Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici"

Transcript

1 Equilibrio e sabilià di sisemi dinamici Sabilià inerna di sisemi dinamici

2 Sabilià inerna di sisemi dinamici Inroduzione allo sudio della sabilià Sabilià inerna di sisemi dinamici TC Sabilià inerna di sisemi dinamici TD Sabilià dell equilibrio 2

3 Sabilià inerna di sisemi dinamici Inroduzione allo sudio della sabilià

4 Inroduzione allo sudio della sabilià (1/2) Nell analisi di un sisema dinamico, bisogna saper valuare qualiaivamene se il suo comporameno risuli indifferene a perurbazioni ageni sullo sao iniziale, sugli ingressi e sui parameri preseni nelle varie equazioni che descrivono il sisema sesso La proprieà di sabilià inerna del sisema, così come definia dal maemaico russo Lyapunov alla fine dell Ooceno, fa riferimeno agli effei sul movimeno dello sao provocai da perurbazioni sullo sao iniziale, assumendo che gli ingressi e i parameri siano cosani e noi 4

5 Inroduzione allo sudio della sabilià (2/2) Un sisema è deo sabile se la sua evoluzione è poco sensibile a perurbazioni sullo sao iniziale, per cui piccole perurbazioni iniziali danno luogo a piccole variazioni nella sua successiva evoluzione Un sisema è deo insabile se la sua evoluzione è molo sensibile a perurbazioni sullo sao iniziale, per cui piccole perurbazioni iniziali allonanano decisamene la sua successiva evoluzione dalla siuazione dinamica corrispondene all assenza di perurbazioni 5

6 Sabilià inerna di sisemi dinamici Sabilià inerna di sisemi dinamici TC

7 Sabilià inerna di sisemi dinamici TC (1/2) Dao un sisema dinamico, a dimensione finia, MIMO, a empo coninuo, non lineare, sazionario, descrio dall equazione di sao x () = f( x (), u ()), se ne considerino due diverse evoluzioni emporali: Un movimeno nominale x () oenuo applicando un ingresso nominale u () al sisema poso in uno sao iniziale nominale x ( = ) = x Un movimeno perurbao x () oenuo applicando lo sesso ingresso nominale u () uno sao iniziale differene ( perurbao ) x x La differenza fra i due diversi movimeni cosiuisce la perurbazione sullo sao del sisema: n δx () = x () x () x () = x () + δx () al sisema poso in 7

8 Sabilià inerna di sisemi dinamici TC (2/2) In base all effeo di una perurbazione sullo sao iniziale δx ( ), un movimeno nominale x () è Sabile se la perurbazione sullo sao δx() resa sempre limiaa nel empo Insabile se la perurbazione sullo sao δx() non resa limiaa nel empo (anzi, ipicamene diverge) Asinoicamene sabile se la perurbazione sullo sao δx(), olre a resare sempre limiaa nel empo, ende anche ad annullarsi asinoicamene ( ) Globalmene asinoicamene sabile se, per qualsiasi perurbazione iniziale, la perurbazione δx() resa limiaa e ende ad annullarsi asinoicamene Semplicemene sabile se la perurbazione δx() è limiaa ma non ende ad annullarsi asinoicamene 8

9 Movimeno sabile Un movimeno x () i si dice sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui risula δx ( = ) = x x γ, si abbia δ x () = x () x () movimeno nominale sabile γ = movimeno perurbao x1 9

10 Movimeno sabile Un movimeno x () i si dice sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui risula δx ( = ) = x x γ, si abbia δ x () = x () x () ε, movimeno nominale sabile ε γ = movimeno perurbao 1

11 Movimeno sabile Un movimeno x () i si dice sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui risula δx ( = ) = x x γ, si abbia δ x () = x () x () ε, movimeno nominale sabile ε x ( 1 ) x ( 1 ) movimeno perurbao 1 11

12 Movimeno sabile Un movimeno x () i si dice sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui risula δx ( = ) = x x γ, si abbia δ x () = x () x () ε, movimeno nominale sabile ε x ( 2 ) x ( 2 ) movimeno perurbao 2 12

13 Movimeno sabile Un movimeno x () i si dice sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui risula δx ( = ) = x x γ, si abbia δ x () = x () x () ε, movimeno nominale sabile ε x ( 3 ) x ( 3 ) movimeno perurbao 3 13

