Controlli Automatici L

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Controlli Automatici L"

Transcript

1 Segnali e rasformae - Corso di Laurea in Ingegneria Meccanica Segnali e rasformae DEIS-Universià di Bologna el crossi@deis.unibo.i URL: www-lar.deis.unibo.i/~crossi Segnali e rasformae - Segnali empo coninui Sono funzioni reali di variabile reale: la variabile indipendene rappresena il empo x = x () x(): i descrivono l andameno emporale delle variabili di ineresse imporane caraerizzarne le proprieà Segnali canonici: normalmene nulli per < gradino uniario rampa parabola < ( ) = < r () = Segnali periodici cosinusoide: caraerizzaa da ampiezza, pulsazione e fase M cos( ω + ϕ) < r () = / Segnali e rasformae - 3 Segnali periodici Un segnale si dice periodico di se. f ( + ) = f(). è il più piccolo numero reale per cui la è verificaa Un segnale cosane è periodico di nullo π Pulsazione caraerisica ω = Periodica di Inroduzione

2 Segnali e rasformae - 4 Segnali periodici Proprieà: dae due funzioni periodiche con periodi ra loro commensurabili (ovvero ali che con ineri), la loro somma risula essere una funzione periodica di Segnali e rasformae - 5 Segnali periodici In generale la combinazione lineare di funzioni sinusoidali è un segnale periodico di Segnali e rasformae - 6 La serie di Fourier Risulao fondamenale: Daa una funzione complessa di variabile reale periodica con, si ha jnω jnω () n n () f = F e F = f e d { F } { } La successione n è lo spero di Fourier del segnale, F n è lo spero di ampiezza e { arg ( Fn )} è lo spero di fase La conoscenza dello spero di ampiezza e fase permee di ricosruire il segnale originario Se il segnale è reale, si ha F n = Fn n =,, jnω jnω f() = F + F ne + Fne Inroduzione

3 Segnali e rasformae - 7 Formulazioni alernaive La serie di Fourier f ( ) = F + Fn cos( nω) + jsin ( nω) + Fn cos ( nω) jsin ( nω) = F + Re( Fn) cos( nω) Im( Fn) sin( nω) si oiene la forma rigonomerica F = f() d Fcn = Re ( Fn ) = f( )cos ( nω) d f( ) = F + Fcn cos( nω) + Fsn sin( nω) Fsn = Im ( Fn ) = f( )sin( nω ) d f () = F + Fn cos n + argfn ( ω ) La serie di Fourier e l analisi armonica Segnali e rasformae - 8 Ogni segnale periodico è scomponibile nella somma di una cosane, la componene coninua, e di una infinià numerabile di cosinusoidi, le armoniche, a pulsazioni muliple dell armonica fondamenale Il peso di ogni armonica è sabilio dallo spero di ampiezza Proprieà Una funzione pari è sviluppabile in soli serie di seni, cioè F cn = Una funzione dispari è sviluppabile in soli serie di coseni, cioè F sn = eorema di Parseval f () d F Fn = + La poenza media associaa al segnale, se esise, è definia dallo spero di ampiezza La serie di Fourier e l analisi armonica Segnali e rasformae - 9 Per analisi armonica si inende lo sudio dello spero, cioè la rappresenazione del segnale nel dominio delle frequenze e non del empo Esisono segnali il cui sviluppo in serie e composo da un numero finio di ermini Si definisce banda del segnale l inervallo di pulsazioni compreso ra la minima e la massima pulsazione dei ermini non nulli Segnali con un numero infinio di ermini non nulli sono in principio a banda illimiaa se il segnale è a poenza finia, l ampiezza dello spero di fase ende necessariamene a zero al crescere della pulsazione da un puno di visa praico, si parla di banda del segnale, la cosiddea banda essenziale, inendendo la banda in cui è confinaa una percenuale daa, soliamene il 95% o il 99%, della poenza oale del segnale Inroduzione 3

