Modelli stocastici per i rendimenti finanziari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modelli stocastici per i rendimenti finanziari"

Transcript

1 Modelli socasici er i rendimeni finanziari Alcuni rocessi socasici lineari Y Processo MA() μ con ε ~ WN(0, σ ε ) = + ε + θε. Esemio di generazione di un MA() e sima con R

2 Caraerisiche di un rocesso MA() Media e varianza non sono funzioni del emo rocesso sazionario La funzione di auocorrelazione ha lo sesso segno del aramero e decade a zero doo il rimo lag (cu off). P k ha una forma iù comlessa. Decade gradualmene (ail off). Se il aramero è osiivo decade a segni alerni alrimeni è semre negaiva. Esemi di ACF e PACF er rocessi MA() θ = 0.8 θ 0. 8 = Y Il P.S. MA(q) = μ + ε + θ... ε Y = μ + θ ( L) ε q ε + θ ε + + θ q q con ε WN(0, σ ε ) Esemio di generazione di un MA() e sima con R

3 Caraerisiche di un MA(q) Nella funzione di auocorrelazione si ha un cu off er k > q. La funzione di auocorrelazione arziale resena invece un ail off (a segni alerni o meno a seconda delle relazioni fra i arameri). N.B.: Un rocesso MA(q) è semre sazionario Il P.S. AR() = c + φ Y + ε con ε ~ WN(0, σ ε ) Y Si uò scrivere ( φ L) Y = c + ε φ L = 0 L = φ Il rocesso è sazionario se > φ φ < Esemio di generazione di un AR() e sima con R 3

4 Caraerisiche di un AR() Il P.S. Random Walk come caso aricolare di un AR() Si ioizza, senza erdia di generalià che c = 0. Processo AR() con φ = Random walk Y = + ε con ε ~ WN(0, ) Y σ ε Esemio di generazione di un RW e sima con R 4

5 Il P.S. Random Walk () -Caso aricolare di efficienza informaiva -Buona arossimazione del rocesso generaore dei rezzi nell ambio dei modelli lineari Sosiuendo ricorsivamene Y con la sua esressione si oiene: Y = Y 0 + εi i= N.B.: gli shock εi i =,,..., hanno lo sesso eso su Y. Shock ermaneni Nell AR() sazionario con φ < si ha invece Y = c j + φ φ j= 0 ε j er cui gli shock endono ad annullarsi er j shock ransiori Il P.S. Random Walk () = + Media E( Y ) E( Y0 ) E εi = Y0 i= media arimeica dei valori della serie non è un buono simaore del valore aeso di un RW. Varianza Poiché il valore aeso è ari a Y 0 si ha Auocovarianza γ ( 0) = E εi = σ i= Si uò dimosrare che γ ( k) E( Y, Y ) = ( k) σ = k N.B.: varianza e covarianza crescono nel emo RW rocesso non sazionario in varianza. Auocorrelazione γ ( k) k ρ( k) = = γ (0) k =,, Se ρ( k) 5

6 P.S. RW: esemio su ENI Ved. R Schema di auocorrelazione che orebbe ricordare un AR(): Sima di un AR() sui rezzi (Es. MIDEX) coef s.e..sa.value ar inerce E-08 sigma loglik aic

7 Alcune considerazioni sul RW -Quindi se T è sufficienemene elevao la funzione di auocorrelazione simaa è rossima ad uno er k =,, -La funzione di auocorrelazione arziale ha un cu-off doo k = -La sima di un AR() ora alla sima di un aramero rossimo all unià radice sul cerchio uniario iico delle serie non sazionarie Δ Y = Differenziazione ( L) Y = Y Y Il RW è anche non sazionario in varianza rasformazione logarimica. Δ ln( ) = ln( P ) ln( P ) = P = r Dai rezzi ai rendimeni: sazionarieà 7

8 Processi AR() Y = c + Y + φy φ Y con ε ~ WN(0, φ + ε σ ε ) Polinomio auoregressivo corrisondene φ ( L) = φ L φ L... φ L er cui φ ( L) Y = c + ε Processo sazionario se ue le radici del olinomio auoregressivo sono eserne al cerchio di raggio uniario. Processi AR() () Esemio di generazione di un AR() 8