14 Movimeno sabile Un movimeno x () i si dice sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui risula δx ( = ) = x x γ, si abbia δ x () = x () x () ε, movimeno nominale sabile ε γ movimeno perurbao 14

15 Movimeno insabile Un movimeno x () i si dice insabile se non soddisfa le condizioni di sabilià. In al caso, esise almeno un ε > ale che, per ogni γ >, almeno uno degli sai iniziali per cui δx ( = ) = x x γ è ale che : δx() = x() x() movimeno perurbao γ = movimeno nominale insabile 15

16 Movimeno insabile Un movimeno x () i si dice insabile se non soddisfa le condizioni di sabilià. In al caso, esise almeno un ε > ale che, per ogni γ >, almeno uno degli sai iniziali per cui δx ( = ) = x x γ è ale che : δx() = x() x() > ε = movimeno perurbao ε γ movimeno nominale insabile 16

17 Movimeno insabile Un movimeno x () i si dice insabile se non soddisfa le condizioni di sabilià. In al caso, esise almeno un ε > ale che, per ogni γ >, almeno uno degli sai iniziali per cui δx ( = ) = x x γ è ale che : δx() = x() x() > ε movimeno perurbao x ( 1 ) x ( 1 ) ε movimeno nominale insabile 1 17

18 Movimeno insabile Un movimeno x () i si dice insabile se non soddisfa le condizioni di sabilià. In al caso, esise almeno un ε > ale che, per ogni γ >, almeno uno degli sai iniziali per cui δx ( = ) = x x γ è ale che : δx() = x() x() > ε movimeno perurbao ε x ( 2 ) x ( 2 ) movimeno nominale insabile 2 18

19 Movimeno insabile Un movimeno x () i si dice insabile se non soddisfa le condizioni di sabilià. In al caso, esise almeno un ε > ale che, per ogni γ >, almeno uno degli sai iniziali per cui δx ( = ) = x x γ è ale che : δx() = x() x() > ε movimeno perurbao x ( 3 ) ε x ( 3 ) movimeno nominale insabile 3 19

20 Movimeno insabile Un movimeno x () i si dice insabile se non soddisfa le condizioni di sabilià. In al caso, esise almeno un ε > ale che, per ogni γ >, almeno uno degli sai iniziali per cui δx ( = ) = x x γ è ale che : δx() = x() x() > ε movimeno perurbao ε γ movimeno nominale insabile 2

21 Movimeno asinoicamene sabile Un movimeno x () i si dice asinoicamene sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui δx ( = ) = x x γ, si abbia: 1) δx () = x () x () ε, 2)lim δx () = lim x () x () = movimeno perurbao γ = movimeno nominale asinoicamene sabile 21

22 Movimeno asinoicamene sabile Un movimeno x () i si dice asinoicamene sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui δx ( = ) = x x γ, si abbia: 1) δx () = x () x () ε, 2)lim δx () = lim x () x () = = movimeno perurbao ε γ movimeno nominale asinoicamene sabile 22

23 Movimeno asinoicamene sabile Un movimeno x () i si dice asinoicamene sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui δx ( = ) = x x γ, si abbia: 1) δx () = x () x () ε, 2)lim δx () = lim x () x () = movimeno perurbao ε x ( 1 ) x ( 1 ) movimeno nominale asinoicamene sabile 1 23

24 Movimeno asinoicamene sabile Un movimeno x () i si dice asinoicamene sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui δx ( = ) = x x γ, si abbia: 1) δx () = x () x () ε, 2)lim δx () = lim x () x () = movimeno perurbao ε x ( 2 ) x ( 2 ) movimeno nominale asinoicamene sabile 2 24

25 Movimeno asinoicamene sabile Un movimeno x () i si dice asinoicamene sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui δx ( = ) = x x γ, si abbia: 1) δx () = x () x () ε, 2)lim δx () = lim x () x () = movimeno perurbao x ( 3 ) x ( 3 ) ε movimeno nominale asinoicamene sabile 3 25

26 Movimeno asinoicamene sabile Un movimeno x () i si dice asinoicamene sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui δx ( = ) = x x γ, si abbia: 1) δx () = x () x () ε, 2)lim δx () = lim x () x () = movimeno perurbao ε γ movimeno nominale asinoicamene sabile 26

