Quadrati di Kenmotu. Ercole Suppa. In occasione del problema 600 di Triánguloscabri. 7 novembre 2010

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Quadrati di Kenmotu. Ercole Suppa. In occasione del problema 600 di Triánguloscabri. 7 novembre 2010"

Transcript

1 Quadrati di Kenmotu Ercole Suppa In occasione del problema 600 di Triánguloscabri 7 novembre 2010 Sommario Dato un triangolo, con gli angoli compresi tra 45 e 90, nel suo interno possono essere posizionati tre quadrati congruenti Q a, Q b, Q c aventi le seguenti proprietà: Q a ha due vertici opposti su, ; Q b ha due vertici opposti su, ; Q c ha due vertici opposti su, ; i tre quadrati hanno un vertice in comune. Il vertice comune, punto X 371 dell enciclopedia di Kimberling, è stato per la prima volta pubblicato da Kenmotu nel 1840 in una ollezione di problemi Sangaku, in cui ne viene presentata la costruzione. In questo lavoro esponiamo alcune proprietà della configurazione di Kenmotu. 1

2 Notazioni. Indichiamo con S il doppio dell area del triangolo. Fissato un numero reale θ poniamo S θ = S cot θ. In particolare abbiamo: S = b2 + c 2 a 2 2, S = a2 + c 2 b 2 2, S = a2 + b 2 c 2 2 Teorema 1. Dato un triangolo costruiamo esternamente ai lati,, dei triangoli isosceli simili X, Y, Z aventi la stessa orientazione. Le rette X, Y, Z concorrono nel punto ( K (θ) = 1 S + S θ : 1 S + S θ : 1 S + S θ ) Dimostrazione. Vedere: Paul Yiu, Geometry of the triangle, pag 37 Y Z K( ) X Figura 1 Definizione. Il triangolo XY Z ed il punto K (θ) sono chiamati rispettivamente triangolo di Kiepert e prospettore di Kiepert di parametro θ relativi al triangolo. Teorema 2. Sia un triangolo con tutti gli angoli maggiori di 45 e minori di 90. (a) Possiamo costruire tre quadrati contenuti in ed aventi le seguenti proprietà 2

3 i tre quadrati hanno tutti lo stesso lato; i tre quadrati hanno un vertice comune K e interno al triangolo; due quadrati qualsiasi non hanno punti in comune oltre a K e ; ciascuno dei quadrati ha due vertici opposti sul perimetro di e per il resto è tutto all interno del triangolo. (b) Il punto K e è il coniugato isogonale del primo punto di Vecten (X 485 = K ( ) π 4, prospettore di Kiepert di parametro θ = π.) 4 Dimostrazione. Per dimostrare il punto (a) lavoriamo al contrario, disponendo arbitrariamente dei quadrati di lato fissato ed osservando quali sono le caratteristiche del triangolo generato da tale disposizione. J a K c 2 1 K e 2 K b 1 J b K 1 a 2 Figura 2 Per l esattezza (con riferimento alla Fig.2) scegliamo tre angoli α = 1 K e 2, β = 1 K e 2, γ = 1 K e 2 tali da non generare sovrapposizioni, ovvero compresi tra 0 e 90, con somma 90. ostruiamo ora il punto come l intersezione tra le rette 1 2 e 1 2, il punto K a come il punto medio di 1 2. In modo analogo costruiamo,, K b, K c. I quadrilateri K b K e K c, K a K e K c, K b K e K a sono ciclici in quanto hanno due angoli opposti retti. Pertanto: β K c K e K b = 180 K c K e K a = 180 K b K e K a = 180 Risolvendo il sistema (1) troviamo: J c + γ = 180 α + γ = 180 α + β = 180 α = 2 90, β = 2 90, γ = 2 90 (2) 3 (1)

