VERIFICA SPERIMENTALE 2
|
|
|
- Samuele Ferri
- 7 anni fa
- Visualizzazioni
Transcript
1 VERIFICA SPERIMENTALE 2 Verifichiamo che il volume della sfera è pari a 4 volte il volume di un cono avente come base il cerchio di raggio pari al raggio della sfera e come altezza il raggio della sfera, o come dice Archimede, che qualunque sfera è quadrupla del cono avente la base uguale al circolo massimo della sfera e l altezza uguale al raggio della sfera. Considerazioni preliminari Pensiamo anche noi come Archimede che i due solidi siano composti o riempiti da tutti i loro elementi, cioè pensiamo ad ogni figura solida composta da infinite sezioni piane parallele aventi un peso reale ; la somma del peso di tali lastre piane mi darà il peso della sfera e del cono, rispettivamente. Considerando allora una bilancia a bracci diversi, verificare la relazione sopra scritta significa verificare che in condizione di equilibrio vale la relazione P 1 D 1 =P 2 D 2, dove P 1 e P 2 sono i pesi rispettivamente della sfera e del cono, posti rispettivamente a distanza D 1 =1u e D 2 =4 u dal fulcro (u=unità di misura sui bracci della leva). Il cono di cui parla Archimede ha raggio di base r ( uguale al raggio della sfera) e altezza pari a r. Sfortunatamente a nostra disposizione abbiamo solo un cono, che chiamiamo P 2 ', con raggio di base r ma altezza pari a 2r. Ricordando che il Volume di un cono si determina con la formula ( ) i volumi di P 2 e P 2 ' sono: ( ) e ( )
2 cioè il cono P 2 ' è doppio del volume del cono P 2, ossia P 2 = 2 P 2 Per cui dobbiamo dimostrare che il volume della sfera V sfera è il doppio del volume del cono V =V cono P 2 a nostra disposizione: (o equivalentemente o ) Materiale Bilancia elettronica e calibro Bilancia a bracci diversi Cono cavo, in plastica, di raggio di base r e altezza 2r (con r=10cm) e massa m=35,2 g Sfera cava, in plastica, di raggio r (con r=10cm) e massa m=52,0 g Acqua colorata con fluoresceina Procedimento Pesiamo con una bilancia elettronica i due solidi cavi per misurare la loro massa e con il calibro misuriamo il diametro della sfera, il raggio di base del cono e la sua altezza, trovando conferma dei valori sopra scritti. Usiamo come unità di misura per i pesi il grammo peso (g) Posiamo la sfera e il cono nella bilancia e posizioniamo i piattini nella bilancia in modo tale che la sfera si trovi dal fulcro 2 unità mentre il cono 4 unità. Ma il sistema non è in equilibrio. Infatti, il peso di ogni piatto è 75 g, la sfera 52 g e il cono 35,2 g; se vogliamo che le tare siano in equilibrio, per la legge della leva, i momenti dei due pesi devono essere uguali. Invece, se calcoliamo i momenti, tenendo conto che il cono è appeso in un punto della leva con un braccio doppio rispetto a quello della sfera, abbiamo: M 1 = (P piatto + P sfera cava ) 2 = (75+52) 2= 254 g u M 2 = (P piatto + P cono cavo ) 4= (75+35,2) 4= 440,8 g u
3 Perché i momenti siano uguali devo aggiungere (440,8-254):2=93,4 g al sistema piatto+sfera. Li aggiungiamo troviamo effettivamente una situazione di equilibrio. Poiché il sostegno del piatto della sfera tende a toccare l asta verticale della bilancia, spostiamo entrambi i piatti in modo da mantenere il rapporto tra la lunghezza dei bracci costante; sospendiamo la sfera a 3u e il cono a 6u: il sistema è ancora in equilibrio. Riempiamo con acqua colorata con fluoresceina i nostri solidi. Si osserva che i solidi, una volta riempiti d acqua, si trovano ancora in equilibrio.