27 Movimeno globalmene asinoicamene sabile Un movimeno x () i si dice globalmene asinoicamene sabile se: 1) è sabile, cioè per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui risula che δx ( = ) = x x γ, si abbia 2) δx () = x () x () ε, lim () = lim () x () =, x X In queso caso, ogni movimeno perurbao x () converge quindi asinoicamene ( ) al movimeno nominale x (), quale che sia l enià della perurbazione iniziale δx( ) 27

28 Movimeno semplicemene sabile Un movimeno x () i si dice semplicemene sabile se è sabile ma non asinoicamene, cioè se non soddisfa la seconda condizione richiesa per poer risulare asinoicamene sabile 28

29 Classificazione dei movimeni Le precedeni definizioni permeono di classificare i movimeni a seconda delle diverse caraerisiche di sabilià inerna: globalmene asinoicamene sabile asinoicamene (non globalmene) sabile sabile movimeno semplicemene sabile insabile asinoicamene sabile 29

30 Sabilià inerna di sisemi dinamici Sabilià inerna di sisemi dinamici TD

31 Sabilià inerna di sisemi dinamici TD (1/3) Definizioni analoghe valgono anche nel caso di sisemi dinamici, a dimensione finia, MIMO, a empo discreo, non lineari, sazionari, descrii da equazioni di sao del ipo xk ( + 1) = f ( xk ( ), uk ( )), di cui si considerino due diverse evoluzioni emporali: Un movimeno nominale xk ( ) oenuo applicando un ingresso nominale uk ( ) al sisema poso in uno sao iniziale nominale xk ( = ) = x Un movimeno perurbao xk ( ) oenuo applicando lo sesso ingresso nominale uk ( ) al sisema poso in uno sao iniziale differene ( perurbao ) x x La differenza fra i due diversi movimeni cosiuisce la perurbazione sullo sao del sisema: n δxk ( ) = xk ( ) xk ( ) xk ( ) = xk ( ) + δxk ( ) 31

32 Sabilià inerna di sisemi dinamici TD (2/3) Un movimeno x () i si dice sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui risula δxk ( = ) = x x γ, si abbia δxk ( ) = xk ( ) xk ( ) ε, k Un movimeno x () i si dice insabile se non soddisfa le condizioni di sabilià Un movimeno x () i si dice asinoicamene sabile se, per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui δxk ( = ) = x x γ, si abbia: 1) δxk ( ) = xk ( ) xk ( ) ε, k 2) lim δxk ( ) = lim xk ( ) xk ( ) = k k 32

33 Sabilià inerna di sisemi dinamici TD (3/3) Un movimeno x () i si dice globalmene asinoicamene sabile se: 1) è sabile, cioè per ogni ε >, esise un γ > ale che, per ui gli sai iniziali per cui risula che δxk ( = ) = x x γ, si abbia 2) δxk ( ) = xk ( ) xk ( ) ε, k lim δx ( k ) = lim xk ( ) xk ( ) =, x X k k Un movimeno x () i si dice semplicemene sabile se è sabile ma non asinoicamene 33

34 Sabilià inerna di sisemi dinamici Sabilià dell equilibrio

35 Sabilià dell equilibrio Si parla di sabilià dell equilibrio nel caso in cui il movimeno nominale considerao sia uno sao di equilibrio corrispondene ad un ingresso di equilibrio Un sisema dinamico non lineare può presenare sai di equilibrio con caraerisiche di sabilià inerna differeni si parla di sudio della sabilià locale Ad ogni sao di equilibrio asinoicamene sabile è associaa una regione di arazione (o regione di asinoica sabilià), cosiuia da quegli sai iniziali che danno origine a movimeni perurbai convergeni asinoicamene allo sao d equilibrio In corrispondenza di un dao ingresso di equilibrio, un sisema dinamico ammee al più un unico sao di equilibrio globalmene asinoicamene sabile 35

36 Esempio #1 di sudio della sabilià dell equilibrio Sao di equilibrio asinoicamene sabile 1.5 x _

37 Esempio #2 di sudio della sabilià dell equilibrio Sao di equilibrio semplicemene sabile 1.5 x _

38 Esempio #3 di sudio della sabilià dell equilibrio Sao di equilibrio insabile 1.5 x _

Stabilità dell equilibrio (parte II)

Stabilità dell equilibrio (parte II) Appuni di Teoria dei sisemi - Capiolo 5 Sabilià dell equilibrio (pare II) Cenni sui crieri di insabilià... Cenni sulla sabilià dell equilibrio nei sisemi discrei... 3 Crieri di sabilià del movimeno...