4 I vincoli su α, β, γ si trasformano coerentemente in vincoli sugli angoli del triangolo che, affinchè la costruzione sia possibile, devono essere compresi tra 45 e 90, come indicato nelle ipotesi. Notiamo poi che, per costruzione, i punti J a, J b, J c risultano interni al triangolo. Preso dunque un triangolo come nelle ipotesi, sappiamo come disporre tre quadrati di lato unitario in modo da generare un triangolo simile a quello desiderato; successivamente mediante un opportuna dilatazione possiamo ottenere la figura richiesta (Fig.3). S Figura 3 Per quanto riguarda il punto (b), con riferimento alla Fig.4, notiamo che 2 1 = 45 + K e 1 2 = (2 90 ) 2 e, quindi, il quadrilatero 1 1 è ciclico. Ne segue che: = = =, 1 2 = = 4

5 P J a 2 K b 1 K c 2 K e 1 1 K a 2 Figura 4 Pertanto i triangoli 1 2 e sono simili. D altra parte, poichè K e 2 1 = K e 1 2 = 45, K e è il centro del quadrato costruito su 1 2 esternamente a 1 2. Pertanto i quadrilateri 1 K e 2 e P sono simili, ragion per cui: K e = P e le rette P e K e risultano simmetriche rispetto alla bisettrice dell angolo, ossia sono coniugate isogonali. In modo analogo si prova che, detti Q, R i centri dei quadrati costruiti esternamente ai lati, del triangolo, le rette coppie di rette Q, K e e R, K e sono isogonali. Pertanto K e è il coniugato isogonale di X 485, punto in cui concorrono le rette P, Q, R. Osservazione. Questo teorema è stato proposto come Problema 5 nell Olimpiade Nazionale di Matematica Italiana nel La dimostrazione che abbiamo esposto, salvo piccoli cambiamenti, è uguale a quella data nella soluzione ufficiale. 5

6 Definizione. Il punto K e = X(371) ed i quadrati di vertice K e definiti nel teorema precedente sono chiamati rispettivamente punto di Kenmotu e quadrati di Kenmotu relativi al triangolo. Il cerchio di centro K e e raggio uguale al lato dei quadrati di Kenmotu è detto cerchio di Kenmotu. Dal teorema 2 discende la seguente: Prima costruzione dei quadrati di Kenmotu. tracciare la rette r 1 passante per e perpendicolare ad ; tracciare la retta r 2 bisettrice dell angolo formato da r 1 ed ; tracciare la rette s 1 passante per e perpendicolare ad ; tracciare la retta s 2 bisettrice dell angolo formato da s 1 ed ; costruire il punto P intersezione di s 2 con l asse di ; costruire il punto Q intersezione di r 2 con l asse di ; tracciare la retta r 3 simmetrica di P rispetto alla bisettrice di ; tracciare la retta s 3 simmetrica di Q rispetto alla bisettrice di ; costruire il punto K e = r 3 s 3 ; tracciare il cerchio γ di centro e raggio K e ; costruire il punto X intersezione tra γ e la semiretta ; tracciare la retta t passante per X e parallela ad P ; costruire il punto Y intersezione tra t ed ; costruire il punto 1 simmetrico di Y rispetto alla bisettrice di ; tracciare il cerchio Γ di cerchio K e passante per 1 ; costruire il punto 2 intersezione di Γ con ( 2 1 ); costruire i punti 1, 2 intersezione di Γ con ; costruire i punti 1, 2 intersezione di Γ con ; costruire il punto J a simmetrico di K e rispetto a 1 2 ; costruire il punto J b simmetrico di K e rispetto a 1 2 ; 6