4 Segnali e rasformae - Esempi di speri La presenza di armoniche a frequenze elevae è legaa alla derivaa del segnale emporale: a segnali più bruschi corrispondono speri che si esendono a frequenze più elevae Segnale emporale 5 Spero serie di Fourier ( ) Segnali e rasformae - Segnale emporale smussao Esempi di speri 5 Speri serie di Fourier ( ) Segnali e rasformae - La rasformaa di Fourier Daa un segnale (a valori reali o complessi) si definisce rasformaa di Fourier la funzione complessa di variabile reale definia come jω F ( ω) = F ( f() ) = f() e d Rappresena l esensione ai segnali non periodici della serie di Fourier Non ui i segnali ammeono rasformaa, l inegrale deve esisere rasformazione inversa jω f ( ) = F ( F( ω) ) = F( ω) e dω π Spero di ampiezza F ( ω) Spero di fase arg ( F ( ω) ) Per segnali reali è sufficiene la conoscenza dello spero per pulsazioni posiive jω jω f ( ) = F ( F( ω) ) = ( F( ω) e + F( ω) e ) dω π Inroduzione 4

5 Segnali e rasformae - 3 La rasformaa di Fourier Linearià F( ω) = F ( α f( ) + β f( ) ) = = αf ( f() ) + βf ( f() ) = αf( ω) + βf( ω) Forma rigonomerica f ( ) = F( ω) cos( ω arg F( ω) ) dω π + Un segnale che ammee rasformaa di Fourier è esprimibile come somma non numerabile di funzioni elemenari cosinusoidali Si può definire il conceo di banda limiaa e banda essenziale di un segnale analogamene a quano fao per segnali periodici Un segnale diverso da zero in un inervallo di empo finio può avere banda illimiaa eorema di Parseval f () d = F( ω) dω π Segnali e rasformae - 4 Esempio Impulso reangolare a < a f() = alrove x() a F() = d = a a a jω a jω e F( ω) = e d = jω a a sin ( ω a) = a ω a F(w) ime (s) w Segnali e rasformae - 5 La rasformaa di Laplace La rasformaa di Fourier ha una chiara inerpreazione fisica, ma non ui i segnali di ineresse sono rasformabili La rasformaa di Laplace si applica ad una qualunque funzione a valori complessi coniugai o reali e di variabile reale s f () = σ '() + jω'() F() s = L ( f()): = f() e d s = σ + jω esise per praicamene ui i segnali di ineresse risula definia per ogni s apparenene al semipiano del piano di Gauss poso a desra di una rea parallela alla asse immaginario la cui posizione dipende da f() (dominio di convergenza) Inroduzione 5

6 Segnali e rasformae - 6 La rasformaa di Laplace Soo alune (non resriive) ipoesi la rasformaa di Laplace risula univoca e la rasformazione inversa risula definia come dove è una qualunque ascissa apparenene al dominio di convergenza di Noazione: Le due funzioni hanno lo sesso conenuo informaivo (rasformazione biunivoca). Proprieà della rasformaa di Laplace Segnali e rasformae - 7 Linearià Derivazione Inegrazione raslazione emporale eorema valore iniziale eorema valore finale rasformazione segnali elemenari Segnali e rasformae - 8 Inroduzione 6

7 rasformazione segnali elemenari Segnali e rasformae - 9 Riferimeno a abella per rasformazioni meno elemenari Segnali e rasformae - Esempi rasformazione funzioni complesse Segnali e rasformae - La soluzione delle equazioni differenziali lineari rasformaa di Laplace srumeno uile Esempio: equazione omogenea di ordine asys () y + ays () = a y () + a y() = y y y() = y Y() s = = as+ a a s+ a / a Anirasformazione uilizzo della formula: scomodo si sfruano funzioni elemenari di cui si conosce la rasformaa a y ( a / a () [ ()] () ) f = e L f = y = e s+ a a per ordini più elevai si sfrua la formula di derivazione ricorsivamene necessario conoscere ue le condizioni iniziali necessarie L[ y ( )] = sl[ y ( )] y () = ss [ L[ y ( )] y()] y () = sy( s) sy y Inroduzione 7

8 x Segnali e rasformae - La soluzione delle equazioni differenziali lineari A parire da EDO lineari omogenee, si oengono sempre rasformae di Laplace per la soluzione in forma razionale fraa Equazioni non omogenee con condizioni iniziali nulle asys () + ays () = bus () a y () + a y() = bu() b y() = Y() s = U() s as + a conoscendo la rasformaa della u() si ricava Y(s) e poi per anirasformazione la y() nel caso di U(s) razionale fraa, anche la Y(s) sarà ancora razionale fraa per quano viso nella lezione precedene, per calcolare il segnale è sufficiene conoscere l anirasformaa dei ermini elemenari s r r s s p ( s p) aenzione, se il polo è complesso si oiene un segnale complesso Segnali e rasformae - 3 Anirasformazione di funzioni razionali frae Si uilizza lo sviluppo in frai semplici calcolo dei coefficieni di ogni ermine dello sviluppo già viso poli semplici reali k k Y() s = y() = k() = s < p k p ke Y() s = y() = ke () = s p < poli semplici complessi coniugai jϕ jϕ k k Me Me Y() s = + = + s p s p s σ jω s σ + jω jϕ σ jω jϕ σ jω y() = M e e e + M e e e σ j( ω+ ϕ) j( ω+ ϕ) σ = Me e + e = Me cos ω + ( ) ( ϕ ) Segnali e rasformae - 4 Rappresenazione grafica (moleplicià ) Inroduzione 8

9 x ime (s ec) Segnali e rasformae - 5 Anirasformazione di funzioni razionali frae poli mulipli reali k Y() s = y() = k s r ( r! ) r k Y() s = y() = k e r ( s p) ( r! ) poli mulipli complessi coniugai r k k M e M e Y() s = + = + r r r r ( s p) ( s p) ( s σ jω) ( s σ + jω) r jϕ σ y () = M e cos( ω+ ϕ) ( r! ) p jϕ Segnali e rasformae - 6 Rappresenazione grafica (moleplicià > ) Inroduzione 9

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - Corso di Laurea in Ingegneria Meccanica Segnali e trasformate DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Segnali e trasformate

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - 1 Corso di Laurea in Ingegneria dell Automazione Segnali e trasformate DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di elecomunicazioni - SEGNALI E SPERI Prof. Mario Barbera [pare ] Sruura della lezione Proprieà dei segnali Valore medio, valore efficace, poenza, energia rasformaa di Fourier e speri

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n + a n d n y

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Proprietà della Trasformata. Funzioni trasformabili (1/3) L {af(t) + bg(t)} (s) = (af(t) + bg(t))e st dt. Tabella 1. = a f(t)e st dt + b g(t)e st dt

Proprietà della Trasformata. Funzioni trasformabili (1/3) L {af(t) + bg(t)} (s) = (af(t) + bg(t))e st dt. Tabella 1. = a f(t)e st dt + b g(t)e st dt Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 27/28 (aggiornaa al 8//27) 2 Proprieà della rasformaa

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 28/29 (aggiornaa al 2/9/28) 2 Proprieà della rasformaa

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte III

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte III Meodi di Calcolo per la Chimica A.A. 6-7 Marco Ruzzi a rasformaa di Fourier: basi maemaiche ed applicazioni Pare Showing a Fourier ransform o a physics suden generally produces he same reacion as showing

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO)

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) 3 Capiolo STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) Un generico sisema è deo sabile se, ecciao da una qualsiasi funzione di enraa ale da essere sempre limiaa, risponde con una uscia

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica Funzione di risposta armonica - Corso di Laurea in Ingegneria Meccanica Controlli Automatici L La funzione di risposta armonica DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica 1 CM89se.ex COMPLEMENTI DI MATEMATICA a.a. 28-29 Laurea magisrale in Ingegneria Eleroecnica Nona seimana 24.11.28 - lunedì (2 ore) Commeno della prova parziale (vd. file CM8IcoA-B-C-D.pdf). Definizione

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

0.1 Formula di Gauss e formula di Stokes

0.1 Formula di Gauss e formula di Stokes 1.1 Formula di Gauss e formula di Sokes Siano Ω un apero di R 3, F un campo veoriale definio su Ω, S una superficie la cui chiusura è conenua in Ω. Supponiamo inolre che in S si possano disinguere due

Dettagli

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari TRASFORMAZIONE DEI SEGNALI SENZA MEMORIA: ZMNL (Zero-Memory Non Lineariy) g x( ) y = CON MEMORIA: Lineari (ra cui il Filraggio) Non Lineari L5/1 TRASFORMAZIONI SENZA MEMORIA (ISTANTANEE) y Limiazione dura

Dettagli

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta SEGNALI A TEMPO DISCRETO Impulso e altri segnali canonici discreti Trasformata Zeta Sviluppo di Fourier discreto Trasformata di Fourier discreta Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

Il segnale sinusoidale (tratto da: Segnali elettrici, a cura del Dott. M.Scalia, Ing. F.Guidi, Dott. M.Sperini)

Il segnale sinusoidale (tratto da: Segnali elettrici, a cura del Dott. M.Scalia, Ing. F.Guidi, Dott. M.Sperini) Il segnale sinusoidale (rao da: Segnali elerici, a cura del Do..Scalia, Ing. F.Guidi, Do..Sperini). Inroduzione Fenomeni oscillaori sono preseni in forma empirica nel mondo della fisica: ra gli esempi

Dettagli

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi:

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi: Filri RIASSUNTO: Sviluppo in serie di Fourier Esempi: Onda quadra Onda riangolare Segnali non peridiodici Trasformaa di Fourier Filri lineari sazionari: funzione di rasferimeno T() Definizione: il decibel

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI. 1 Fondamenti TLC

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI. 1 Fondamenti TLC LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondameni TLC Propriea della () LINEARITA : la della combinazione lineare (somma pesaa) di due segnali e uguale alla combinazione lineare delle dei due segnali.

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

R. Cusani, F. Cuomo: Telecomunicazioni - Fondamenti sui segnali analogici, Marzo 2010

R. Cusani, F. Cuomo: Telecomunicazioni - Fondamenti sui segnali analogici, Marzo 2010 1 Fondameni dei segnali analogici R. Cusani, F. Cuomo: elecomunicazioni - Fondameni sui segnali analogici, Marzo 010 Segnali analogici (1/ Collegameni analogici puno-puno unidirezionali (es. radiodiusione

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

Soluzioni di reti elettriche lineari PAS Introduzione

Soluzioni di reti elettriche lineari PAS Introduzione Soluzioni di rei eleriche lineari PAS Inroduzione Domanda: Cosa sono le rei eleriche lineari in regime Periodico Alernao Sinusoidali PAS? Risposa: Sono rei lineari in cui i generaori hanno dipendenza dal

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Richiami principali ai segnali

Richiami principali ai segnali CAPITOLO 1 Richiami principali ai segnali 1.1. Inroduzione La definizione di segnale pare dall esperienza comune. Esempi di segnale nella via quoidiana sono il segnale acusico che viene prodoo da uno srumeno

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Poliecnico di Milano Corso di Laurea in Ingegneria Gesionale Fondameni di Auomaica Spero di segnali e proprieà filrani dei sisemi dinamici lineari Prof. Bruno Picasso Sommario Spero di segnali Lo spero

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LTI. 1 Fondamenti Segnali e Trasmissione

RISPOSTA IN FREQUENZA DEI SISTEMI LTI. 1 Fondamenti Segnali e Trasmissione RISPOSTA IN FREQUENZA DEI SISTEMI LTI Fondameni Segnali e Trasmissione Risposa in requenza dei sisemi LTI Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso l

Dettagli

INTRODUZIONE. { t n } è completamente specificato. 1 Definizione e classificazione dei segnali.

INTRODUZIONE. { t n } è completamente specificato. 1 Definizione e classificazione dei segnali. INRODUZIONE Definizione e classificazione dei segnali. Una grandezza fisica, alla cui variazione in funzione di deerminae variabili, quali, ad esempio, il empo, le coordinae di un puno nel piano o enrambe,

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e veoriali Esempio veore sposameno: Esisono due ipi di grandezze fisiche. a)grandezze scalari specificae da un valore numerico (posiivo negaivo o nullo) e (nel caso di grandezze dimensionae)

Dettagli

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 5 29334 e-mail: lbiagiotti@deis.unibo.it Analisi armonica di sistemi dinamici Analisi nel

Dettagli

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 051 2093034 e-mail: lbiagiotti@deis.unibo.it Analisi armonica di sistemi dinamici Analisi

Dettagli

Circuiti in regime periodico non sinusoidale

Circuiti in regime periodico non sinusoidale Circuii in regime periodico non sinusoidale www.die.ing.unibo.i/pers/masri/didaica.hm (versione del -3-7 Funzioni periodiche i dice che una funzione y( è periodica se esise un > ale che per ogni e per

Dettagli

Esercitazione 08: Risposta in frequenza 11 maggio 2016 (3h)

Esercitazione 08: Risposta in frequenza 11 maggio 2016 (3h) maggio 6 (3h) Alessandro Viorio Papadopoulos alessandro.papadopoulos@polimi.i Fondameni di Auomaica Prof. M. Farina Tracciameno diagrammi di Bode Tracciare i diagrammi di Bode asinoici della risposa in

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione n. (es di ingresso). Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come 2. L argomeno, espresso in radiani,

Dettagli

ENERGIA - POTENZA - CORRELAZIONE

ENERGIA - POTENZA - CORRELAZIONE ENERGIA e POENZA: ENERGIA - POENZA - CORRELAZIONE Energia in (, ) : (, ) ( ) Poenza media in (, ) : P(, ) E = d (, ) (, + Δ ) E E = = Δ Segnali periodici: Δ = = periodo Segnali di energia (es: un impulso):

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Universià degli Sudi di Firenze Corso di Laurea riennale in Fisica e Asrofisica Analisi Maemaica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Seconda prova inercorso ( Dicembre 5). Dimosrare che per ogni

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Geometria analitica del piano pag 1 Adolfo Scimone

Geometria analitica del piano pag 1 Adolfo Scimone Geomeria analiica del piano pag Adolfo Scimone GEOMETRIA ANALITICA Lo scopo della geomeria analiica è quello di individuare i puni di una rea, di un piano, dello spazio, o più in generale gli eni geomerici

Dettagli

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite INTEGRALI IMPROPRI Tes di auovaluazione. L inegrale improprio 5 d : (a) vale 4 5 (c) vale 5 4 (d) è negaivo.. L inegrale improprio 4 + 5 d : (a) vale 4 5 (c) vale 4 5 (d) ende a.. L inegrale improprio

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici Equilibrio e sabilià di sisemi dinamici Sabilià inerna di sisemi dinamici Sabilià inerna di sisemi dinamici Inroduzione allo sudio della sabilià Sabilià inerna di sisemi dinamici TC Sabilià inerna di sisemi

Dettagli

SISTEMI DINAMICI DEL PRIMO ORDINE

SISTEMI DINAMICI DEL PRIMO ORDINE SISTEMI DINAMICI DEL PRIMO ORDINE I sisemi dinamici del primo ordine sono sisemi dinamici SISO rappresenai da equazioni differenziali lineari e a coefficieni cosani del primo ordine (n=): dy() dx() a +

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Corso di Teoria dei Circuii Regime lenamene variabile Diparimeno di Ingegneria Elerica www.unipv.i/elecric/cad Regime lenamene variabile v(),

Dettagli

SEGNALI A TEMPO CONTINUO. Impulso e altri segnali canonici. Trasformata di Laplace. Serie di Fourier. Trasformata di Fourier

SEGNALI A TEMPO CONTINUO. Impulso e altri segnali canonici. Trasformata di Laplace. Serie di Fourier. Trasformata di Fourier SEGNALI A TEMPO CONTINUO Impulso e altri segnali canonici Trasformata di Laplace Serie di Fourier Trasformata di Fourier Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 IMPULSO

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia Milano, 4//003 Corso di Laurea in Ingegneria Informaica (Laurea on Line) Corso di Fondameni di Segnali e rasmissione Prima prova Inermedia Carissimi sudeni, scopo di quesa prima prova inermedia è quello

Dettagli

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione PARTE A A. Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come A2. L argomeno, espresso in radiani, del

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

Sviluppo in serie di Fourier

Sviluppo in serie di Fourier ... Sviluppo in serie di Fourier Consideriamo una funzione periodica f di periodo T: f(t) = f(t+t) t Qualunque funzione periodica di periodo T può essere rappresentata mediante lo sviluppo in serie di

Dettagli

TRASFORMATA DI FOURIER DI DISTRIBUZIONI

TRASFORMATA DI FOURIER DI DISTRIBUZIONI TRASFORMATA DI FOURIER DI DISTRIBUZIONI Tue le proprieà vise per la rasformaa di Fourier sono applicabili alle funzioni dello spazio S. Queso permee di rasferire le sesse proprieà alle disribuzioni di

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1 www.maefilia.i SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE 209 Tema di MATEMATICA e FISICA PROBLEMA Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani m l uno dall alro e di lunghezza

Dettagli

DEFINIZIONE E CLASSIFICAZIONE DEI SEGNALI

DEFINIZIONE E CLASSIFICAZIONE DEI SEGNALI DEFINIZIONE E CLASSIFICAZIONE DEI SEGNALI Con il ermine segnale si indica una funzione, generalmene del empo, che rappresena la legge di variazione di una grandezza fisica: (acusica, elerica, oica, ) ad

Dettagli

Esercizi di Teoria dei Segnali. La Trasformata di Fourier

Esercizi di Teoria dei Segnali. La Trasformata di Fourier Esercizi di Teoria dei Segnali La Trasformaa di Fourier 1 Esercizio 1 Calcolare la rasformaa di Fourier del segnale di fig. 1.1. x() A B - T/ T/ fig.1.1 Per calcolare la rasformaa di queso segnalesi può

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx. Universià di Triese Facolà d Ingegneria. Eserciazioni per la preparazione della prova scria di Maemaica 3 Do. Franco Obersnel Lezione 7: inegrali generalizzai; funzioni definie da inegrali. Esercizio.

Dettagli

FORMULARIO CAPITOLO 2 V.08 26/05/2005

FORMULARIO CAPITOLO 2 V.08 26/05/2005 Formulario FLC Capitolo FORMULARIO CAPIOLO V.8 6/5/5 CARAERISICHE DEI SEGNALI Media temporale Media temporale per segnali periodici + a w t lim wdt t w t wdt t + a dove a è una costante reale arbitraria.

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%2industriale.htm ANALISI ARMONICA Analisi armonica di sistemi dinamici Analisi nel dominio del

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica ) CONTROLLI AUTOMATICI Ingegneria Meccatronica ANALISI ARMONICA Prof. Cesare Fantuzzi Ing. Cristian Secchi e-mail: cesare.fantuzzi@unimore.it, cristian.secchi@unimore.it http://www.automazione.ingre.unimore.it

Dettagli

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Eleroecnica Teoria dei Circuii Regime lenamene variabile v(), i(), p() funzioni del empo Esempio: a() a Relazioni: non algebriche, ma inegro-differenziali

Dettagli

Terza lezione: Processi stazionari

Terza lezione: Processi stazionari Teoria dei processi casuali a empo coninuo Terza lezione: Concei inroduivi Il conceo di sazionarieà Sazionarieà in senso lao Esempi e modelli 005 Poliecnico di Torino 1 Concei inroduivi Significao di sazionarieà

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Luigi

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 7-8 3 Moo reilineo osizione: ( ) d( ) ( ) Accelerazione: a( ) Velocià: d( ) Equazione del moo: d ( ) Equazione della elocià: ( ) + ( ) ( ) + a( ) Moo reilineo uniforme: a cosane ( ) + ( ) Moo

Dettagli

Generazione di corrente alternata - alternatore

Generazione di corrente alternata - alternatore . la forza eleromorice può essere indoa: a)..; b)..; c) variando l angolo ra B e la normale alla superficie del circuio θ( (roazione di spire o bobine) ezione Generazione di correne alernaa - alernaore

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono PROPRIEA ELEMENARI Se x( t) è un segnale periodico di periodo 0 di classe C 1 -tratti e normalizzato, le equazioni di analisi e di sintesi stabiliscono una corrispondenza fra x( t) e la sequenza dei suoi

Dettagli

Cognome Nome Matricola Corso di Laurea

Cognome Nome Matricola Corso di Laurea Fondamenti di Controlli Automatici A.A. 213/14 7 gennaio 215 Quiz di Teoria Cognome Nome Matricola Corso di Laurea Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Esercizi sui numeri complessi., (a 1 + a 2 ) 2, a 1 + a 2., a 1. 1+j 7 j, Re e3+j3, Im e j. 1+2j. dei numeri

Esercizi sui numeri complessi., (a 1 + a 2 ) 2, a 1 + a 2., a 1. 1+j 7 j, Re e3+j3, Im e j. 1+2j. dei numeri Universià di Padova Laurea Triennale in Ingegneria Informaica Insegnameno di SEGNALI E SISTEMI (a.a. 5-6) Esercizi sui numeri complessi Esercizio. Siano a =4 5j e a =+3j. Calcolare in forma caresiana a

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase Rappresenazione del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. Rappresenazione emporale I

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione INRODUZIONE AI SEGNALI Fndameni Segnali e rasmissine Classificazine dei segnali ( I segnali rappresenan il cmpramen di grandezze fisiche (ad es. ensini, emperaure, pressini,... in funzine di una piu variabili

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE IV

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE IV Ingegneria Elettrica Politecnico di Torino Luca Carlone ControlliAutomaticiI LEZIONE IV Sommario LEZIONE IV Importanza dello studio di segnali sinusoidali nell ingegneria Sistemi lineari con ingressi sinusoidali

Dettagli