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

Cap. 7. Elementi di teoria della stabilità

Cap. 7. Elementi di teoria della stabilità Cap. 7 Elemeni di eoria della sabilià 7. Inroduzione La eoria della sabilià sudia l aiudine di un sisema (asrao) che si rova in una cera siuazione dinamica, a reagire alle perurbazioni che possono inervenire

Dettagli

Controllo ottimo LQ t.i. con azione integrale

Controllo ottimo LQ t.i. con azione integrale 1.. 1. 1 Conrollo oimo LQ.i. con azione inegrale Si è viso, nel caso empo-coninuo, che lo schema di conrollo soosane in cui K ff = [C(A BK 1 B 1, garanisce (nel caso il sisema reroazionao risuli sabile

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Lezione 2. F. Previdi - Automatica - Lez. 2 1

Lezione 2. F. Previdi - Automatica - Lez. 2 1 Lezione 2. Sisemi i dinamici i i a empo coninuo F. Previdi - Auomaica - Lez. 2 Schema della lezione. Cos è un sisema dinamico? 2. Modellisica dei sisemi dinamici 3. Il conceo di dinamica 4. Sisemi dinamici

Dettagli

Osservatore asintotico dello stato

Osservatore asintotico dello stato Osservaore asinoico dello sao Si consideri il sisema: x () = Ax () + Bu () y () = Cx () () Problema: Deerminare un disposiivo in grado di inseguire asinoicamene lo sao di un processo assegnao con modalià

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari TRASFORMAZIONE DEI SEGNALI SENZA MEMORIA: ZMNL (Zero-Memory Non Lineariy) g x( ) y = CON MEMORIA: Lineari (ra cui il Filraggio) Non Lineari L5/1 TRASFORMAZIONI SENZA MEMORIA (ISTANTANEE) y Limiazione dura

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L .9.8.7.6.5.4.3.. - 3 4 5 6 7 8 9 PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) 5 Seembre 6 Cognome Nome Maricola............ Verificare che il fascicolo sia cosiuio da 9 pagine. La chiarezza e precisione

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

Sistemi dinamici. Fondamenti di Automatica Prof. Silvia Strada

Sistemi dinamici. Fondamenti di Automatica Prof. Silvia Strada Sisemi dinamici Fondameni di Aomaica Prof. Silvia Srada Dai modelli di sisemi elemenari a sisemi dinamici Semplici sisemi fisici Formleremo il corrispondene modello Individeremo i rai comni delle eqazioni

Dettagli

MODELLISTICA E SIMULAZIONE cred.: 5 7,5 Recupero 1 prova: 25 luglio 2005

MODELLISTICA E SIMULAZIONE cred.: 5 7,5 Recupero 1 prova: 25 luglio 2005 Poliecnico di Milano I a Facolà di Ingegneria C.S. in Ing. per l Ambiene e il Terriorio MODELLISTICA E SIMULAZIONE cred.: 5 7,5 Recupero prova: 5 luglio 005 COGNOME NOME FIRMA: [7,5 credii] Voo: ATTENZIONE!

Dettagli

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO)

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) 3 Capiolo STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) Un generico sisema è deo sabile se, ecciao da una qualsiasi funzione di enraa ale da essere sempre limiaa, risponde con una uscia

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n + a n d n y

Dettagli

Lezione 2. Sistemi dinamici a tempo continuo. F. Previdi - Fondamenti di Automatica - Lez. 2 1

Lezione 2. Sistemi dinamici a tempo continuo. F. Previdi - Fondamenti di Automatica - Lez. 2 1 Leione. Sisemi dinamici a empo coninuo F. Previdi - Fondameni di Auomaica - Le. Schema della leione. Cos è un sisema dinamico?. Modelli di sisemi dinamici 3. Il conceo di dinamica 4. Variabili di sao 5.

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di elecomunicazioni - SEGNALI E SPERI Prof. Mario Barbera [pare ] Sruura della lezione Proprieà dei segnali Valore medio, valore efficace, poenza, energia rasformaa di Fourier e speri

Dettagli

Analisi di sistemi non lineari

Analisi di sistemi non lineari Analisi di sisemi non lineari q p n h f & f è n veore di fnzioni che definiscono la dinamica delle variabili di sao evenalmene in presenza dell ingresso ed h è il veore della rasformazione in scia che

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Vediamo come si sviluppa la soluzione esplicita del problema. ( t)

Vediamo come si sviluppa la soluzione esplicita del problema. ( t) Analisi ransioria L'analisi dinamica ransioria (dea anche analisi emporale) è una ecnica che consene di deerminare la risposa dinamica di una sruura soggea ad una generica ecciazione emporale Gli effei

Dettagli

IL MODELLO LOGISTICO NEL CASO CONTINUO

IL MODELLO LOGISTICO NEL CASO CONTINUO IL MODELLO LOGISTICO NEL CASO CONTINUO I modelli discrei si basano sull ipoesi cha la riproduzione sia concenraa in una sagione dell anno. Il passaggio da una generazione all alra è descrio dalla variabile

Dettagli

Controlli Automatici L

Controlli Automatici L Segnali e rasformae - Corso di Laurea in Ingegneria Meccanica Segnali e rasformae DEIS-Universià di Bologna el. 5 93 Email: crossi@deis.unibo.i URL: www-lar.deis.unibo.i/~crossi Segnali e rasformae - Segnali

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

Esercitazione 08: Risposta in frequenza 11 maggio 2016 (3h)

Esercitazione 08: Risposta in frequenza 11 maggio 2016 (3h) maggio 6 (3h) Alessandro Viorio Papadopoulos alessandro.papadopoulos@polimi.i Fondameni di Auomaica Prof. M. Farina Tracciameno diagrammi di Bode Tracciare i diagrammi di Bode asinoici della risposa in

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

Geometria BAER A.A Foglio esercizi 1

Geometria BAER A.A Foglio esercizi 1 Geomeria BAER A.A. 16-17 Foglio esercii 1 Eserciio 1. Risolvere le segueni equaioni lineari nelle variabili indicae rovando una parameriaione dell insieme delle soluioni. a) + 5y = 3 nelle incognie, y.

Dettagli

Università del Sannio

Università del Sannio Uniersià del Sannio Corso di Fisica 1 Lezione 3 Cinemaica I Prof.ssa Sefania Peracca Corso di Fisica 1 - Lez. 3 - Cinemaica I 1 Cinemaica La cinemaica è quella branca della fisica che sudia il moimeno

Dettagli

Capitolo 2 Sistemi lineari tempo-invarianti: analisi nel dominio del tempo

Capitolo 2 Sistemi lineari tempo-invarianti: analisi nel dominio del tempo Capiolo 2 Sisemi lineari empo-invariani: analisi nel dominio del empo 1. Inroduzione In queso capiolo ci occuperemo dell analisi nel dominio del empo dei sisemi dinamici lineari empo-invariani. Vale a

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero Modelli ARMA, regressione spuria e coinegrazione Amedeo Argeniero amedeo.argeniero@unipg.i Definizione modello ARMA Un modello ARMA(p, q) (AuoRegressive Moving Average of order p and q) ha la seguene sruura:

Dettagli

Trasmissione in banda base: interferenza intersimbolica

Trasmissione in banda base: interferenza intersimbolica rasmissione in banda base: inerferenza inersimbolica L inerferenza inersimbolica (ISI) Il crierio di Nyquis. Schema del sisema con ISI nulla: progeo dei filri di rasmissione e ricezione. 1 Fondameni di

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso di ELETTRONICA INDUSTRIALE Conrollo di correne del converiore Buck Argomeni raai Argomeni raai Conrollo di ensione con limiazione di correne Argomeni raai Conrollo di ensione con limiazione di correne

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI Fisica Generale Modulo di Fisica II A.A. 6-7 Ingegneria Meccanica Edile - Informaica Eserciazione IUITI ELETTII b. Nel circuio della figura si ha 5, e 3 3 e nella resisenza passa una correne di A.Il volaggio

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

Meccanica introduzione

Meccanica introduzione Meccanica inroduzione La meccanica e quella pare della Fisica che sudia il moo dei corpi. Essa e cosiuia dalla cinemaica e dalla dinamica. La dinamica si occupa dello sudio del moo e delle sue cause. La

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Inroduzione e modellisica dei sisemi Modellisica dei sisemi eleromeccanici Principi fisici di funzionameno Moore elerico in correne coninua (DC-moor) DC-moor con comando di armaura DC-moor con comando