7 costruire il punto J c simmetrico di K e rispetto a 1 2 ; costruire i quadrati J a 1 K e 2, J b 1 K e 2, J c 1 K e 2. orollario 1. Le coordinate normali (omogenee) del punto K e sono espresse da K e = (cos + sin : cos + sin : cos + sin ) Dimostrazione. Nel precedente teorema abbiamo dimostrato che: 1 K e 2 = 2 π 2 llora, indicato con R K il raggio del cerchio di Kenmotu, abbiamo ( K e K a = R K cos π ) = R K (cos + sin ) 4 ed analoghe relazioni valgono per K e K b e K e K c. Il corollario è provato. orollario 2. Le diagonali 1 2, 1 2, 1 2 dei quadrati di Kenmotu sono antiparallele ai rispettivi lati,,. Dimostrazione. Dato che 2 1 = 180 il quadrilatero 2 1 è ciclico e quindi 1 2 è antiparallela a. modo analogo si ragiona per le diagonali 1 2 e 1 2. In Teorema 3. Il raggio R K del cerchio di Kenmotu relativo ad un triangolo è dato dato da 2abc R K = (3) a 2 + b 2 + c dove con abbiamo indicato l area del triangolo. Dimostrazione. Indicate con K a, K b, K c le proiezioni di K e sui lati,, abbiamo: 2 = a K e K a + b K e K b + c K e K c (4) Nel Teorema 1 abbiamo dimostrato che: 1 K e 2 = 2 π 2, 1K e 2 = 2 π 2, 1K e 2 = 2 π 2 (5) 7

8 Da (4) e (5), tenuto conto che 4 R = abc, segue che: R K = = 2 ( ) = a cos π ( a b ) = 2 +c 2 a 2 + a 2bc 2R 2 2 a (cos + sin ) = 4 2 abc [a2 (b 2 + c 2 a 2 ) + 2 a 2 ] Dalla formula di Erone con un semplice calcolo si ricava che: (6) 16S 2 = 2a 2 b 2 + 2b 2 c 2 + 2a 2 c 2 a 4 b 4 c 4 = = a 2 ( b 2 + c 2 a 2) + b 2 ( a 2 + b 2 c 2) + c 2 ( a 2 + b 2 c 2) (7) Infine da (6) e (7) otteniamo: R K = 4 2 abc (a 2 + b 2 + c 2 ) = 2abc a 2 + b 2 + c e la dimostrazione è completa. orollario 3. Indicati con R il circonraggio e con ω l angolo di rocard di, il raggio del cerchio di Kenmotu è uguale a R K = 2R sin ω cos ω + sin ω = R sin ω sin ( ) (8) ω + π 4 Dimostrazione. Sostituendo nella (3) le le note formule abbiamo: R = abc 4, cot ω = a2 + b 2 + c 2 4 R K = = 2abc 24R 2R a 2 + b 2 + c = cot ω = 1 + cot ω = 2R sin ω cos ω + sin ω = R sin ω sin ( ) ω + π 4 Teorema 4. I centri dei quadrati di Kenmotu formano un triangolo omotetico con con centro di simmetria nel punto di Lemoine. 8

9 Lemma 1. La retta X b X c è parallela a Proof. Dall'uguaglianza dei triangoli X b D b 1 e X c D c 2 segue che X b D b =X c D c => X b X c ma 1. La retta X a è una simmediana Dimostrazione. Siano X=d a, sin X, X b a, E a X=d sin c i => centri X a F a :X a Edei a =sin:sin=a:c quadrati => X a di simmediana Kenmotu relativi ai vertici,, ; siano D b, F b le proiezioni di X b su, ; siano D c, E c le proiezioni di X c su, ; siano F a, E a le proiezioni di X a su, (Fig. 5). E a 2 X 1 a K 2 e 1 1 F a d X a d 2 X b X c K e x y D b 1 2 D c Figura 5 Figura 6 I triangoli rettangoli X b D b 1 e X c D c 2 sono congruenti in quanto hanno la stessa ipotenusa e M a X b 1 D b = X b 1 K e = X c 2 K e = X c 2 D c Pertanto X b D b = X c D c e cià prova che le rette X b X c e sono parallele. nalogamente si dimostra che X c X a, X a X b e questo dimostra che, X a X b X c sono omotetici. Dimostriamo ora che X a è una simmediana. Indicando con 2d la lunghezza della diagonale dei triangoli di Kenmotu abbiamo: X a F a = d sin F a 1 X a = d sin (180 )) = d sin X a E a = d sin E a 2 X a = d sin (180 )) = d sin da cui segue che X a F a = sin X a E a sin = b (6) c D altra parte se indichiamo con M a il punto medio di e con x, y le sue da,, siccome i triangoli M a e M a hanno la stessa area, abbiamo x cx = by y = c (7) b Da (6) e (7) discende che X a F a X a E a = y x 9