9 Processi AR() (3) L ACF ende ad annullarsi al divergere di k, con comorameno miso ra l esonenziale e lo seudo-eriodico. P k è diversa da zero er k e si annulla er k >. Funzione di auocorrelazione er un AR() simulao L inveribilià dei P.S. Processo socasico sazionario γ k e ρ k definie in modo univoco. E vero il conrario? (Daa una funzione di auocovarianza, è unico il P.S. sazionario che la ossiede?) Si uò dimosrare che esisono iù P.S. sazionari con la sessa funzione di auocovarianza. Uno solo, erò, è inveribile. Un P.S. è deo inveribile se è ossibile ricosruire il valore dello shock sulla base dei soli valori delle osservazioni y y, y,..., Tui i rocessi AR sono inveribili, menre ciò non è semre vero er i rocessi MA. Tui gli MA sono invece sazionari, ma ciò non è vero er gli AR Affinché un rocesso MA sia inveribile è necessario che ue le radici del olinomio MA siano eserne al cerchio di radice uniaria, cioè che ue le radici siano in modulo sueriori ad uno. La condizione di inveribilià serve er idenificare in maniera univoca un P.S. a arire dalle funzioni di auocorrelazione simae. ε 9

10 Processi ARMA(,) Y = c + φ Y + ε + θε, ε ε ~ WN(0, σ ) che si uò anche scrivere come ( L) Y = c + ( + θ φ L) ε Processo sazionario se φ < Processo inveribile se θ < Esemio di generazione di un ARMA(,) e sima con R Caraerisiche di un ARMA(,) Si uò dimosrare che er k= l ACF ha una forma iuoso comlessa, funzione dei due arameri φ e θ Per k > si ha ρ = φ k k ρ er cui ende a decadere con legge esonenziale o sinusoidale. La PACF P k ende ad annullarsi al crescere di k senza alcuna aricolare sruura 0

11 Processi ARMA(,q) φ ( L) Y = c + θ q ( L) ε ε ~ WN (0, σ ε ) φ ( L) = φ L φ L... φ L θ ( L) = + θ L + θ L θ L q Verifica sazionarieà e inveribilià del rocesso sui due olinomi. Il modello ARMA soliamene consene di eviare la sovraaramerizzazione crierio della arsimonia q q Le esressioni della funzione di auocovarianza e di auocorrelazione di un ARMA(,q) sono iuoso comlesse. Le caraerisiche del correlogramma si ossono sineizzare come segue: Fino al riardo q l ACF ha un comorameno miso ; da q+ in oi il comorameno è quello iico di un MA(q). Decadimeno graduale della PACF senza un aricolare aern. Comorameno delle ACF e PACF er rocessi ARMA Processo ACF PACF AR() MA(q) ARMA(,q) Tende ad annullarsi Nulla doo il lag q Tende ad annullarsi doo il lag q Nulla doo il lag Tende ad annullarsi Tende ad annullarsi

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero Modelli ARMA, regressione spuria e coinegrazione Amedeo Argeniero [email protected] Definizione modello ARMA Un modello ARMA(p, q) (AuoRegressive Moving Average of order p and q) ha la seguene sruura:

Dettagli

SERIE STORICHE, PROCESSI E L IDROLOGIA E LA GESTIONE DELLE RISORSE IDRICHE. Pierluigi Claps DITIC! POLITECNICO DI TORINO

SERIE STORICHE, PROCESSI E L IDROLOGIA E LA GESTIONE DELLE RISORSE IDRICHE. Pierluigi Claps DITIC! POLITECNICO DI TORINO SERIE STORICHE, PROCESSI E MODELLI STOCASTICI PER L IDROLOGIA E LA GESTIONE DELLE RISORSE IDRICHE Pierluigi Clas DITIC POLITECNICO DI TORINO [[email protected]] Auni scrii er il Corso di III livello: Simulazione

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Progetto di travi in c.a.p isostatiche Il fuso del cavo risultante e il fuso di Guyon

Progetto di travi in c.a.p isostatiche Il fuso del cavo risultante e il fuso di Guyon Università degli Studi di Roma Tre - Facoltà di Ingegneria Laurea magistrale in Ingegneria Civile in Protezione Corso di Cemento rmato Precomresso / 2015-16 Progetto di travi in c.a. isostatiche Il fuso

Dettagli

LEZIONE 5 : Rapporti statistici e numeri indice

LEZIONE 5 : Rapporti statistici e numeri indice 5 marzo 2014 LEZIONE 5 : Raori saisici e numeri indice Do.ssa Ria Allais PhD Diarimeno di Scienze economico-sociali e maemaico-saisiche Diarimeno di Managemen Universià degli Sudi di Torino PER USO DIDATTICO

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Teorie non finanziarie dell investimento

Teorie non finanziarie dell investimento Teorie non finanziarie dell investimento Investimento, Informazione e Razionalità A. M. Variato Saggi di Teoria e Politica Economica, Giuffrè, 2004 Daniela Maggioni Tatiana Conti 1 Teorie non finanziarie

Dettagli

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Eleroecnica Teoria dei Circuii Regime lenamene variabile v(), i(), p() funzioni del empo Esempio: a() a Relazioni: non algebriche, ma inegro-differenziali

Dettagli

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo.

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo. Il Debio Pubblico In quesa lezione: Sudiamo il vincolo di bilancio del governo. Esaminiamo i faori che influenzano il debio pubblico nel lungo periodo. Sudiamo la sabilià del debio pubblico. 327 Il disavanzo

Dettagli

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO ECONOMIA INDUSTRIALE Universià degli Sudi di Milano-Bicocca Chrisian Garavaglia Soluzione 4 a) Indicando con θˆ la sima di θ, il profio aeso dell impresa

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Idraulica e Idrologia: Lezione 12 Agenda del giorno

Idraulica e Idrologia: Lezione 12 Agenda del giorno Idraulica e Idrologia: Lezione genda del giorno Idrostatica: fluidi in quiete - Unità di misura er la ressione di un fluido - Pressione e rofondità - Princiio di rchimede: cori in un fluido Pg Fluido Cosa

Dettagli

Lezione 10 Termodinamica

Lezione 10 Termodinamica rgomenti della lezione: Lezione 0 ermodinamica relazione di Mayer trasformazioni adiabatiche trasformazioni isoterme macchine termiche ciclo di arnot secondo riiio della termodinamica cenni sull entroia

Dettagli

docente: Germana Scepi

docente: Germana Scepi INSEGNAMENTO DI :PIANO DEGLI ESPERIMENTI CORSO DI LAUREA: CLAS docente: Germana Scei Eserimenti in Scienza e Industria I metodi serimentali sono amiamente utilizzati sia nella ricerca scientifica che nel

Dettagli

Economia Politica Microeconomia (ECN0006) 10 CFU a.a Eleonora Pierucci

Economia Politica Microeconomia (ECN0006) 10 CFU a.a Eleonora Pierucci Economia Politica Microeconomia (ECN0006) 10 CFU a.a. 01-01 Eleonora Pierucci [email protected] TEOIA DEL CONSUMO Il consumatore decide di oerare le rorie scelte sul mercato a seconda di tre arametri:

Dettagli

Cinematica Relativistica

Cinematica Relativistica Caitolo 1 Cinematica Relativistica Avvertenza: negli esercizi seguenti si e usata talvolta la convenzione = c = 1. Per esemio, il momento di una articella viene esresso indifferentemente in GeV o GeV/c.

Dettagli

Modelli di Ricerca Operativa per il Lot Sizing

Modelli di Ricerca Operativa per il Lot Sizing Modelli di Ricerca Oeraiva er il Lo Sizing Corso di Modelli di Sisemi di Produzione I Sommario Inroduzione La gesione delle score (Problema e modelli) Parameri Fondamenali (cosi di e soccaggio) Aroccio

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI.

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI. ESERCIZI SULL DINMIC DI CRPI RIIDI. Risoluzione mediante equazioni di Lagrange, equilibrio relativo (forze aarenti), stazionarietà del otenziale U; stabilità dell equilibrio e analisi delle iccole oscillazioni.

Dettagli

Collegamenti Albero-mozzo

Collegamenti Albero-mozzo Collegameni Albero-mozzo /11/01 Obieivo: Collegare assialmene ue organi (in moo fisso o mobile) al fine i rasmeere coia orcene e quini eviare che vi sia un moo roaorio relaivo Accoiameno i forma Faore

Dettagli

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza

Dettagli

Procedura per la Risoluzione di Integrali Razionali Fratti

Procedura per la Risoluzione di Integrali Razionali Fratti Procedura er la Risoluzione di Integrali Razionali Fratti Matteo Tugnoli Marc, 0 Di seguito illustriamo una breve rocedura da alicare nel caso di integrazione di frazioni comoste da olinomi di differenti

Dettagli

UGELLO CONVERGENTE. Dai valori noti si ricava: = = e quindi il rapporto: p a

UGELLO CONVERGENTE. Dai valori noti si ricava: = = e quindi il rapporto: p a UGELLO CONVERGENE. Si consideri un ugello convergente che scarica in ambiente ( a atm). Sono noti la temeratura di ristagno K, il diametro di uscita dell ugello D.m e la differenza di ressione tra monte

Dettagli

Enunciato di Kelvin-Plank

Enunciato di Kelvin-Plank ezione VI - 3/03/003 ora 8:30-0:30 - Enunciato di Kelin-Plank, laoro nelle trasformazioni di gas erfetti, Entalia - Originale di Cara Mauro e Dondi Silia Enunciato di Kelin-Plank Non è ossibile effettuare

Dettagli

Approssimazione di Stirling

Approssimazione di Stirling Approssimazione di Stirling Marcello Colozzo - http://www.extrabyte.info 1 Rappresentazione integrale della funzione gamma Ricordiamo il teorema: Teorema 1 Sia ψ (t) la funzione complessa della variabile

Dettagli

Università degli studi di Padova. Facoltà di Scienze Statistiche Corso di Laurea in Statistica e Gestione delle Imprese.

Università degli studi di Padova. Facoltà di Scienze Statistiche Corso di Laurea in Statistica e Gestione delle Imprese. Universià degli sudi di Padova Facolà di Scienze Saisiche Corso di Laurea in Saisica e Gesione delle Imprese Tesi di Laurea Modellazione e previsione di serie soriche delle vendie: Il caso DAB PUMPS S.p.a.

Dettagli

Esercizi proposti - Gruppo 7

Esercizi proposti - Gruppo 7 Argomenti di Matematica er l Ingegneria - Volume I - Esercizi roosti Esercizi roosti - Gruo 7 1) Verificare che ognuina delle seguenti coie di numeri razionali ( ) r + 1, r + 1, r Q {0} r ha la rorietà

Dettagli

Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2011/2012 Statistica Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate.

Dettagli

Lezione 14 Il mercato e il prezzo: Il meccanismo delle domanda e dell offerta

Lezione 14 Il mercato e il prezzo: Il meccanismo delle domanda e dell offerta Corso di Scienza Economica (Economia Politica) rof. G. Di Bartolomeo Lezione 14 Il mercato e il rezzo: Il meccanismo delle domanda e dell offerta Facoltà di Scienze della Comunicazione Università di Teramo

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

LA PARABOLA E LE DISEQUAZIONI

LA PARABOLA E LE DISEQUAZIONI LA PARABOLA E LE DISEQUAZIONI DI SECONDO GRADO 6 Per ricordare H Una funzione di secondo grado la cui equazione assume la forma y ˆ a b c si chiama arabola. Le sue caratteristiche sono le seguenti (osserva

Dettagli

CEMENTO ARMATO PRECOMPRESSO Lezione 3

CEMENTO ARMATO PRECOMPRESSO Lezione 3 Corso di Comlementi di Tecnica delle Costruzioni A/A 2008- CEMETO ARMATO PRECOMPRESSO Lezione 3 Le erdite istantanee di tensione Per accorciamento elastico Per effetto mutuo dei cavi Rientro degli ancoraggi

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( ) l insieme dei valori che la variabile può assumere affinché la funzione f ( ) abbia significato. Vediamo di individuare alcune

Dettagli

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico 1. Dato il problema ai valori iniziali f (t) = f(t) + cos t f(0) = 1, (ii) determinarne la soluzione numerica per 0 t 2π utilizzando il metodo di 2. Calcolare analiticamente e numericamente la media della

Dettagli

Approccio Classico: Metodi di Scomposizione

Approccio Classico: Metodi di Scomposizione Approccio Classico: Meodi di Scomposizione Il Modello di Scomposizione Il modello maemaico ipoizzao nel meodo classico di scomposizione è: y =f(s, T, E ) dove y è il dao riferio al periodo S è la componene

Dettagli

125. Simulazioni del decadimento radioattivo con la TI Voyage 200 di Pietro Romano L. S. Leonardo, Giarre (CT)

125. Simulazioni del decadimento radioattivo con la TI Voyage 200 di Pietro Romano L. S. Leonardo, Giarre (CT) Numero 11 Dicembre 29 125. Simulazioni del decadimento radioattivo con la TI Voyage 2 di Pietro Romano [[email protected]] L. S. Leonardo, Giarre (CT) Abstract.. A grahical calculator, as TI Voyage 2, can

Dettagli

Analisi delle Serie Storiche con R

Analisi delle Serie Storiche con R Università di Bologna - Facoltà di Scienze Statistiche Laurea Triennale in Statistica e Ricerca Sociale Corso di Analisi di Serie Storiche e Multidimensionali Analisi delle Serie Storiche con R Francesca

Dettagli

Analisi della varianza: I contrasti e il metodo di Bonferroni

Analisi della varianza: I contrasti e il metodo di Bonferroni Analisi della varianza: I contrasti e il metodo di Bonferroni 1 Contrasti In molti problemi risulta importante stabilire, nel caso venga rifiutata l ipotesi nulla, di uguaglianza delle medie µ j delle

Dettagli

Analisi della correlazione canonica

Analisi della correlazione canonica Analisi della correlazione canonica Su un collettivo di unità statistiche si osservano due gruppi di k ed m variabili L analisi della correlazione canonica ha per obiettivo lo studio delle relazioni di

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Consideriamo un sistema dinamico tempo-invariante descritto da:

Consideriamo un sistema dinamico tempo-invariante descritto da: IL PROBLEMA DELLA STABILITA Il problema della stabilità può essere affrontato in vari modi. Quella adottata qui, per la sua riconosciuta generalità ed efficacia, è l impostazione classica dovuta a M. A.

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h).

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h). OME ER FLUIDI ALIMENARI Definizione Sono macchine oeratrici oeranti su fluidi incomrimibili in grado di trasformare l energia meccanica disonibile all albero di un motore in energia meccanica del fluido

Dettagli

CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW

CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW Nella prima pare del capiolo esponiamo il modello di crescia di Solow 1. Successivamene sudieremo le proprieà di convergenza del reddio pro capie implicie nell

Dettagli

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente: Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione

Dettagli

Capitolo 3 - Parte IV Complementi sui circuiti combinatori

Capitolo 3 - Parte IV Complementi sui circuiti combinatori Aunti di Elettronica Digitale Caitolo 3 - arte IV Comlementi sui circuiti combinatori Introduzione... Sommatori...2 Introduzione...2 Half-adder...3 Full-adder...4 Sommatore binario arallelo...7 roagazione

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Schema di calcolo del modello di previsione coorti-componenti

Schema di calcolo del modello di previsione coorti-componenti . In generae Schema di cacoo de modeo di revisione coori-comoneni I meodo coori-comoneni che si uò ar risae aa ine de XIX secoo Cannan 89 è queo iù comunemene uiizzao nee revisioni di ooazione ma è anche

Dettagli