Dettagli

SISTEMI DINAMICI DEL PRIMO ORDINE

SISTEMI DINAMICI DEL PRIMO ORDINE SISTEMI DINAMICI DEL PRIMO ORDINE I sisemi dinamici del primo ordine sono sisemi dinamici SISO rappresenai da equazioni differenziali lineari e a coefficieni cosani del primo ordine (n=): dy() dx() a +

Dettagli

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite INTEGRALI IMPROPRI Tes di auovaluazione. L inegrale improprio 5 d : (a) vale 4 5 (c) vale 5 4 (d) è negaivo.. L inegrale improprio 4 + 5 d : (a) vale 4 5 (c) vale 4 5 (d) ende a.. L inegrale improprio

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao quaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione PARTE A A. Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come A2. L argomeno, espresso in radiani, del

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Geometria analitica del piano pag 1 Adolfo Scimone

Geometria analitica del piano pag 1 Adolfo Scimone Geomeria analiica del piano pag Adolfo Scimone GEOMETRIA ANALITICA Lo scopo della geomeria analiica è quello di individuare i puni di una rea, di un piano, dello spazio, o più in generale gli eni geomerici

Dettagli

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013 UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA - Seconda prova scria di ANALISI MATEMATICA - APPELLO DEL 9 seembre 0 COGNOME... NOME... MATRICOLA... IMPORTANTE Al ermine della prova

Dettagli

State Space Model. Corso di: Analisi delle Serie Storiche. Corso di Laurea Triennale in: Scienze Statistiche A.A. 2017/18

State Space Model. Corso di: Analisi delle Serie Storiche. Corso di Laurea Triennale in: Scienze Statistiche A.A. 2017/18 Sae Space Model Corso di: Analisi delle Serie Soriche Corso di Laurea Triennale in: Scienze Saisiche A.A. 07/8 Generalià Gli Sae Space Models (Modelli nello Spazio degli Sai) forniscono una meodologia

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase 3. Effeo della variazioni di parameri del PLL - A Un PLL uilizza come demodulaore di fase un moliplicaore analogico, e il livello dei segnali sinusoidale di ingresso (Vi) e locale (Vo) è ale da manenere

Dettagli

Qualunque sia il valore iniziale della popolazione, a lungo termine essa si assesterà alla capacità portante

Qualunque sia il valore iniziale della popolazione, a lungo termine essa si assesterà alla capacità portante popolazione popolazione.25 Modello di Beveron-Hol y=.2 y=.1 1.8 Modello di Beveron-Hol y=.2 y=.1 y=1.2.15 lambda=1.5 alpha=2 Capacià porane K=(lambda-1)/alpha =.25.6.4 lambda=1.5 alpha=2 Capacià porane

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione n. (es di ingresso). Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come 2. L argomeno, espresso in radiani,

Dettagli

Terza lezione: Processi stazionari

Terza lezione: Processi stazionari Teoria dei processi casuali a empo coninuo Terza lezione: Concei inroduivi Il conceo di sazionarieà Sazionarieà in senso lao Esempi e modelli 005 Poliecnico di Torino 1 Concei inroduivi Significao di sazionarieà

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Poliecnico di Milano Corso di Laurea in Ingegneria Gesionale Fondameni di Auomaica Spero di segnali e proprieà filrani dei sisemi dinamici lineari Prof. Bruno Picasso Sommario Spero di segnali Lo spero

Dettagli

Sistemi lineari, a dimensioni finite, tempodiscreti

Sistemi lineari, a dimensioni finite, tempodiscreti Appuni di eoria dei sisemi apiolo IV - Pare 3 Sisemi lineari, a dimensioni finie, empodiscrei Sisemi empo-discrei lineari a dimensioni finie... Soluzione dell equazione di sao...3 Reversibilià del sisema...4

Dettagli

INTRODUZIONE. { t n } è completamente specificato. 1 Definizione e classificazione dei segnali.

INTRODUZIONE. { t n } è completamente specificato. 1 Definizione e classificazione dei segnali. INRODUZIONE Definizione e classificazione dei segnali. Una grandezza fisica, alla cui variazione in funzione di deerminae variabili, quali, ad esempio, il empo, le coordinae di un puno nel piano o enrambe,

Dettagli

Lezione 4 Material Requirement Planning

Lezione 4 Material Requirement Planning Lezione 4 Maerial Requiremen Planning Obieivo: noi gli alberi di prodoo per ciascun ipo; daa una sringa di loi di prodoi finii (fabbisogni dei clieni), ciascun loo da complearsi enro un dao inervallo (se.)