10 e questo implica, per una nota proprietà, che le rette X a ed M a sono isogonali, ossia che X a è una simmediana. In modo analogo di dimostra che X b e X c sono simmediane. Pertanto il centro di omotetia dei triangoli e X a X b X c è il punto di Lemoine. X a X b K X c Figura 7 Il Teorema 4 e il orollario 2 suggeriscono la seguente costruzione 1 Seconda costruzione dei quadrati di Kenmotu. costruire i punti K e ; costruire il circoncentro O ed il punto di Lemoine K; tracciare la retta rsection of this t line parallela with the line K is the ad center O of the square passante per il punto K e ; t of the perpendicular to O through ' with and sidelines is a diagonal of the square gonal is antiparallel to ) center, K=symmedian point) costruire il punto X a = r K; costruire il quadrato di Kenmotu relativo al vertice X a K K e O t Figura 8 1 Peter Moses, Hyacynthos message

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIDI DI MTEMTI U.M.I. UNIONE MTEMTI ITLIN MINISTERO DELL PULI ISTRUZIONE SUOL NORMLE SUPERIORE IGiochidirchimede--Soluzionibiennio 18 novembre 2009 Griglia delle risposte corrette Problema

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri. 6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra

Dettagli

BOOK IN PROGRESS MATEMATICA GEOMETRIA SECONDO ANNO TOMO NR. 2

BOOK IN PROGRESS MATEMATICA GEOMETRIA SECONDO ANNO TOMO NR. 2 OOK IN PROGRESS MTEMTIC GEOMETRI SECONDO NNO TOMO NR. 2 SOMMRIO DEL TOMO 2 SECONDO NNO UNITÀ 9: LE GRNDEZZE E L PROPORZIONLIT...2 9.1 Generalità...2 9.2 Grandezze commensurabili e incommensurabili...3

Dettagli

Introduzione a GeoGebra

Introduzione a GeoGebra Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

ABCD è un parallelogrammo 90. Dimostrazione

ABCD è un parallelogrammo 90. Dimostrazione EQUISCOMPONIBILITÀ Problema G2.360.1 È dato il parallelogrammo ABCD: dai vertici A e B si conducano le perpendicolari alla retta del lato CD e siano rispettivamente E e F i piedi di tali perpendicolari

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

Massimi e minimi vincolati in R 2 - Esercizi svolti

Massimi e minimi vincolati in R 2 - Esercizi svolti Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

Unità Didattica N 28 Punti notevoli di un triangolo

Unità Didattica N 28 Punti notevoli di un triangolo 68 Unità Didattica N 8 Punti notevoli di un triangolo Unità Didattica N 8 Punti notevoli di un triangolo 0) ircocentro 0) Incentro 03) Baricentro 04) Ortocentro Pagina 68 di 73 Unità Didattica N 8 Punti

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. I triangoli e i criteri di congruenza Diapositive riassemblate e rielaborate da prof. ntonio Manca da materiali offerti dalla rete. ontributi di: tlas editore, matematicamente, Prof.ssa. nnamaria Iuppa,

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Geogebra. Numero lati: Numero angoli: Numero diagonali:

Geogebra. Numero lati: Numero angoli: Numero diagonali: TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare

Dettagli

Dispense per TFA. Domenico Candeloro

Dispense per TFA. Domenico Candeloro Dispense per TFA Domenico Candeloro Introduzione. Queste brevi dispense hanno lo scopo di illustrare alcuni strumenti elementari della Matematica, oggetto di studio nelle Scuole Medie, Superiori e non,

Dettagli

TRIANGOLI, CIRCONFERENZE E PUNTI NOTEVOLI

TRIANGOLI, CIRCONFERENZE E PUNTI NOTEVOLI TRINGOLI, IRONFERENZE E UNTI NOTEVOLI Mazza Lorenzo - Liceo Scientifico io XII (Roma) Incontri Olimpici - etraro, 9-2 ottobre 20 L'universo non potrà essere letto finché non avremo imparato il linguaggio