4 Considerazioni finali Dato che i piatti della bilancia, quando abbiamo appoggiato la sfera+pesetti e il cono sono in equilibrio, ne deduciamo che vale la legge della leva: (P piatto + P sfera cava + P pesetti ) D 1 = (P piatto + P cono cavo ) D 2 ossia (P piatto + P sfera cava + P pesetti ) 3= (P piatto + P cono cavo ) 6 Verifichiamolo anche matematicamente: M 1 =(P piatto + P sfera cava + P pesetti ) 3 = ( ,4) 3= 661,2 g u M 2 =(P piatto + P cono cavo ) 6 = (75+35,2) 6= 661,2 g u Dopo aver riempito i due solidi con l acqua la leva era ancora in equilibrio, per cui possiamo scrivere: (P piatto + P sfera cava + P pesetti +P sfera ) 3= (P piatto + P cono cavo + P cono ) 6 3(P piatto + P sfera cava + P pesetti )+ 3 P sfera = 6(P piatto + P cono cavo )+ 6P cono dove P sfera e P cono rappresentano il peso dell acqua con cui sono stati riempiti rispettivamente la sfera e il cono. Poiché sappiamo che il momento delle tare è uguale (lo abbiamo provato sia con il calcolo matematico sia sperimentalmente, in quanto le tare erano in equilibrio), possiamo semplificare la scrittura, ottenendo così 3P sfera =6P cono ossia P sfera =2P cono Ricordiamo che il liquido contenuto nel cilindro e nella sfera è il medesimo, quindi con uguale densità, e che il Peso si calcola come P=mg=dVg; di conseguenza possiamo dedurre che vale anche la relazione V sfera =2V cono
5 ossia che il volume della sfera è pari al doppio del volume del cono V avente lo stesso raggio r di base e altezza pari al doppio del raggio della sfera, ossia è pari a quattro volte il volume del cono V avente lo stesso raggio r di base e altezza pari al raggio della sfera. Abbiamo dunque dimostrato meccanicamente che:
1 I solidi a superficie curva
1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008 Soluzione: La risposta corretta è B. perché senza la parentesi l esponente si applica solo al numeratore:
ESERCIZI. La leva di 3 genere è sempre svantaggiosa, il. Risolviamo la proporzione:
ESERCIZI 1) In una leva di terzo genere i due bracci misurano 80 mm e 55 mm. La leva è in equilibrio sotto l'azione di una forza resistente di 5,7 N. Quale è l'intensità della forza motrice? La leva di
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008 Soluzione: La risposta corretta è B. perché senza la parentesi l esponente si applica solo al numeratore:
Compito ) Cognome Nome Data Classe
Compito 999568 1 ) Cognome Nome Data Classe Scegliere le risposte corrette e poi scriverle nella riga in fondo al foglio 2) Con riferimento alla figura seguente, calcola il momento della forza di modulo
Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale
Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che
Storia della Matematica
Lezione 8 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 31 Marzo 2014 Lettura e commento di brani di Archimede Brani da leggere e commentare: Calcolo euristico del volume della sfera
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
Esperimenti quantitativi PREMESSA
Esperimenti quantitativi PREMESSA Questo è il nostro piano di lavoro (figura 1) costituito da una carrucola composta (fissa + mobile), una carriola (leva) e un piano inclinato in cui è possibile variare
C.P.I.A. CENTRO PROVINCIALE PER
C.P.I.A. CENTRO PROVINCIALE PER L ISTRUZIONE DEGLI ADULTI SEDE DI CATANZARO - Via T. Campanella n 9 DISPENSE DI GEOMETRIA PERCORSO DI ISTRUZIONE DI PRIMO LIVELLO PRIMO PERIODO DIDATTICO A.S. 2017/2018
Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g.
Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g. Abstract (Descrivere brevemente lo scopo dell esperienza) In questa esperienza vengono studiate le proprieta del
La situazione è rappresentabile così:
Forze Equivalenti Quando viene applicata una forza ad un corpo rigido è importante definire il punto di applicazione La stessa forza applicata a punti diversi del corpo può produrre effetti diversi! Con
Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ
Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Quali sono le grandezze fisiche? La fisica si occupa solo delle grandezze misurabili. Misurare una grandezza significa trovare un numero che esprime quante
SUL VOLUME DEI SOLIDI: ARCHIMEDE, KEPLERO E CAVALIERI
SUL VOLUME DEI SOLIDI: ARCHIMEDE, KEPLERO E CAVALIERI Francesca Gatti e Marina Brentegani ARCHIMEDE (287 a.c. 212 a.c. circa) Quadratura della parabola Sfera e cilindro (I e II) Metodo Conoidi e sferoidi
STATICA Equilibrio dei solidi
FISICA STATICA Equilibrio dei solidi Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica EQUILIBRIO DI UN PUNTO MATERIALE Un corpo è in equilibrio quando è fermo e continua a restare fermo.