Dettagli

Circuiti in regime periodico non sinusoidale

Circuiti in regime periodico non sinusoidale Circuii in regime periodico non sinusoidale www.die.ing.unibo.i/pers/masri/didaica.hm (versione del -3-7 Funzioni periodiche i dice che una funzione y( è periodica se esise un > ale che per ogni e per

Dettagli

Soluzione degli esercizi del Capitolo 10

Soluzione degli esercizi del Capitolo 10 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. La funzione d anello è L(s) = R(s)G(s) = ( + s) 2 il cui diagramma del modulo è mosrao nella Figura S.. Da ale grafico si deduce che risula

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo.

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo. Il Debio Pubblico In quesa lezione: Sudiamo il vincolo di bilancio del governo. Esaminiamo i faori che influenzano il debio pubblico nel lungo periodo. Sudiamo la sabilià del debio pubblico. 327 Il disavanzo

Dettagli

Diodi a giunzione p/n.

Diodi a giunzione p/n. iodi a giunzione p/n. 1 iodi a giunzione p/n. anodo caodo Fig. 1 - Simbolo e versi posiivi convenzionali per i diodi. diodi sono disposiivi eleronici a 2 erminali caraerizzai dalla proprieà di poer condurre

Dettagli

VINCOLI IDEALI CARLANGELO LIVERANI

VINCOLI IDEALI CARLANGELO LIVERANI VINCOLI IDEALI CARLANGELO LIVERANI 1. Un sisema vincolao Nella via di ui i giorni siamo adusi a sisemi vincolai, ovvero sisemi i cui moi sono sooposi a limiazioni. Per esempio un ram è limiao a muoversi

Dettagli

Modelli stocastici per la volatilità

Modelli stocastici per la volatilità Modelli socasici per la volailià Inroduzione ai modelli GARCH Generalized AuoRegressive Condiional Heeroschedasiciy In un modello GARCH si assume che i rendimeni siano generai da un processo socasico con

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

Prova Scritta di Robotica I A: preferibile per 6 crediti 12 Gennaio 2010

Prova Scritta di Robotica I A: preferibile per 6 crediti 12 Gennaio 2010 Prova Scria di Roboica I A: preferibile per 6 credii Gennaio Esercizio Si consideri il cammino caresiano paramerico p ps xs ys zs R cos s R sin s h s, s [, + dove R > e h >. Tale cammino è una spirale

Dettagli

Cosa c è nella lezione. In questa sezione si affronteranno: Reti in fibra ottica. Modi in fibra ottica. Dispersione multimodale

Cosa c è nella lezione. In questa sezione si affronteranno: Reti in fibra ottica. Modi in fibra ottica. Dispersione multimodale Rei in fibra oica 1/6 Cosa c è nella lezione In quesa sezione si affroneranno: Modi in fibra oica Dispersione mulimodale Confrono mulimodo-singolo modo. /6 Rei in fibra oica 3/6 I modi in fibra oica Il

Dettagli

Deficit e debito pubblico

Deficit e debito pubblico DEITO PULICO Defici e debio pubblico Se il governo di uno Sao spende più di quano incassa, si genera un defici pubblico. Viceversa, si parla di surplus. Il defici è finanziao dallo Sao ricorrendo a presii

Dettagli

Proprietà della Trasformata. Funzioni trasformabili (1/3) L {af(t) + bg(t)} (s) = (af(t) + bg(t))e st dt. Tabella 1. = a f(t)e st dt + b g(t)e st dt

Proprietà della Trasformata. Funzioni trasformabili (1/3) L {af(t) + bg(t)} (s) = (af(t) + bg(t))e st dt. Tabella 1. = a f(t)e st dt + b g(t)e st dt Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 27/28 (aggiornaa al 8//27) 2 Proprieà della rasformaa

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

( ) R R = + per k resistenze = + = R R R. Due modi base di collegare resistenze (=conduttori): Serie e parallelo Resistenze in serie: Stessa corrente

( ) R R = + per k resistenze = + = R R R. Due modi base di collegare resistenze (=conduttori): Serie e parallelo Resistenze in serie: Stessa corrente Due modi base di collegare resisenze (=conduori): Serie e parallelo Resisenze in serie: Sessa correne φ 1 = i1 R1 φ = φ1 + φ = i1r 1 + ir φ ir = i = i = i φ = i R + R 1 1 R = R + R serie 1 serie = R R

