Modelli stocastici per la volatilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modelli stocastici per la volatilità"

Transcript

1 Modelli socasici per la volailià Inroduzione ai modelli GARCH Generalized AuoRegressive Condiional Heeroschedasiciy In un modello GARCH si assume che i rendimeni siano generai da un processo socasico con volailià condizionaa variabile nel empo. Nei modelli ARMA abbiamo supposo che la media condizionaa dei rendimeni fosse variabile nel empo meendola in relazione con alcune variabili esplicaive. La componene d errore del modello è consideraa omoschedasica, cioè: Var = σ Idea fondamenale dei modelli GARCH: aggiungere una seconda equazione a quella della media condizionaa equazione della varianza condizionaa. Perciò: Var = σ voluzione emporale della varianza condizionaa della componene erraica

2 AuoRegressive Condiionally Heeroscedasic ARCH Models Base di parenza: σ =Var -, -,...=[ - -, -,...] Poichè assumiamo che =0 si ha che σ = Var -, -,...=[ -, -,...] Quesio: da cosa porebbe plausibilmene dipendere il valore correne della varianza dei disurbi? Dai quadrai dei disurbi precedeni. Ciò conduce al modello AuoRegressivo a eroschedasicià Condizionaa per la varianza dei disurbi: σ = α 0 + α - Tale modello viene indicao con la sigla ARCH. Inroduzione ai modelli GARCH La variabile dipendene di un modello GARCH per la volailià è sempre una serie di rendimeni. Un modello GARCH è formao da due equazioni: quazione per la media condizionaa quazione per la varianza condizionaa

3 Inroduzione ai modelli GARCH 3 L equazione per la media condizionaa Poiché l aenzione nei modelli GARCH si concenra sulla varianza condizionaa, soliamene l equazione per la media condizionaa è molo semplice: r = μ + In ale caso la cosane è pari alla media dei rendimeni nel periodo considerao. Se la funzione di auocorrelazione presena valori significaivi per alcuni sfasameni si porebbe uilizzare una media condizionaa auoregressiva. Soliamene un modello AR si rivela adeguao. Inroduzione ai modelli GARCH L equazione per la varianza condizionaa Diverse ipologie di modelli GARCH in base alla forma dell equazione per la varianza condizionaa Disinzione fra GARCH simmerici e GARCH asimmerici simmerici caurano il volailiy clusering ordinario; l equazione per la media condizionaa e quella per la varianza condizionaa possono essere simae separaamene; Ai ii il l ff l i l di Asimmerici caurano il leverage effec; l equazione per la media condizionaa e quella per la varianza condizionaa devono essere simae congiunamene; 3

4 Il modello ARCH eroschedasicià condizionaa auoregressiva Auoregressive Condiional Heeroskedasiciy r = μ + quazione per la media condizionaa = z h z ~ IID0, h = ω + α z evenualmene normale quazione per la varianza condizionaa dove ω > 0, α 0 per garanire la non negaivià della varianza I ~ IID0, h per cui I h = condizionaamene eeroschedasico. Si può dimosrare che la varianza non condizionaa di è una cosane σ. Il modello ARCH Alcune considerazioni sui modelli ARCH = z h Affinchè la varianza esisa finia deve essere α < 3 per α = 0 la serie degli è condizionaamene omoschedasica

5 Il modello ARCH 3 I modelli ARCH caurano il volailiy clusering Sosiuendo la nella si ha: = z ω + α Shock elevai bassi in valore assoluo endono ad essere seguii da shock elevai bassi. 3 Modello ARCH simulao con α = 0.7, T= ARCH I modelli ARCH I modelli ARCH caurano la lepocurosi delle serie finanziarie a La curosi di è sempre superiore a quella di z [ h ] z [ ] = z h z = N.B.: Ricordare disuguaglianza di Jensen e legge dei valori aesi ierai Per cui si può scrivere: [ ] z = 3 b per i modelli ARCH si può anche dimosrare che la curosi di è daa da: 3 α β = = 3α [ ] poiché α > α allora β 3 3 sempio di simulazione ARCH > 5

6 I modelli ARCH 5 mediana 0.00 varianza minimo massimo 0.89 asimmeria curosi.085 jarque-bera 7.3 p-value jb n.oss 999 La forma disribuiva di un processo ARCH simulao Coefficiens: simae Sd. rror value Pr> Sima di un modello ARCH a0.60e-0 5.e < e-6 *** su dai reali NI a.398e-0 3.0e e- *** I modelli ARCH 6 Sruura di dipendenza dei quadrai degli shock in un modello ARCH Funzione di auocorrelazione per gli in un modello ARCH Rappresenazione AR di un processo ARCH Un modello ARCH può essere riscrio come un modello AR rispeo a Infai, aggiungendo ad ambo i membri della si oiene: = ω + α dove v h = h z = h = ω + α + v Poiché un ARCH può essere scrio come un AR, per garanire la sazionarieà del processo deve essere α < la quanià h L auocorrelazione al lag k per è pari a k α 6

7 Dal processo ARCH ai processi ARCHp Correlogramma sui rendimeni al quadrao del NASDAQ Correlogramma per i quadrai di un ARCH simulao Caraerisiche della funzione di auocorrelazione per i rendimeni al quadrao delle aivià finanziarie: - Valore basso al primo lag - Valore decrescene molo lenamene Il modello ARCH non riesce a riprodurre ale andameno perché un basso valore al primo lag implicherebbe una riduzione molo rapida della funzione di auocorrelazione. Dal processo ARCH ai processi ARCHp -Caraerisiche del processo ARCH rispeo alle proprieà osservae empiricamene su mole serie soriche finanziarie sazionarieà sì OK incorrelazione sì OK correlazione quadrai sì! indipendenza no OK normalià no OK lepocurosi sì OK prevedibilià della media cond. no OK della varianza cond. sì OK - La correlazione dei quadrai non è del ipo osservao empiricamene - Limiare la memoria del processo ad un solo isane può essere riduivo - Un passo avani consise nel considerare p riardi Modelli ARCHp 7

8 I processi ARCHp = z h z ~ IID0, z h + α + + = ω + α... α p p ω > 0, αi 0, per i =,,..., p per la non negaivià della varianza z ~ NID0, I ~ N 0, h I I processi ARCHp Rappresenazione ARp = ω + α + α α p p + v per cui σ = ω α α... - sisono dei risulai i che forniscono le condizioni i i per l esisenza dei momeni, in paricolare del momeno quaro. Quando ques ulimo esise, evidenzia lepocurosi. - Il processo ARCHp lineare con ω > 0, α 0, per i =,,..., p è debolmene sazionario se e solo se α + α α p < - Quesa condizione coincide con la richiesa che ue le radici dell equazione caraerisica associaa al polinomio auoregressivo della rappresenazione AR di risulino eserne al cerchio di raggio uniario nel caso di parameri posiivi. - ha una funzione di auocorrelazione simile a quella di un ARp classico. Risulao uile a formulare una sraegia per l idenificazione preliminare dell ordine p del processo ARCH. - Procedura Box-Jenkins sulle auocorrelazioni dei quadrai. α p 8

9 I processi ARCHp 3 Correlogramma per i quadrai di un ARCH5 simulao Sima di un modello ARCH5 su dai reali NI Coefficiens: simae Sd. rror value Pr> a0 6.e e < e-6 *** a.e-0.36e e-08 *** a.e-0.77e e-06 *** a3.7e-0.57e e-07 *** a.85e e e-0 *** a5.6e e e-06 *** 9

Modelli stocastici per la volatilità

Modelli stocastici per la volatilità Modelli socasici per la volailià Dai modelli di volailià a media mobile ai modelli GARCH I modelli di volailià con medie mobili assumono ce i rendimeni siano i.i.d. la volailià è cosane nel empo: forniscono

Dettagli

La dipendenza temporale dei rendimenti

La dipendenza temporale dei rendimenti La dipendenza emporale dei rendimeni Il conceo di volailiy clusering Nella serie dei rendimeni si alernano gruppi di rendimeni elevai e gruppi di rendimeni bassi. Conceo sreamene legao alla lepocurosi.

Dettagli

La procedura Box-Jenkins

La procedura Box-Jenkins La procedura Box-Jenkins La selezione del modello - Procedura di Box e Jenkins (1976): procedura per cosruire, a parire dall osservazione dei dai, un modello ARMA ao ad approssimare il processo generaore

Dettagli

La procedura Box-Jenkins

La procedura Box-Jenkins La procedura Box-Jenkins La selezione del modello - Procedura di Box e Jenkins (976): procedura per cosruire, a parire dall osservazione dei dai, un modello ARMA ao ad approssimare il processo generaore

Dettagli

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero Modelli ARMA, regressione spuria e coinegrazione Amedeo Argeniero amedeo.argeniero@unipg.i Definizione modello ARMA Un modello ARMA(p, q) (AuoRegressive Moving Average of order p and q) ha la seguene sruura:

Dettagli

Modelli stocastici per i rendimenti finanziari

Modelli stocastici per i rendimenti finanziari 6/4/9 Modelli socasici er i rendimeni finanziari Alcuni rocessi socasici lineari Processo MA() μ con ~ WN(, ). semio di generazione di un MA() e sima con R 6/4/9 Momeni di un MA(). μ ( ) ( ),,, > ρ ) (

Dettagli

Modelli stocastici per i rendimenti finanziari

Modelli stocastici per i rendimenti finanziari Modelli socasici er i rendimeni finanziari Alcuni rocessi socasici lineari Y Processo MA() μ con ε ~ WN(0, σ ε ) = + ε + θε. Esemio di generazione di un MA() e sima con R Caraerisiche di un rocesso MA()

Dettagli

L'importanza delle restrizioni econometriche nell'utilizzo dei modelli GARCH per la valutazione del rischio di prodotti finanziari

L'importanza delle restrizioni econometriche nell'utilizzo dei modelli GARCH per la valutazione del rischio di prodotti finanziari L'imporanza delle resrizioni economeriche nell'uilizzo dei modelli GARCH per la valuazione del rischio di prodoi finanziari Giusj Carmen Sanangelo (MeodiaLab) Robero Reno (Universià di Siena e MeodiaLab)

Dettagli

Terza lezione: Processi stazionari

Terza lezione: Processi stazionari Teoria dei processi casuali a empo coninuo Terza lezione: Concei inroduivi Il conceo di sazionarieà Sazionarieà in senso lao Esempi e modelli 005 Poliecnico di Torino 1 Concei inroduivi Significao di sazionarieà

Dettagli

State Space Model. Corso di: Analisi delle Serie Storiche. Corso di Laurea Triennale in: Scienze Statistiche A.A. 2017/18

State Space Model. Corso di: Analisi delle Serie Storiche. Corso di Laurea Triennale in: Scienze Statistiche A.A. 2017/18 Sae Space Model Corso di: Analisi delle Serie Soriche Corso di Laurea Triennale in: Scienze Saisiche A.A. 07/8 Generalià Gli Sae Space Models (Modelli nello Spazio degli Sai) forniscono una meodologia

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez Facolà di Economia - Universià di Sassari Anno Accademico 2004-2005 Dispense Corso di Economeria Docene: Luciano Guierrez Uilizzo dei modelli di regressione per l analisi della serie soriche Programma:

Dettagli

I principali indicatori sintetici sulle revisioni

I principali indicatori sintetici sulle revisioni I principali indicaori sineici sulle revisioni Con la realizzazione e la diffusione dei riangoli delle revisioni, l Isa si propone di analizzare il processo di revisione dell informazione saisica congiunurale

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

Analisi delle serie storiche: modelli ARCH e GARCH. Prof. M. Ferrara

Analisi delle serie storiche: modelli ARCH e GARCH. Prof. M. Ferrara Analisi delle serie soriche: modelli ARCH e GARCH Prof. M. Ferrara 1 Scele di porafoglio Markowiz ci insegna che i parameri decisionali fondamenali per operare scele di porafoglio sono: Media Varianza

Dettagli

Approccio Classico: Metodi di Scomposizione

Approccio Classico: Metodi di Scomposizione Approccio Classico: Meodi di Scomposizione Il Modello di Scomposizione Il modello maemaico ipoizzao nel meodo classico di scomposizione è: y =f(s, T, E ) dove y è il dao riferio al periodo S è la componene

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n + a n d n y

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

La Previsione della Domanda. La previsione della domanda è un elemento chiave della gestione aziendale

La Previsione della Domanda. La previsione della domanda è un elemento chiave della gestione aziendale La Previsione della omanda La previsione della domanda è un elemeno chiave della gesione aziendale Cosi Cliene Vanaggio compeiivo esi I mod 001 1 ermiene rocesso oninuo Personalizzao Prodoo Indifferenziao

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

NEWSLETTER AIFIRM RISK MANAGEMENT MAGAZINE Rivista dell Associazione Italiana Financial Risk Management (AIFIRM)

NEWSLETTER AIFIRM RISK MANAGEMENT MAGAZINE Rivista dell Associazione Italiana Financial Risk Management (AIFIRM) NEWSLETTER AIFIRM RISK MANAGEMENT MAGAZINE Rivisa dell Associazione Ialiana Financial Risk Managemen (AIFIRM) Anno, numero Aprile Maggio - Giugno 006 Pose Ialiane - Spedizione in abbonameno posale 70%

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

Controlli Automatici L

Controlli Automatici L Segnali e rasformae - Corso di Laurea in Ingegneria Meccanica Segnali e rasformae DEIS-Universià di Bologna el. 5 93 Email: crossi@deis.unibo.i URL: www-lar.deis.unibo.i/~crossi Segnali e rasformae - Segnali

Dettagli

SERIE STORICHE, PROCESSI E MODELLI STOCASTICI PER L IDROLOGIA E LA GESTIONE DELLE RISORSE IDRICHE

SERIE STORICHE, PROCESSI E MODELLI STOCASTICI PER L IDROLOGIA E LA GESTIONE DELLE RISORSE IDRICHE SERIE STORICHE, PROCESSI E MODELLI STOCASTICI PER L IDROLOGIA E LA GESTIONE DELLE RISORSE IDRICHE Pierluigi Claps DITIC POLITECNICO DI TORINO [claps@polio.i] Appuni scrii per il Corso di III livello: Simulazione

Dettagli

Analisi delle serie storiche parte IV Metodi di regressione

Analisi delle serie storiche parte IV Metodi di regressione Analisi delle serie soriche pare IV Meodi di regressione a.a. 16/17 Saisica Economica -Laurea in Relazioni Economiche Inernazionali 1 Meodo della regressione La componene di fondo, Trend o Ciclo-Trend,

Dettagli

1. Si consideri il seguente modello di regressione per serie storiche trimestrali riferite all area Euro:

1. Si consideri il seguente modello di regressione per serie storiche trimestrali riferite all area Euro: 1. Si consideri il seguene modello di regressione per serie soriche rimesrali riferie all area Euro: π β + β π + β π + β π + β y + δ D + δ D + D + u = 0 1 1 2 2 3 3 4 1 1 2 2 δ3 3 in cui π è il asso di

Dettagli

X 3 = tasso di intervento della Banca centrale Europea (ex tasso ufficiale di sconto)

X 3 = tasso di intervento della Banca centrale Europea (ex tasso ufficiale di sconto) ECONOMETRIA Esempi di ESERCIZI per la PROVA SCRITTA 1) Quali sviluppi della meodologia saisica hanno favorio la nascia dell economeria (fondazione dell Economeric Sociey, 1930). Quali conribui meodologici

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 06/07 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

SISTEMI DINAMICI DEL PRIMO ORDINE

SISTEMI DINAMICI DEL PRIMO ORDINE SISTEMI DINAMICI DEL PRIMO ORDINE I sisemi dinamici del primo ordine sono sisemi dinamici SISO rappresenai da equazioni differenziali lineari e a coefficieni cosani del primo ordine (n=): dy() dx() a +

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2 Problema 2 B varia secondo la legge: B = k ( 2 +a 2 ) Soluzione 3 r con r R e con a e k posiive [a]=[s] a ha le dimensioni di un empo, perché deve poersi sommare con, affinché la formula abbia senso. [k]=

Dettagli

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO)

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) 3 Capiolo STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) Un generico sisema è deo sabile se, ecciao da una qualsiasi funzione di enraa ale da essere sempre limiaa, risponde con una uscia

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA Facolà di Scienze Saisiche Corso di Laurea Specialisica in Scienze Saisiche Economiche Finanziarie e Aziendali Il Realized Range: proprieà dinamiche e previsione della

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici Equilibrio e sabilià di sisemi dinamici Sabilià inerna di sisemi dinamici Sabilià inerna di sisemi dinamici Inroduzione allo sudio della sabilià Sabilià inerna di sisemi dinamici TC Sabilià inerna di sisemi

Dettagli

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3 10 SRCITAZION sercizi svoli: Capiolo 15 Curva di Phillips sercizio 2 Capiolo 16 Disinflazione, disoccupazione e crescia sercizio 3 1 CAPITOLO 15 CURVA DI PHILLIPS Curva di Phillips Relazione che lega inflazione

Dettagli

Il Value at Risk secondo l approccio parametrico: un esempio semplificato

Il Value at Risk secondo l approccio parametrico: un esempio semplificato Universià degli Sudi di Napoli Federico II Caedra di Economia delle Aziende di Assicurazione Il Value a Risk secondo l approccio paramerico: un esempio semplificao Domenico Curcio, Ph. D. Value a Risk

Dettagli

Radiazione e Relativita Ristretta

Radiazione e Relativita Ristretta Radiazione e Relaivia Risrea V Radiazione di mulipolo 16/1/8 E.Menichei 1 Campi eleromagneici variabili Campi associai a cariche mobili variabili Diverse zone spaziali ineressae Vicino alle sorgeni: zona

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

Università degli studi di Genova Facoltà di Scienze Matematiche, Fisiche e Naturali. Prova Finale. Titolo:

Università degli studi di Genova Facoltà di Scienze Matematiche, Fisiche e Naturali. Prova Finale. Titolo: Universià degli sudi di Genova Facolà di Scienze Maemaiche, Fisiche e Naurali Anno accademico 003 004 Corso di laurea in Saisica Maemaica e Traameno Informaico dei Dai Prova Finale Tiolo: Analisi delle

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE - MODULO 2

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE - MODULO 2 MSc. Finance/CLEFIN Anno Accademico 05/06 FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE - MODULO Esame Generale - Oobre 06 Tempo a disposizione: 00 minui Cognome Nome Maricola Rispondee a ue le domande

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015) Corso di Laurea in Maemaica Docene: Claudia Anedda Analisi Maemaica 3/Analisi 4 - SOLUZIONI (19/1/215) 1) Daa la serie x b e nx [(n + 1) 2 e x n 2 ], n1 b N +, b pari: i) dimosrare che essa è una serie

Dettagli

at e segue q ' t ae 1 bt 0 1 bt 0 t se b 0 b eb a 4 eb e q t 4t e t e e Simulazione ministeriale dell Esame di Stato 2019_2 Matematica e Fisica

at e segue q ' t ae 1 bt 0 1 bt 0 t se b 0 b eb a 4 eb e q t 4t e t e e Simulazione ministeriale dell Esame di Stato 2019_2 Matematica e Fisica Simulazione miniseriale dell Esame di Sao 09_ Maemaica e Fisica Problema n. q a e segue Daa la funzione b b q ' ae b Il cui segno è dao da se b 0 b b q ' ae b 0 b 0 se b 0 se b 0 b a Perano il puno di

Dettagli

L approccio classico per l analisi delle serie storiche

L approccio classico per l analisi delle serie storiche L approccio classico per l analisi delle serie soriche 1 L impiego dell analisi delle serie soriche nelle previsioni: imposazione logica Per serie sorica (o emporale) si inende una successione di dai osservai

Dettagli

Processi stocastici e affidabilità

Processi stocastici e affidabilità Processi socasici e affidabilià ω Dao un esperimeno casuale, si assuma di associare ad ogni ( ω ) esio ω una funzione x, di. Risula così definio un insieme di funzioni del empo, deo processo socasico,

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y ANALISI VETTORIALE ESERCIZI SU EQUADIFF Esercizio Calcolare l inegrale generale dell equazione differenziale = ( ) e deerminare quali soluzioni sono definie su uo R. Risposa Fuori dagli equilibri = 0 e

Dettagli

Vediamo come si sviluppa la soluzione esplicita del problema. ( t)

Vediamo come si sviluppa la soluzione esplicita del problema. ( t) Analisi ransioria L'analisi dinamica ransioria (dea anche analisi emporale) è una ecnica che consene di deerminare la risposa dinamica di una sruura soggea ad una generica ecciazione emporale Gli effei

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA, ECONOMIA E FINANZA RELAZIONE FINALE ANALISI EMPIRICA DELLE CORRELAZIONI TRA INDICI SETTORIALI DELLA BORSA

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Capitolo 9 I Σ I BC I BC. Dimostrazione: Con un calcolo diretto si prova la a). La b) e` ovvia. Dalla a) e b) segue. xy x μx y μ

Capitolo 9 I Σ I BC I BC. Dimostrazione: Con un calcolo diretto si prova la a). La b) e` ovvia. Dalla a) e b) segue. xy x μx y μ Capiolo 9 9- Richiami sulle disribuzioni normali mulivariae 9- Modelli nello spazio degli sai (Modelli Sae Space e cosruzione del filro di Kalman 9-3 Filraggio previsione e regolarizzazione nei modello

Dettagli

N09 (Quesito Numerico)

N09 (Quesito Numerico) N09 (Quesio Numerico): La "legge di graviazione universale" afferma che l'inerazione ra due oggei assimilabili a puni maeriali, di masse m 1 ed m 2 posi a disanza r 12 si esplica ramie una forza il cui

Dettagli

I processi aleatori Ingegneria Clinica A.A

I processi aleatori Ingegneria Clinica A.A Universià di Roma Sapienza Corso di Elaborazione di Dai e Segnali Biomedici Facolà di Ingegneria Civile e Indusriale I processi aleaori Ingegneria Clinica A.A. 08-09 Francesco Infarinao, PhD Laboraorio

Dettagli

Acquisizione ed elaborazione di segnali

Acquisizione ed elaborazione di segnali UNIRSITÀ DI PISA Corso di Laurea in Scienze Moorie Tecnologie e srumenazione biomedica Filri Albero Maceraa Diparimeno di Ingegneria dell Informazione Acquisizione ed elaborazione di segnali Blocchi funzionali

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione Inroduzione ai segnali deerminai iolo unià Dalla serie alla rasormaa di ourier Proprieà della rasormaa di ourier Uguaglianza di Parseval e principio di indeerminazione 005 Poliecnico di orino 1 Dalla serie

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Il segnale sinusoidale (tratto da: Segnali elettrici, a cura del Dott. M.Scalia, Ing. F.Guidi, Dott. M.Sperini)

Il segnale sinusoidale (tratto da: Segnali elettrici, a cura del Dott. M.Scalia, Ing. F.Guidi, Dott. M.Sperini) Il segnale sinusoidale (rao da: Segnali elerici, a cura del Do..Scalia, Ing. F.Guidi, Do..Sperini). Inroduzione Fenomeni oscillaori sono preseni in forma empirica nel mondo della fisica: ra gli esempi

Dettagli

CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW

CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW Nella prima pare del capiolo esponiamo il modello di crescia di Solow 1. Successivamene sudieremo le proprieà di convergenza del reddio pro capie implicie nell

Dettagli

Stabilità dell equilibrio (parte II)

Stabilità dell equilibrio (parte II) Appuni di Teoria dei sisemi - Capiolo 5 Sabilià dell equilibrio (pare II) Cenni sui crieri di insabilià... Cenni sulla sabilià dell equilibrio nei sisemi discrei... 3 Crieri di sabilià del movimeno...

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2018/2019. Prof. M. Bramanti

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2018/2019. Prof. M. Bramanti Recupero 1 compiino di Analisi Maemaica Ingegneria Eleronica. Poliecnico di Milano Es. Puni A.A. 18/19. Prof. M. Bramani 1 Tema n 1 3 4 5 6 To. Cognome e nome in sampaello codice persona o n di maricola

Dettagli

Capitolo XXI. disavanzo. Elevato debito pubblico 20/05/ Il vincolo di bilancio del governo. Il disavanzo di bilancio nell anno t è:

Capitolo XXI. disavanzo. Elevato debito pubblico 20/05/ Il vincolo di bilancio del governo. Il disavanzo di bilancio nell anno t è: Capiolo XXI. Elevao debio pubblico 1. Il vincolo di bilancio del governo Il disavanzo di bilancio nell anno è: disavanzo = r 1 + G T -1 = debio pubblico alla fine dell anno -1 r = asso di ineresse reale

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale Fisica Prova d esempio per l esame (MIUR, aprile 019) Problema 1 Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani 1 m l uno dall alro e di lunghezza indefinia, sono percorsi

Dettagli

0.1 Formula di Gauss e formula di Stokes

0.1 Formula di Gauss e formula di Stokes 1.1 Formula di Gauss e formula di Sokes Siano Ω un apero di R 3, F un campo veoriale definio su Ω, S una superficie la cui chiusura è conenua in Ω. Supponiamo inolre che in S si possano disinguere due

Dettagli

PROCESSI D URTO IN UNA DIMENSIONE

PROCESSI D URTO IN UNA DIMENSIONE 4/5 PROCESSI D URTO IN UNA DIMENSIONE 9/1 1 PROCESSI D URTO IN UNA DIMENSIONE Consideraa una paricella che si muove in un poenziale che si annulla per x ±, siamo ineressai a discuere paricolari soluzioni

Dettagli

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO ECONOMIA INDUSTRIALE Universià degli Sudi di Milano-Bicocca Chrisian Garavaglia Soluzione 4 a) Indicando con θˆ la sima di θ, il profio aeso dell impresa

Dettagli

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy.

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy. Capiolo 3 Equazioni differenziali Esercizi ) Deerminare la soluzione massimale del problema di Cauchy y ()= y() 4 3 y()= ) Deerminare la soluzione massimale del problema di Cauchy y ()= 4 + 6 y()+ 8 (

Dettagli

Circuiti in regime periodico non sinusoidale

Circuiti in regime periodico non sinusoidale Circuii in regime periodico non sinusoidale www.die.ing.unibo.i/pers/masri/didaica.hm (versione del -3-7 Funzioni periodiche i dice che una funzione y( è periodica se esise un > ale che per ogni e per

Dettagli

STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Storiche A.A / 04 ESERCITAZIONE 4. Exponential Smoothing

STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Storiche A.A / 04 ESERCITAZIONE 4. Exponential Smoothing TATTCA ECONOMCA ED ANAL D MERCATO Previsioni Economiche ed Analisi di erie oriche A.A. 2003 / 04 EERCTAZONE 4 Exponenial moohing di Daniele Toninelli Noa: LAVORARE U PRM 0 ANN D DAT E ARE EVENTUAL PREVON

Dettagli

Risk Management: strategie di hedging. Econofisica Doc. Anna Pastorello

Risk Management: strategie di hedging. Econofisica Doc. Anna Pastorello Risk Managemen: sraegie di hedging Econofisica Doc. Anna Pasorello Consan Proporion Porfolio Insurance (CPPI) Sraegia di assicurazione di porafoglio che garanisce in un empo fuuro un valore minimo (deo

Dettagli

Controllo del pendolo inverso

Controllo del pendolo inverso Capiolo. INTRODUZIONE 5. Conrollo del pendolo inverso Esempio. Sia dao il seguene sisema fisico. y u() M V θ H m J mg L x Calcolare una reroazione dinamica dell uscia θ che sabilizzi il sisema nell inorno

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza :

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza : L impedena RASSUNTO Richiamo: algebra dei numeri complessi FASOR Derivae e inegrali Esempio: circuio RC Transiene Soluione saionaria l conceo di impedena : Resisena: Z R R nduana: Z L ω L Capacia : Z C

Dettagli

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi:

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi: Filri RIASSUNTO: Sviluppo in serie di Fourier Esempi: Onda quadra Onda riangolare Segnali non peridiodici Trasformaa di Fourier Filri lineari sazionari: funzione di rasferimeno T() Definizione: il decibel

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

), dove K è una costante positiva della quale si richiede l unità di

), dove K è una costante positiva della quale si richiede l unità di Simulazione di prova scria di MATEMATICA-FISICA - MIUR -..019 PROBLEMA 1 - soluzione con la calcolarice grafica TI-Nspire CX della Texas Insrumens Soluzione a cura di: Formaori T Ialia - Teachers Teaching

Dettagli

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI . ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI Dao il sisema illusrao in Figura, consisene in due barre rigide connesse da un giuno di roazione orizzonale ; la prima barra è vincolaa a ruoare

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

INTRODUZIONE. { t n } è completamente specificato. 1 Definizione e classificazione dei segnali.

INTRODUZIONE. { t n } è completamente specificato. 1 Definizione e classificazione dei segnali. INRODUZIONE Definizione e classificazione dei segnali. Una grandezza fisica, alla cui variazione in funzione di deerminae variabili, quali, ad esempio, il empo, le coordinae di un puno nel piano o enrambe,

Dettagli

x(t) y(t) 45 o x x(t) -2T

x(t) y(t) 45 o x x(t) -2T Eserciazione 0 - Processi casuali Esercizio Si consideri lo schema di fig., dove =A cos(!0 + ) e e una cosane. Si consideri il paramero A come una variabile casuale uniformemene disribuia ra 0 e.calcolare

Dettagli