Dettagli

FORMULARIO DI GEOMETRIA

FORMULARIO DI GEOMETRIA FORMULARIO DI GEOMETRIA A cura di Valter Gentile E-Notes pubblicata dalla Biblioteca Centrale di Ingegneria Siena, 12 settembre 2006 1 GEOMETRIA Principi ( da scheda 1 a 5) Solidi (da scheda 18 a 35) Teoremi

Dettagli

Piano Lauree Scientifiche 2011-2012

Piano Lauree Scientifiche 2011-2012 Piano Lauree Scientifiche 2011-2012 «non si può intendere se prima non s impara a intender lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica, e i caratteri sono triangoli,

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Anna Montemurro. 2Geometria. e misura

Anna Montemurro. 2Geometria. e misura Anna Montemurro Destinazione Matematica 2Geometria e misura GEOMETRIA E MISURA UNITÀ 11 Le aree dei poligoni apprendo... 11. 1 FIGURE PIANE EQUIVALENTI Consideriamo la figura A. A Le figure B e C

Dettagli

LICEO STATALE G. MAZZINI

LICEO STATALE G. MAZZINI LICEO STATALE G. MAZZINI LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE Viale Aldo Ferrari, 37 Tel. 0187743000 19122 La Spezia Fax 0187743208 www.liceomazzini.org

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE

DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE Costruzione del triangolo equilatero circonferenza e scegliere un punto 1, che risulterà opposto al vertice A. Con la medesima apertura e puntando in 1, tracciare

Dettagli

INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA

INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA Una Geometria non può essere più vera di un altra; può essere solamente più comoda. Ora la Geometria Euclidea è e resterà più comoda H. Poincaré

Dettagli

COMUNICAZIONE N.10 DEL 26.01.2011 1

COMUNICAZIONE N.10 DEL 26.01.2011 1 COMUNICAZIONE N.10 DEL 26.01.2011 1 1 - SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (10): ESEMPI 73-96 2 - TERZO MODULO - DISEGNI A MANO LIBERA (8): DISEGNI h71-h80 3 - QUARTO MODULO - CLASSICI

Dettagli

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica UNIONE MATEMATICA ITALIANA C. I. I. M. Commissione Italiana per l'insegnamento della Matematica ESEMPI DI TERZE PROVE per il NUOVO ESAME DI STATO LA COMPONENTE MATEMATICA ISTITUTO MAGISTRALE Tipologia

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo I TRIANGOLI 1. IL TRIANGOLO Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo In un triangolo: I lati e i vertici sono consecutivi fra loro. La somma degli angoli interni è sempre

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Geometria Superiore Esercizi 1 (da consegnare entro... )

Geometria Superiore Esercizi 1 (da consegnare entro... ) Geometria Superiore Esercizi 1 (da consegnare entro... ) In questi esercizi analizziamo il concetto di paracompattezza per uno spazio topologico e vediamo come questo implichi l esistenza di partizioni

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

La matematica dello spazio; le diverse geometrie

La matematica dello spazio; le diverse geometrie La matematica dello spazio; le diverse geometrie Marco Andreatta Facoltá di Scienze MMFFNN Universitá di Trento Simmetrie-giochi di specchi p.1/36 Il primo: filosofo, matematico... Talete, Mileto 624-547

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,

Dettagli

Appunti di Algebra Lineare. Antonino Salibra

Appunti di Algebra Lineare. Antonino Salibra Appunti di Algebra Lineare Antonino Salibra January 11, 2016 2 Libro di testo: Gilbert Strang, Algebra lineare, Edizioni Apogeo 2008 Programma di Algebra Lineare (2015/16) (da completare): 1. Campi numerici.