Dettagli

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 28/29 (aggiornaa al 2/9/28) 2 Proprieà della rasformaa

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Lezione C1 - DDC

Lezione C1 - DDC Eleronica per le elecomunicazioni Unià C: Conversione A/D e D/A Lezione C. Processo di conversione campionameno e aliasing filro ani aliasing rumore di aliasing errore di quanizzazione Eleronica per elecomunicazioni

Dettagli

ALTRE FORME DI DIPENDENZA DALLA DENSITA

ALTRE FORME DI DIPENDENZA DALLA DENSITA ALTRE FORME DI DIPENDENZA DALLA DENSITA Limii del modello logisico discreo: 0.6 0.4 Può produrre valori di popolazione negaiva 0.2 0-0.2 Ad ale densià corrispondono alle generazioni successive densià negaive

Dettagli

La risposta allo scalino Prof. Bruno Picasso

La risposta allo scalino Prof. Bruno Picasso Poliecnico di Milano Fondameni di Auomaica La risposa allo scalino Prof. Bruno Picasso La risposa allo scalino: cos è? 2 Problema: sia G(s) la funzione di rasferimeno di un sisema lineare asinoicamene

Dettagli

Descrizione naive degli attrattori

Descrizione naive degli attrattori Caos deerminisico Descrizione naive degli araori equilibrio ciclo n 1 oro n 3 n 2 Srani araori Tuo ciò che non è oro, ciclo o equilibrio n 3 Araori fraali Per dimensione si inende il numero di coordinae

Dettagli

Segnali e Sistemi. Proprietà dei sistemi ed operatori

Segnali e Sistemi. Proprietà dei sistemi ed operatori Segnali e Sisemi Un segnale è una qualsiasi grandezza che evolve nel empo. Sono funzioni che hanno come dominio il empo e codominio l insieme di ui i valori che può assumere la grandezza I sisemi rasformano

Dettagli

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Velocià isananea Al diminuire dell inerallo di empo Δ, fissao il empo, la elocià ende ad un alore limie. Riducendo a zero l ampiezza dell inerallo di empo equiarrebbe a deerminare la elocià del puno maeriale

Dettagli

Lezione C1 - DDC

Lezione C1 - DDC Eleronica per l'informaica 3/9/25 Cosa c è nell unià C Unià C: Conversione A/D e D/A Eleronica per l informaica C. Caena di conversione A/D C.2 Converiori D/A C.3 Converiori A/D C.4 Condizionameno del

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte III

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte III Meodi di Calcolo per la Chimica A.A. 6-7 Marco Ruzzi a rasformaa di Fourier: basi maemaiche ed applicazioni Pare Showing a Fourier ransform o a physics suden generally produces he same reacion as showing

Dettagli

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235 9.4. FILRAGGIO DI SEGNALI E PROCESSI 35 Rispose ) Calcoliamo la media emporale: P x = ; / / x () d = /4 /4 () d = 4 = ) Sappiamo che P y = Py (f) df, in cui Py (f) = Y (f), ed a sua vola Y (f) = X (f)

Dettagli

Soluzioni di reti elettriche lineari PAS Introduzione

Soluzioni di reti elettriche lineari PAS Introduzione Soluzioni di rei eleriche lineari PAS Inroduzione Domanda: Cosa sono le rei eleriche lineari in regime Periodico Alernao Sinusoidali PAS? Risposa: Sono rei lineari in cui i generaori hanno dipendenza dal

Dettagli

Il circuito RC Misure e Simulazione

Il circuito RC Misure e Simulazione Il circuio R Misure e Simulazione Laboraorio di Fisica - Liceo Scienifico G.D. assini Sanremo 8 oobre 8 E.Smerieri & L.Faè Progeo Lauree Scienifiche 6-9 Oobre - Sanremo he cosa verrà fao in quesa esperienza

Dettagli

TRASFORMATA DI FOURIER DI DISTRIBUZIONI

TRASFORMATA DI FOURIER DI DISTRIBUZIONI TRASFORMATA DI FOURIER DI DISTRIBUZIONI Tue le proprieà vise per la rasformaa di Fourier sono applicabili alle funzioni dello spazio S. Queso permee di rasferire le sesse proprieà alle disribuzioni di

Dettagli