Geometria solida 2. Veronica Gavagna
Geometria solida 2 Veronica Gavagna Lo sviluppo del parallelepipedo B Superficie laterale Area laterale e area totale Dato il parallelepipedo Area laterale A l = (a + b + a + b) c = P c b Area totale A
ALTRI CIRCUITI CON OPERAZIONALI 1 Sommatore invertente 1 Sommatore non invertente 3 Amplificatore differenziale 7 Buffer 11
Altri circuiti con operazionali rev. del /06/008 pagina / ALT CCUT CON OPEAZONAL Sommatore invertente Sommatore non invertente Amplificatore differenziale 7 Buffer Altri circuiti con operazionali Sommatore
Come risolvere i quesiti dell INVALSI - terzo
Come risolvere i quesiti dell INVALSI - terzo Soluzione: Dobbiamo ricordare le precedenze. Prima le potenze, poi le parentesi tonde, quadre e graffe, seguono moltiplicazioni e divisioni nell ordine di
esperimento n. 12 legge di Torricelli principio di Archimede diavoletto di Cartesio legge di Stevin
alunno : classe: data: 2 quadrimestre esperimento n. 12 legge di Torricelli principio di Archimede diavoletto di Cartesio legge di Stevin legge di Torricelli (1608) Torricelli si dedicò allo studio dei
1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido.
UNITÀ 8 LA MECCANICA DEI FLUIDI 1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. 3. La pressione atmosferica. 4. La legge di Stevino. 5. La legge di Pascal. 6. La forza di Archimede.
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
VII ESERCITAZIONE. Soluzione
VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo
Pressione nei liquidi
Pressione nei liquidi Eseguiamo la seguente esperienza. Pratichiamo 4 fori, tutti intorno alla base, in un barattolo, e 4 fori verticalmente su un barattolo identico al primo. Copriamo con nastro adesivo
Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano
Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 14.10.2015 Applicazioni della legge di Gauss Anno Accademico 2015/2016 Campo di un guscio sferico cavo Abbiamo già
VII ESERCITAZIONE - 29 Novembre 2013
VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.
. Imponiamo la validità del teorema di Carnot: =
PROBLEMA 1 Nel piano riferito a coordinate cartesiane, ortogonali e monometriche, si considerino i triangoli ABC con A(1, 0), B(, 0) e C variabile sulla retta d equazione y =. 1. Si provi che i punti (1,
(ED IMPARARE LE REGOLE DELLE OPERAZIONI)
COME CALCOLARE IL PERIMETRO DI UN RETTANGOLO (ED IMPARARE LE REGOLE DELLE OPERAZIONI) Mettiamo che io abbia 8 panini, per calcolare la loro somma posso fare panino+panino+panino+panino+panino+panino+panino+panino=
ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME
ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
m = 53, g L = 1,4 m r = 25 cm
Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua
Capitolo 4. L equilibrio dei solidi
Capitolo 4 L equilibrio dei solidi 1 L equilibrio dei corpi Un corpo è in equilibrio quando è fermo e rimane fermo. 2 Il modello del punto materiale Un punto materiale è un oggetto che è considerato un
Ricordiamo che la potenza assorbita da un dispositivo attraversato da corrente è pari a:
SOLUZIONI 1 FISICA 1. Le potenze utilizzate dai seguenti elettrodomestici sono: P(ferro da stiro) = 1 kw P(televisore) = 150 W P(lavatrice) = 2,5 kw P(forno elettrico) = 1.500 W Se vengono collegati alla
Superfici. V. Tibullo, rev.1, 04/04/2006.