Dettagli

ESPERIENZE CON GLI SPECCHI PIANI

ESPERIENZE CON GLI SPECCHI PIANI 1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta? Disponi il cilindro giallo dietro lo specchio, in modo che coincida con l immagine riflessa del cilindro

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

C.d.L. "Scienze della Formazione Primaria" Corso Integrato di Geometria e Algebra. Modulo di GEOMETRIA. A. Gimigliano, A.A.

C.d.L. Scienze della Formazione Primaria Corso Integrato di Geometria e Algebra. Modulo di GEOMETRIA. A. Gimigliano, A.A. C.d.L. "Scienze della Formazione Primaria" Corso Integrato di Geometria e Algebra Modulo di GEOMETRIA A. Gimigliano, A.A. 009/10 Note supplementari per il corso INDICE 0. INTRODUZIONE. 1. LA GEOMETRIA

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria A.A. 2009/10

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria A.A. 2009/10 UNIVERSITÀ DEGLI STUDI DI PDOV Facoltà di Ingegneria Corso di Disegno Tecnico Industriale per i Corsi di Laurea triennale in Ingegneria Meccanica e in Ingegneria dell Energia Costruzioni geometriche in

Dettagli

Funzioni. 1. Introduzione alle funzioni. Tema C13. Che cos è una funzione?

Funzioni. 1. Introduzione alle funzioni. Tema C13. Che cos è una funzione? Funzioni Tema C. Introduzione alle funzioni STRUMENTI DIGITALI APPRFNDIMENTI RISRSE IN GEGEBRA FIGURE ANIMATE VIDELEZINI ESERCIZI INTERATTIVI Che cos è una funzione? Dati due insiemi X e Y, si definisce

Dettagli

RIDUZIONE DELLE DISTANZE

RIDUZIONE DELLE DISTANZE RIDUZIONE DELLE DISTANZE Il problema della riduzione delle distanze ad una determinata superficie di riferimento va analizzato nei suoi diversi aspetti in quanto, in relazione allo scopo della misura,

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

I.P.S.S. Severini a.s. 2015-16 Curriculum Verticale MATEMATICA

I.P.S.S. Severini a.s. 2015-16 Curriculum Verticale MATEMATICA Curriculum Verticale MATEMATICA I Docenti di Matematica dell IPSS concordano, per l a.s. 2015/16, i seguenti punti: numero minimo di verifiche annue (riferite ad una frequenza regolare): 6, di varia tipologia

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Esperimento sull ottica

Esperimento sull ottica Esperimento sull ottica Gruppo: Valentina Sotgiu, Irene Sini, Giorgia Canetto, Federica Pitzalis, Federica Schirru, Jessica Atzeni, Martina Putzu, Veronica, Orgiu e Deborah Pilleri. Teoria di riferimento:

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

MOMENTI DI INERZIA. m i. i=1

MOMENTI DI INERZIA. m i. i=1 MOMENTI DI INEZIA Massa Ad ogni punto materiale si associa uno scalare positivo m che rappresenta la quantità di materia di cui è costituito il punto. m, la massa, è costante nel tempo. Dato un sistema

Dettagli

Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1

Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1 Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1 Indice / Terminologia addendo x L'addizione, la somma, l'addendo, più 1 2a 24 addizionare x L'addizione, la somma, l'addendo, più

Dettagli

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora.

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora. TEOREMA DI PITAGORA Contenuti 1. Particolari terne numeriche e teorema di PITAGORA. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora Competenze 1. Sapere il significato di terna pitagorica

Dettagli

Appunti di Geometria

Appunti di Geometria ISTITUTO COMPRENSIVO N.7 - VIA VIVALDI - IMOLA Via Vivaldi, 76-40026 Imola (BOLOGNA) Centro Territoriale Permanente: Istruzione Degli Adulti - IDA Appunti di Geometria Scuola Secondaria di I Grado - Ex

Dettagli

Anno 4 Applicazioni dei teoremi di trigonometria

Anno 4 Applicazioni dei teoremi di trigonometria Anno 4 Applicazioni dei teoremi di trigonometria 1 Introduzione In questa lezione descriveremo le applicazioni dei teoremi di trigonometria. Inizieremo, illustrando alcune formule di trigonometria, utili

