ventola messa in rotazione da un motore DC brushless, e orientata in modo continuo

Dettagli

Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI

Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI Un filtro passivo in elettronica ha il compito di elaborare un determinato segnale in ingresso. Ad esempio una sua funzione può

Dettagli

Termometro digitale. Ivancich Stefano

Termometro digitale. Ivancich Stefano Termometro digitale Ivancich Stefano 11 Gennaio 2015 SOMMARIO Di seguito si illustra il progetto di un termometro digitale. Il progetto è molto utile per capire il funzionamento delle dinamiche interne

Dettagli

Elettronica I Risposta in frequenza e guadagno in decibel

Elettronica I Risposta in frequenza e guadagno in decibel Elettronica I isposta in frequenza e guadagno in decibel Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema email: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli