MODELLISTICA E SIMULAZIONE cred.: 5 7,5 Recupero 1 prova: 25 luglio 2005

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MODELLISTICA E SIMULAZIONE cred.: 5 7,5 Recupero 1 prova: 25 luglio 2005"

Transcript

1 Poliecnico di Milano I a Facolà di Ingegneria C.S. in Ing. per l Ambiene e il Terriorio MODELLISTICA E SIMULAZIONE cred.: 5 7,5 Recupero prova: 5 luglio 005 COGNOME NOME FIRMA: [7,5 credii] Voo: ATTENZIONE! - Non è consenio consulare libri, appuni, ecc. - Le rispose devono essere giusificae e riporae su quesi fogli. - Nel eso [C] rappresena il numero di leere del cognome e [N] del nome. ESERCIZIO Si vuole simulare il seguene sisema coninuo discreizzandolo col meodo di Eulero: Si riempia la abella seguene & = 4 y = + + u u y () y() [N] () y() 3 [N] (3) y(3) [7,5 credii] Si commeni la scela del passo uilizzao. Uilizzando un passo di discreizzazione uniario (0)=0 y(0) = (0)/ ()=(0)+ [f((0,u(0))]= 0+[]= y()=()/=/= ()=()+ [f((),u())]=+[++]=6 y()=y()/=6/=3 (3)=()+ [f((),u())]=6+[9+3+[n]]=8+[n] y(3)=y(3)/=34/= Il passo uniario scelo per la discreizzazione appare decisamene roppo elevao, daa la rapidià con cui variano sia lo sao che l uscia, uavia una scela che apparirebbe migliore, ad esempio 0. o anche 0.05 avrebbe comporao un numero elavao (30 o 60) passi per riempire la abella.

2 ESERCIZIO Si calcoli l equilibrio dello sao e dell uscia del seguene sisema empo-discreo, e se ne discua la sabilià ( + ) = () + () + 3u() ( + ) = () () u() () y() = + () [ C] sapendo che il valore dell ingresso è: u = Per il calcolo dell equilibrio occorre imporre che lo sao rimanga cosane e quindi risolvere le due equazioni = = che danno = 4 / 7 = 9 / 7 da cui si oiene il valore dell uscia all equilibrio 4 9 y = 7[ C] 7 Per quano riguarda la sabilià, occorre conrollare se gli auovalori della marice A del sisema sono in modulo minori di. A = Alernaivamene, essendo un sisema del ordine, si possono applicare le condizioni su raccia e deerminane r(a) < +de(a) e de(a) <, che, lee in alro modo, dicono che condizione necessaria per la sabilià è che r(a) <. Dao che, nel nosro caso, r(a) = 3, si può subio concludere l insabilià del sisema.

3 ESERCIZIO 3 Un maeriale radioaivo A si degrada del 50% in un periodo di 00 anni formando un alro elemeno B, il 3[C]% del quale, a sua vola, degrada in un composo inere C in 00 anni. Si formuli queso fenomeno come sisema dinamico, definendo chiaramene le variabili di sao e specificando di che ipo di modello si raa. Se il maeriale A si degrada del 50% in 00 anni e se immaginiamo un modello discreo del ipo: A(+) = ka() e che all inizio ci sia una quanià A(0), si avrà: A(00) = 0,5A(0) = k 00 A(0). Quindi 0,5=k 00 e k= 00 0,5 cioè k=0,993. Analogo ragionameno vale per il composo B per il quale B(+) = -hb() e si avrà quindi h= 00 0,03[C]. Assumendo dunque come variabili di sao le quanià A, B e C dei re composi, il modello sarà A(+) = ka() B(+) = hb() + (-k)a() C(+) = (-h)b() che è un modello lineare a empo discreo con passo emporale anno. Nauralmene, con qualche complicazione in più, si sarebbe pouo adoare anche un modello coninuo, la cui soluzione, per il maeriale A, è A(00) = 0,5A(0) = e -00k A(0) da cui 0,5 = e -00k e quindi 00k =-ln(0,5), cioè k= -0,69/00= -0,007. Si noi che l ipoesi di rienere cosane la quanià degradaa di A per ui i 00 anni darebbe una degradazione annua del 5%, cioè k=0,95. Un approssimazione insoddisfacene, perchè in 00 anni produrrebbe invece una degradazione di 0,95 00 =0,006 invece di 0,5.

4 ESERCIZIO 4 Si risponda, usando solo lo spazio disponibile, alle segueni domande: Come ipi di problemi raa il modello di Sreeer-Phelps? Esisono alri modelli per quesi problemi? Serve a raare problemi di inquinameno fluviale da sosanze biodegradabili. Alri modelli per queso ipo di problemi sono QUAL, WODA,... [7,5 credii] Quando lo sao di un sisema dinamico si dice raggiungibile? Quando, variando l ingresso in ui i modi possibili, è possibile porarvi lo sao del sisema, a parire da sao iniziale nullo e in empo finio. [5 credii] Che cos è la legge di conrollo? E una reroazione di ipo puramene algebrico sullo sao del sisema u=k+v che può servire a modificare la dinamica del sisema complessivo. [7,5 credii] Che cos è uno simaore asinoico? E una copia arificiale di un sisema lineare in grado di replicare il funzionameno del sisema sesso e di riprodurne, almeno asinoicamene lo sao, qualunque fosse lo sao iniziale sia del sisema che dello simaore. [5 credii] Che cosa si inende per modello ARMA(,)? Un modello lineare con ermini auoregressivi e a media mobile, cioè del ipo y(+) = αy()+βy(-)+γu() Che cos è la risposa in frequenza di un sisema lineare? La risposa in frequenza è una coppia di funzioni R(ω) e φ(ω) che rappresenano il rapporo ra le ampiezze e lo sfasameno ra la sinusoide in ingresso a un sisema lineare asinoicamene sabile e la sinusoide che si oeine in uscia, a ransiorio esaurio.

5 ESERCIZIO 5 [solo 7,5 credii]. Si vuole simulare in Ecel il movimeno del seguene sisema: & & = a = e + b f + d + c + d + con a =, b = 0., c = 0., d =, e =, f = La abella soosane mosra un foglio di lavoro imposao per la simulazione mediane il meodo di Eulero. Nelle celle B4:G4 sono sai inserii i parameri del sisema, in B8:C8 le condizioni iniziali dello sao e in E8 il passo di discreizzazione. Le celle B:E3 e soosani sono invece sae imposae per calcolare l indice del passo k, il corrispondene isane di empo, i valori calcolai delle variabili e al passo k. A B C D E F G H parameri 3 a b c d e f condizioni iniziali passo 7 (0) (0) simulazione k 0 3 Scrivee le formule da inserire per compleare l implemenazione del meodo, scrivendole in modo ale che, ove possibile, possano essere copiae e incollae senza modifiche nelle celle soosani. Calcolae inolre i risulai delle formule e inserieli nelle corrispondeni celle del foglio di lavoro. Cella C D E C3 D3 E3 Formula = $E$8*B = B8 = C8 = $E$8*B3 = D+$E$8*($B$4*D+$C$4*D^+$D 4*D*E/($E$4+D)) = E+$E$8*($F$4*E +$G$4*D*E/($E$4+D)). Illusrae concisamene l uilizzo della funzione REGR.LIN( ) in Ecel. Calcola l equazione e le saisiche di una linea rea che si adai al meglio ai dai noi uilizzando il meodo dei minimi quadrai. Quindi resiuisce una marice di valori con i parameri della linea e, opzionalmene, le relaive saisiche. La sinassi è REGR.LIN(y_noa;_noa;cos;sa) dove le prime due marici conengono i dai noi di e y; cos = FALSO dice se la rea deve passare per l origine e se sa = VERO vengono fornie anche le saisiche sui risulai....

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 10 Settembre 2008 Cognome Nome Matricola

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 10 Settembre 2008 Cognome Nome Matricola PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) Seembre 8 Cognome Nome Maricola............ Verificare che il fascicolo sia cosiuio da 9 pagine. Scrivere le rispose ai singoli esercizi negli spazi

Dettagli

Controlli Automatici A

Controlli Automatici A Conrolli Auomaici A (Prof. Rocco) Anno accademico 2/22 Appello del 5 Seembre 22 Cognome:... Nome:... Maricola:... Firma:... Avverenze: Il presene fascicolo si compone di 8 pagine (compresa la coperina).

Dettagli

Controlli automatici

Controlli automatici Conrolli auomaici (Prof. Bascea) Prima appello Anno accademico 29/21 15 Febbraio 21 Cognome:... Nome:... Maricola:... Firma:... Avverenze: Il presene fascicolo si compone di 8 pagine (compresa la coperina).

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L .9.8.7.6.5.4.3.. - 3 4 5 6 7 8 9 PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) 5 Seembre 6 Cognome Nome Maricola............ Verificare che il fascicolo sia cosiuio da 9 pagine. La chiarezza e precisione

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici Equilibrio e sabilià di sisemi dinamici Sabilià inerna di sisemi dinamici Sabilià inerna di sisemi dinamici Inroduzione allo sudio della sabilià Sabilià inerna di sisemi dinamici TC Sabilià inerna di sisemi

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

Controllo ottimo LQ t.i. con azione integrale

Controllo ottimo LQ t.i. con azione integrale 1.. 1. 1 Conrollo oimo LQ.i. con azione inegrale Si è viso, nel caso empo-coninuo, che lo schema di conrollo soosane in cui K ff = [C(A BK 1 B 1, garanisce (nel caso il sisema reroazionao risuli sabile

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez Facolà di Economia - Universià di Sassari Anno Accademico 2004-2005 Dispense Corso di Economeria Docene: Luciano Guierrez Uilizzo dei modelli di regressione per l analisi della serie soriche Programma:

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli. Si esprima la pare reale di x() = e ( +j) j, R nella forma Ae a cos(ω + ϕ) con A, a, ω, φ reali con A > e π < φ π. Svolgimeno. Applicando la

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Vediamo come si sviluppa la soluzione esplicita del problema. ( t)

Vediamo come si sviluppa la soluzione esplicita del problema. ( t) Analisi ransioria L'analisi dinamica ransioria (dea anche analisi emporale) è una ecnica che consene di deerminare la risposa dinamica di una sruura soggea ad una generica ecciazione emporale Gli effei

Dettagli

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione PARTE A A. Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come A2. L argomeno, espresso in radiani, del

Dettagli

Analisi e Geometria 2 Docente: 2 luglio 2015

Analisi e Geometria 2 Docente: 2 luglio 2015 Analisi e Geomeria Docene: luglio 15 Cognome: Nome: Maricola: Ogni risposa deve essere giusificaa. Gli esercizi vanno svoli su quesi fogli, nello spazio soo il eso e, in caso di necessià, sul rero. I fogli

Dettagli

Stabilità dell equilibrio (parte II)

Stabilità dell equilibrio (parte II) Appuni di Teoria dei sisemi - Capiolo 5 Sabilià dell equilibrio (pare II) Cenni sui crieri di insabilià... Cenni sulla sabilià dell equilibrio nei sisemi discrei... 3 Crieri di sabilià del movimeno...

Dettagli

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione n. (es di ingresso). Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come 2. L argomeno, espresso in radiani,

Dettagli

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio MODELLISTICA E SIMULAZIONE Recupero prova - 4 luglio COGNOME NOME FIRMA: : : : Voto: ATTENZIONE! - Non è consentito

Dettagli

Lezione 0. Richiami di teoria dei sistemi (a tempo continuo e a tempo discreto) F. Previdi - Controlli Automatici - Lez. 0 1

Lezione 0. Richiami di teoria dei sistemi (a tempo continuo e a tempo discreto) F. Previdi - Controlli Automatici - Lez. 0 1 Lezione 0. Richiami di eoria dei sisemi (a empo conino e a empo discreo) F. Previdi - Conrolli Aomaici - Lez. 0 Sisemi a empo conino C. Rappresenazione di sao C. Eqilibrio C3. Sisemi LTI SISO C4. Eqilibrio

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO)

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) 3 Capiolo STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) Un generico sisema è deo sabile se, ecciao da una qualsiasi funzione di enraa ale da essere sempre limiaa, risponde con una uscia

Dettagli

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo Accelerazione Il moo reilineo uniformemene accelerao è il moo di un puno sooposo ad

Dettagli

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12 Complemeni di Maemaica e Calcolo Numerico A.A. 2018-2019 Laboraorio 12 Cosideriamo il Problema di Cauchy: y () = f(,y()) I = [ 0, max ], y( 0 ) = y 0 y 0 R Scegliamo di suddividere I in sooinervalli di

Dettagli

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A.

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A. Esercizi III Priima di dare la risoluzione dei segueni esercizi su auoveori, auovalori, diagonalizzabilià e diagonalizzazione, ricordiamo alcune definizioni, eoremi e fai su queso argomeno Sia A una marice

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

Lezione 1. Introduzione alle proprietà strutturali. F. Previdi - Controlli Automatici - Lez. 1 1

Lezione 1. Introduzione alle proprietà strutturali. F. Previdi - Controlli Automatici - Lez. 1 1 ezione. Inroduzione alle proprieà sruurali F. Previdi - Conrolli Auomaici - ez. F. Previdi - Conrolli Auomaici - ez. k x k y k u k x k x z G z z z z z z Qual è il «significao» di quesa cancellazione? Esempio:

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

at e segue q ' t ae 1 bt 0 1 bt 0 t se b 0 b eb a 4 eb e q t 4t e t e e Simulazione ministeriale dell Esame di Stato 2019_2 Matematica e Fisica

at e segue q ' t ae 1 bt 0 1 bt 0 t se b 0 b eb a 4 eb e q t 4t e t e e Simulazione ministeriale dell Esame di Stato 2019_2 Matematica e Fisica Simulazione miniseriale dell Esame di Sao 09_ Maemaica e Fisica Problema n. q a e segue Daa la funzione b b q ' ae b Il cui segno è dao da se b 0 b b q ' ae b 0 b 0 se b 0 se b 0 b a Perano il puno di

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

Controllo del pendolo inverso

Controllo del pendolo inverso Capiolo. INTRODUZIONE 5. Conrollo del pendolo inverso Esempio. Sia dao il seguene sisema fisico. y u() M V θ H m J mg L x Calcolare una reroazione dinamica dell uscia θ che sabilizzi il sisema nell inorno

Dettagli

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t)

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t) SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli 6 Aenzione: u() = l(). Si deermini il periodo fondamenale T e i coefficieni di Fourier a k del segnale a empo coninuo sen + 4 cos + cos(6 π 4

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Probabilià e Saisica 26-7 PBaldi, GTerenzi Tuorao 5, 2 aprile 27 Corso di Laurea in Maemaica Esercizio Dire se esisono delle cosani c ali che le funzioni a) f (x)

Dettagli

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino 2006 Cinemaica moo armonico Appuni di Fisica Prof. Calogero Conrino : definizione Il moo di un puno maeriale P è deo armonico se soddisfa le segueni condizioni: La raieoria è un segmeno. Le posizioni occupae

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

Lezione 2. F. Previdi - Automatica - Lez. 2 1

Lezione 2. F. Previdi - Automatica - Lez. 2 1 Lezione 2. Sisemi i dinamici i i a empo coninuo F. Previdi - Auomaica - Lez. 2 Schema della lezione. Cos è un sisema dinamico? 2. Modellisica dei sisemi dinamici 3. Il conceo di dinamica 4. Sisemi dinamici

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

MODELLISTICA E SIMULAZIONE 1 prova: 4 maggio 2009

MODELLISTICA E SIMULAZIONE 1 prova: 4 maggio 2009 Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio MODELLISTICA E SIMULAZIONE 1 prova: 4 maggio 9 Cognome e Nome:... Autorizzo Non autorizzo la pubblicazione su

Dettagli

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio MODELLISTICA E SIMULAZIONE Recupero a parte 6/9/009 Cognome e Nome:... Firma... Voto: ATTENZIONE! Durante il

Dettagli

Perturbazioni Dipendenti dal tempo

Perturbazioni Dipendenti dal tempo Perurbazioni dipendeni dal empo in Meccanica Quanisica, Perurbazioni Periodiche, Transizioni di Dipolo Elerico, Dipolo Magneico, Quadripolo Elerico e relaive Regole di Selezione Di Giorgio Busoni Perurbazioni

Dettagli

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari TRASFORMAZIONE DEI SEGNALI SENZA MEMORIA: ZMNL (Zero-Memory Non Lineariy) g x( ) y = CON MEMORIA: Lineari (ra cui il Filraggio) Non Lineari L5/1 TRASFORMAZIONI SENZA MEMORIA (ISTANTANEE) y Limiazione dura

Dettagli

Laboratorio di Calcolo Numerico A.A. 2007/2008 II semestre

Laboratorio di Calcolo Numerico A.A. 2007/2008 II semestre Eserciazione 9 Corso di Laurea Triennale in Maemaica Laboraorio di Calcolo Numerico A.A. 7/8 II semesre Creare una carella dove verranno salvai i file creai nella sessione di lavoro. Appena enrai

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA SISTEMI LTI Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso, l

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

Capitolo 2 Sistemi lineari tempo-invarianti: analisi nel dominio del tempo

Capitolo 2 Sistemi lineari tempo-invarianti: analisi nel dominio del tempo Capiolo 2 Sisemi lineari empo-invariani: analisi nel dominio del empo 1. Inroduzione In queso capiolo ci occuperemo dell analisi nel dominio del empo dei sisemi dinamici lineari empo-invariani. Vale a

Dettagli

ALTRE FORME DI DIPENDENZA DALLA DENSITA

ALTRE FORME DI DIPENDENZA DALLA DENSITA ALTRE FORME DI DIPENDENZA DALLA DENSITA Limii del modello logisico discreo: 0.6 0.4 Può produrre valori di popolazione negaiva 0.2 0-0.2 Ad ale densià corrispondono alle generazioni successive densià negaive

Dettagli

P8 CIRCUITI SEQUENZIALI ELEMENTARI

P8 CIRCUITI SEQUENZIALI ELEMENTARI P8 CICUITI EUENZIALI ELEMENTAI P8. - Tracciare lo schema a blocchi di un sisema sequenziale secondo il modello di Moore. Nel modello di Moore di un sisema sequenziale, si suppone che lo sao successivo

Dettagli

Insegnamento di Complementi di idrologia. Esercitazione n. 2

Insegnamento di Complementi di idrologia. Esercitazione n. 2 Insegnameno di Complemeni di idrologia Eserciazione n. 2 Deerminare, con un procedimeno di araura per enaivi, i parameri del modello DAFNE per il bacino del fiume Tinaco a Puene Nuevo (Venezuela). Conrollare

Dettagli

Esercitazione 08: Risposta in frequenza 11 maggio 2016 (3h)

Esercitazione 08: Risposta in frequenza 11 maggio 2016 (3h) maggio 6 (3h) Alessandro Viorio Papadopoulos alessandro.papadopoulos@polimi.i Fondameni di Auomaica Prof. M. Farina Tracciameno diagrammi di Bode Tracciare i diagrammi di Bode asinoici della risposa in

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n + a n d n y

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 13

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 13 Complemeni di Maemaica e Calcolo Numerico A.A. 2017-2018 Laboraorio 13 Cosideriamo il Problema di Cauchy: y () = f(,y()) I = [ 0, max ], y( 0 ) = y 0 y 0 R Scegliamo di suddividere I in sooinervalli di

Dettagli

GENERATORE DI ONDE QUADRE REALIZZATO CON AMPLIFICATORE OPERAZIONALE A SINGOLA ALIMENTAZIONE

GENERATORE DI ONDE QUADRE REALIZZATO CON AMPLIFICATORE OPERAZIONALE A SINGOLA ALIMENTAZIONE LASSE : A E.T.A. 007-008 ALUNNO: Bovino Silvano GENERATORE DI ONDE QUADRE REALIZZATO ON AMPLIFIATORE OPERAZIONALE A SINGA ALIMENTAZIONE SOPO:onfrono ra la frequenza eorica e quella sperimenale del segnale

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI . ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI Dao il sisema illusrao in Figura, consisene in due barre rigide connesse da un giuno di roazione orizzonale ; la prima barra è vincolaa a ruoare

Dettagli

Università degli Studi di Bergamo Corso di Geometria e Algebra Lineare (vecchio programma) 17 giugno 2015 Tema A

Università degli Studi di Bergamo Corso di Geometria e Algebra Lineare (vecchio programma) 17 giugno 2015 Tema A Universià degli Sudi di Bergamo orso di Geomeria e Algebra Lineare (vecchio programma) 7 giugno Tema A Tempo a disposizione: ore. alcolarici, libri e appuni non sono ammessi. Ogni esercizio va iniziao