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

INdAM QUESITI A RISPOSTA MULTIPLA

INdAM QUESITI A RISPOSTA MULTIPLA INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale. Test di autovalutazione (matematica)

Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale. Test di autovalutazione (matematica) Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale Test di autovalutazione (matematica) 1. Eseguendo la divisione con resto di 3437 per 225

Dettagli

I teoremi di Euclide e di Pitagora

I teoremi di Euclide e di Pitagora I teoremi di Euclide e di Pitagora In questa dispensa vengono presentati i due teoremi di Euclide ed il teorema di Pitagora, fondamentali per affrontare diverse questioni sui triangoli rettangoli. I teoremi

Dettagli

MATEMATICA C3 ALGEBRA 2 8. TRASFORMAZIONI GEOMETRICHE PIANE

MATEMATICA C3 ALGEBRA 2 8. TRASFORMAZIONI GEOMETRICHE PIANE MATEMATICA C3 ALGEBRA 2 8. TRASFORMAZIONI GEOMETRICHE PIANE La danza degli stormi, foto di _Pek_ http://www.flickr.com/photos/_pek_/4113244536 1. Generalità sulle trasformazioni geometriche piane...2 2.

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Piano Lauree Scientifiche 2012/2013. Liceo Scientifico Renato Caccioppoli Napoli Napoli

Piano Lauree Scientifiche 2012/2013. Liceo Scientifico Renato Caccioppoli Napoli Napoli Piano Lauree Scientifiche 2012/2013 Liceo Scientifico Renato Caccioppoli Napoli Napoli Pitagora utilizzando l inversione circolare Euclide e Gli Elementi Negli Elementi Euclide parte da postulati formula

Dettagli

, ove a è un parametro reale. 1. Dopo aver precisato il campo di esistenza di f si stabilisca per quali valori di a la funzione f è crescente.

, ove a è un parametro reale. 1. Dopo aver precisato il campo di esistenza di f si stabilisca per quali valori di a la funzione f è crescente. Sessione ordinaria 007 in America Latina MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 007 Calendario australe SECONDA PROVA SCRITTA

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico Liceo Scientifico Statale Leonardo da Vinci Fisica Programma svolto durante l anno scolastico 2012/13 CLASSE I B DOCENTE Elda Chirico Le Grandezze. Introduzione alla fisica. Metodo sperimentale. Grandezze

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE Testi dei temi d esame ed esercizi proposti con soluzione breve Versione del 1 settembre

Dettagli

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Liceo Scientifico Statale P. Paleocapa, Rovigo XX Settimana della Cultura Scientifica e Tecnologica 19 marzo 2010 Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Prof.

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Elenco Ordinato per Materia Chimica

Elenco Ordinato per Materia Chimica ( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde

Dettagli

PROBLEMI DI SCELTA dipendenti da due variabili d azione

PROBLEMI DI SCELTA dipendenti da due variabili d azione prof. Guida PROBLEMI DI SCELTA dipendenti da due variabili d azione in un problema di programmazione lineare, si ricorda che la funzione obiettivo z=f(x,y)=ax+by+c assume il suo valore massimo (o minimo)

Dettagli

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Laboratorio Da Euclide ai pannelli solari piegando la carta

Laboratorio Da Euclide ai pannelli solari piegando la carta Summer School La matematica incontra le altre Scienze San Pellegrino Terme 8 9-10 Settembre 2014 Laboratorio Da Euclide ai pannelli solari piegando la carta I Parte : Relazioni tra tetraedro regolare e

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

LIVELLO STUDENT S1. S2. S3. S4. S5. S6.

LIVELLO STUDENT S1. S2. S3. S4. S5.  S6. LIVELLO STUDENT S1. (5 punti ) La figura mostra due quadrati uguali che hanno in comune esattamente un vertice. È possibile precisare la misura dell'angolo ABC? S2. (7 punti ) Negli usuali fogli (rettangolari)

Dettagli