uperfici. Tibullo, rev.1, 04/04/2006. 1 Integrali di superficie Consideriamo una superficie nello spazio tridimensionale R 3. Il concetto di superficie è noto dalla geometria elementare e non se ne darà
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
Complementi di Analisi Matematica Ia. Carlo Bardaro
Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo
MISURA DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE
MISURA DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE Esperienza di laboratorio di Fisica n 1 GRUPPO n 1 Umberto La Mantia Loredana Alicata Alessio Ilari Alessia La Barbiera Andrea Gambino 0/11/017
Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi:
ESPERIMENTO DI LABORATORIO DI FISICA MISURE DI TEMPO Obiettivo L obiettivo dell esperimento, oltre che familiarizzare con le misure di tempo, è quello di rivelare gli errori casuali, elaborare statisticamente
Misura dei volumi dei solidi
Geometria euclidea dello spazio Presentazione n. 8 Misura dei volumi dei solidi Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Richiamo di geometria piana: misura delle aree Per misurare
Esercitazione Esame di Stato Secondaria di primo grado. Quesito 1 Geometria solida. Quesito 2 Equazioni. Quesito 3 Statistica. Quesito 4 - Le leve
Esame di stato scuola media Esempio di tema d esame 007 UbiMath - 1 Esercitazione Esame di Stato Secondaria di primo grado Quesito 1 Geometria solida Un prisma retto con base quadrangolare regolare è sormontato
Esercizi di Elettricità
Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Elettricità 1. Quattro cariche puntiformi uguali Q = 160 nc sono poste sui vertici di un quadrato di lato a. Quale carica
FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica
FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LE GRANDEZZE FISICHE Una grandezza fisica è una quantità che può essere misurata con uno strumento
Prof.ssa Laura Salvagno
Prof.ssa Laura Salvagno Nella vita di tutti i giorni abbiamo spesso a che fare con il concetto di rapporto, partiamo perciò da alcuni esempi per introdurre l argomento. Consideriamo tutte le gare combattute
inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180
L approssimazione di π secondo al-kashi Al-Kashi calcola il π in modo tale che soddisfi una condizione, detta Condizione di Al-Kashi : La circonferenza di un cerchio deve essere espressa in funzione del
CORSO DI FISICA. Docente Maria Margherita Obertino
CORSO DI FISICA Docente Maria Margherita Obertino Indirizzo email: [email protected] Tel: 0116707310-0321 660667 http://personalpages.to.infn.it/~obertino/didattica/at_2010 20 ore di lezione
VERIFICA L equilibrio dei corpi e le macchine semplici
ERIICA L equilibrio dei corpi e le macchine semplici Cognome Nome Classe Data I/1 ero o also? Se un corpo è immobile si trova in una situazione di equilibrio Un corpo appoggiato su un piano può restare
Esercizi di termologia
Esercizi di termologia L. Paolucci 4 dicembre 2009 Sommario Termologia: esercizi e problemi con soluzioni. Per la classe seconda. Anno Scolastico 2009/0. Versione: v Si ricordi che cal 4,86. Quindi il
La corrente di un fluido
La corrente di un fluido 0 La corrente di un fluido è il movimento ordinato di un liquido o di un gas. 0 La portata q è il rapporto tra il volume di fluido V che attraversa una sezione in un tempo t ed
Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali
Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa
Kit Meccanica. Codice: 165203 Prezzo: 465,00
Codice: 165203 Prezzo: 465,00 Descrizione In dotazione 1 Carrello sperimentale, massa 50 g, basso attrito, con supporto per masse additive con intaglio da 50 o 10 g 1 Metro a nastro avvolgibile in custodia
IIS Moro Dipartimento di matematica e fisica
IIS Moro Dipartimento di matematica e fisica Obiettivi minimi per le classi prime - Fisica Poiché la disciplina Fisica è parte dell Asse Scientifico Tecnologico, essa concorre, attraverso lo studio dei
DIDATTICA DELLA GEOMETRIA Lezione n 3
DIDATTICA DELLA GEOMETRIA Lezione n 3 PERCORSI NELLA GEOMETRIA SOLIDA LA RELAZIONE DI EULERO f+v=s+2 Possiamo fare un po di algebra con la Geometria solida! Quanti vertici ha un prisma a base triangolare?
Capitolo 1. Le grandezze fisiche
Capitolo 1 Le grandezze fisiche Le grandezze fisiche Solo le quantità misurabili sono grandezze fisiche: Una grandezza fisica è una proprietà di un corpo o di un fenomeno che può essere misurata. La misura
Meccanica del punto materiale
Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
La Statica. La statica è una parte della meccanica che studia l equilibrio dei corpi. Prof Giovanni Ianne
La Statica La statica è una parte della meccanica che studia l equilibrio dei corpi. Sistemi rigidi ed equilibrio Un corpo è in equilibrio quando è fermo e continua a restare fermo. Il punto materiale
Applicazioni del teorema di Gauss
Prof. A.Guarrera Liceo Scientifico Galilei - Catania Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme (filo carico) di densità lineare di carica.
ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base
Prodotto scalare e prodotto vettoriale. Elisabetta Colombo
Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a
Storia della Matematica
Lezione 6 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 25 Marzo 2014 Archimede Nacque a Siracusa, probabilmente nel 287 a.c. e morì nel, 212 a.a. durante il sccheggio di Siracusa.
OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2
OTTICA GEOMETRICA L ottica geometrica si occupa di tutta quella branca della fisica che ha a che fare con lenti, specchi, vetri e cose simili. Viene chiamata geometrica in quanto non interessa la natura
Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.
Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:
4. Date le uguaglianze = = + =5, si può dire che
TEST - Settembre 2010 1. Vogliamo ordinare in ordine crescente i seguenti numeri 0.3,, 3/7, 1.3, 7/3. L ordinamento corretto e (a) 0.3, 3/7, 1.3,, 7/3 (b) 0.3, 3/7, 7/3,, 1.3 (c) 3/7, 0.3, 1.3,, 7/3 (d)
Funzioni reali di variabile reale
Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.
Prova scritta del corso di Fisica con soluzioni
Prova scritta del corso di Fisica con soluzioni Prof. F. Ricci-Tersenghi 17/04/013 Quesiti 1. Una massa si trova al centro di un triangolo equilatero di lato L = 0 cm ed è attaccata con tre molle di costante
Simmetrie e quadriche
Appendice A Simmetrie e quadriche A.1 Rappresentazione e proprietà degli insiemi nel piano Una delle prime difficoltà che si incontrano nell impostare il calcolo di un integrale doppio consiste nel rappresentare
MECCANICA DEI FLUIDI
MECCANICA DEI FLUIDI Un fluido è un corpo che non ha una forma propria. La sua forma dipende da altri corpi che lo contengono (per esempio un recipiente, una condotta, ). Un fluido è composto da molte
In altri termini, il logaritmo in base a di b è quel numero c tale per cui a elevato a c è uguale a b. In simboli
LOGARITMO Il logaritmo è un operatore matematico indicato generalmente con loga(b); detta a la base e b l'argomento, il logaritmo in base a di b è definito come l'esponente a cui elevare la base per ottenere
1) a c - > 0 si ha un ellisse; 2) a c - 4. = 0 si ha una parabola; 3) a c - 4. < 0 si ha un iperbole.
1 Generalità sulle coniche AVVERTENZA QUESTI APPUNTI CONTENGONO DELLE NOTE INTRODUTTIVE SULLE CONICHE. QUESTE NOTE HANNO UN CARATTERE INTUITIVO, NON RIGOROSO E NON ESAUSTIVO. ESSE SONO STATE SCRITTE SOLO
Come risolvere i quesiti dell INVALSI - secondo
Come risolvere i quesiti dell INVALSI - secondo Soluzione: Si tratta del prodotto di due potenze con la stessa base. La base rimane la stessa e si sommano gli esponenti: La risposta corretta è la A. Soluzione:
Calibrazione di una molla come sensore di forze
Calibrazione di una molla come sensore di forze Materiale occorrente: un supporto metallico, una molla, un cestello, bulloni di uguale massa, una bilancia, una riga millimetrata, carta millimetrata. Esecuzione
Lezione V. 1. La quadratura della parabola
1. La quadratura della parabola Lezione V In questo paragrafo mostriamo il metodo "meccanico" di Archimede per calcolare l'area di un segmento parabolico. Di questo problema Archimede ha dato tre dimostrazioni:
1 Geometria analitica nel piano
Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )
Verifica del principio di Archimede Relazione dell esperimento
Verifica del principio di Archimede Relazione dell esperimento È stato effettuato un esperimento per far comprendere e dimostrare il principio di Archimede, ma soprattutto che il valore della spinta non
La riflessione: formazione delle immagini 2016
Vogliamo provare che l immagine prodotta da uno specchio piano, si trova alla stessa distanza della sorgente dallo specchio. Con riferimento alla figura, vogliamo provare che AC = CB. Per provare l affermazione,