Dettagli

x(t) y(t) 45 o x x(t) -2T

x(t) y(t) 45 o x x(t) -2T Eserciazione 0 - Processi casuali Esercizio Si consideri lo schema di fig., dove =A cos(!0 + ) e e una cosane. Si consideri il paramero A come una variabile casuale uniformemene disribuia ra 0 e.calcolare

Dettagli

Università del Sannio

Università del Sannio Uniersià del Sannio Corso di Fisica 1 Lezione 3 Cinemaica I Prof.ssa Sefania Peracca Corso di Fisica 1 - Lez. 3 - Cinemaica I 1 Cinemaica La cinemaica è quella branca della fisica che sudia il moimeno

Dettagli

Capitolo 4 - Parte II Sistemi regolari a dimensioni finite lineari tempo-invarianti e tempo-continui

Capitolo 4 - Parte II Sistemi regolari a dimensioni finite lineari tempo-invarianti e tempo-continui Appuni di Teoria dei sisemi Capiolo 4 - Pare II Sisemi regolari a dimensioni finie lineari empo-invariani e empo-coninui Definizione... Meodi di calcolo della marice di ransizione di sao ϕ(,τ... meodo:

Dettagli

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1 Moo smorzao Nel precedene paragrafo abbiamo risolo il caso in cui l'accelerazione del puno maeriale è cosane. In queso paragrafo affroneremo il caso di una accelerazione dipendene dalla elocià. Consideriamo

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Scienza dei Materiali VO Esercitazioni

Scienza dei Materiali VO Esercitazioni Scienza dei Maeriali VO Eserciazioni 9. Deformazione viscoelasica ver. 1.0 ESERCIZI Ex 9.1 Rilassameno Uno sforzo di 7.6 MPa è applicao ad un maeriale elasomerico manenendo cosane la deformazione. Dopo

Dettagli

IL MODELLO LOGISTICO NEL CASO CONTINUO

IL MODELLO LOGISTICO NEL CASO CONTINUO IL MODELLO LOGISTICO NEL CASO CONTINUO I modelli discrei si basano sull ipoesi cha la riproduzione sia concenraa in una sagione dell anno. Il passaggio da una generazione all alra è descrio dalla variabile

Dettagli

APPLICAZIONE DI UN RETE CORRETTRICE

APPLICAZIONE DI UN RETE CORRETTRICE ITITUTO TECNICO INDUTRIALE M. PANETTI - BARI Prof. Eore Panella Eserciazione di Laboraorio APPLICAZIONE DI UN RETE CORRETTRICE Assegnaa la risposa armonica daa in figura :. Progeare un circuio che la realizza..

Dettagli

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Velocià isananea Al diminuire dell inerallo di empo Δ, fissao il empo, la elocià ende ad un alore limie. Riducendo a zero l ampiezza dell inerallo di empo equiarrebbe a deerminare la elocià del puno maeriale

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

Circuiti del I ordine

Circuiti del I ordine ircuii del I ordine 9 Un circuio è deo del I ordine se coniene un solo elemeno dinamico, condensaore o induore, e per il reso è cosiuio da componeni elerici di ipo algebrico privi di memoria, ovvero generaori

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

Circuiti in regime sinusoidale

Circuiti in regime sinusoidale ircuii in regime sinusoidale are www.die.ing.unibo.i/pers/masri/didaica.hm versione del 3-0-05 Funzioni sinusoidali a cos ampiezza fase iniziale radiani, rad < pulsazione rad/s f frequenza herz, Hz T periodo

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia Milano, 4//003 Corso di Laurea in Ingegneria Informaica (Laurea on Line) Corso di Fondameni di Segnali e rasmissione Prima prova Inermedia Carissimi sudeni, scopo di quesa prima prova inermedia è quello

Dettagli

Lezione 2. Appendice 1. Il livello di inquinamento efficiente quando siamo in presenza di uno stock-damage pollution : un analisi di steady-state.

Lezione 2. Appendice 1. Il livello di inquinamento efficiente quando siamo in presenza di uno stock-damage pollution : un analisi di steady-state. 1 Lezione 2 Appendice 1 Il livello di inquinameno efficiene quando siamo in presenza di uno sock-damage polluion : un analisi di seady-sae. Quesa analisi è complicaa dal fao che i singoli isani emporali

Dettagli

1. Si consideri il seguente modello di regressione per serie storiche trimestrali riferite all area Euro:

1. Si consideri il seguente modello di regressione per serie storiche trimestrali riferite all area Euro: 1. Si consideri il seguene modello di regressione per serie soriche rimesrali riferie all area Euro: π β + β π + β π + β π + β y + δ D + δ D + D + u = 0 1 1 2 2 3 3 4 1 1 2 2 δ3 3 in cui π è il asso di

Dettagli

Lezione 2. Sistemi dinamici a tempo continuo. F. Previdi - Fondamenti di Automatica - Lez. 2 1

Lezione 2. Sistemi dinamici a tempo continuo. F. Previdi - Fondamenti di Automatica - Lez. 2 1 Leione. Sisemi dinamici a empo coninuo F. Previdi - Fondameni di Auomaica - Le. Schema della leione. Cos è un sisema dinamico?. Modelli di sisemi dinamici 3. Il conceo di dinamica 4. Variabili di sao 5.

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero Modelli ARMA, regressione spuria e coinegrazione Amedeo Argeniero amedeo.argeniero@unipg.i Definizione modello ARMA Un modello ARMA(p, q) (AuoRegressive Moving Average of order p and q) ha la seguene sruura:

Dettagli

Raggiungibilità e controllabilità (2 )

Raggiungibilità e controllabilità (2 ) eoria dei sisemi - Capiolo 8 Raggiungibilià e conrollabilià ( ) Sisemi empo-coninui lineari empo-invariani... Inroduzione... Deerminazione del soospazio di raggiungibilià e crierio di Kalman... La conrollabilià...6

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione Creao il 25/2/2 19.35. elaborao il 14/5/26 alle ore 18.3.26 Problemi sul moo reilineo uniforme anaggio emporale m s (m) Un moociclisa passa dall origine del sisema di riferimeno ( m) al empo s ad una velocià

Dettagli

ALTRE APPLICAZIONI DELLA CRESCITA ESPONENZIALE

ALTRE APPLICAZIONI DELLA CRESCITA ESPONENZIALE ALTE APPLICAZIONI DELLA CESCITA ESPONENZIALE Gli sessi modelli possono descrivere fenomeni che appaiono in ambii molo diversi Daazione di maeriale biologico (decadimeno radioaivo) Livello di glucosio nel

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

MODELLO DI MALTHUS. DESTINO FINALE DI UNA POPOLAZIONE MALTHUSIANA. MODELLO LOGISTICO ED EQUILIBRIO LOGISTICO. Angela Donatiello

MODELLO DI MALTHUS. DESTINO FINALE DI UNA POPOLAZIONE MALTHUSIANA. MODELLO LOGISTICO ED EQUILIBRIO LOGISTICO. Angela Donatiello MODELLO DI MALTHUS. DESTIO FIALE DI UA POPOLAZIOE MALTHUSIAA. MODELLO LOGISTICO ED EQUILIBRIO LOGISTICO. Con il ermine popolazione si indica un qualsiasi insieme di organismi disini. I modelli maemaici

Dettagli

Circuiti Integrati : 555

Circuiti Integrati : 555 ircuii Inegrai : 555 Il circuio inegrao 555, inrodoo per la prima vola inorno il 1971, fu il primo circuio inegrao commerciale con funzione di imer. ale componene è oggi uilizzao in molissimi circuii sia

Dettagli

Esercizio 1. min. Esercizio 2

Esercizio 1. min. Esercizio 2 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Sudi in Ingegneria Informaica Ricerca Operaiva Prima prova inermedia aprile Nome: Cognome: Maricola: Ordinameno 7/ Laurea ing. Inf. Ordinameno 9/99 Laurea ing.

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo.

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo. Il Debio Pubblico In quesa lezione: Sudiamo il vincolo di bilancio del governo. Esaminiamo i faori che influenzano il debio pubblico nel lungo periodo. Sudiamo la sabilià del debio pubblico. 327 Il disavanzo

Dettagli