SUL VOLUME DEI SOLIDI: ARCHIMEDE, KEPLERO E CAVALIERI
|
|
|
- Armando Pagano
- 9 anni fa
- Visualizzazioni
Transcript
1 SUL VOLUME DEI SOLIDI: ARCHIMEDE, KEPLERO E CAVALIERI Francesca Gatti e Marina Brentegani ARCHIMEDE (287 a.c. 212 a.c. circa) Quadratura della parabola Sfera e cilindro (I e II) Metodo Conoidi e sferoidi Misura del cerchio 1
2 KEPLERO ( ) Nova stereometria doliorum vinariorum (1615) Stereometria Archimedea Supplementum ad Archimedem CAVALIERI ( ) Geometria degli indivisibili (1635) 2
3 CONFRONTO TRA ARCHIMEDE E KEPLERO Il rapporto tra il volume del cilindro e della sfera inscritta è uguale a 3/2. Archimede, Sfera e cilindro, corollario alla proposizione 34 Archimede, Metodo, proposizione 2 Keplero, Stereometria archimedea, teorema 11 DIMOSTRAZIONE DI ARCHIMEDE : IL METODO DI ESAUSTIONE Metodo per assurdo, quindi l uguaglianza tra due figure si dimostra negando la possibilità che la prima possa essere maggiore o minore della seconda Metodo dell avvicinamento indefinito Confronto tra segmenti aventi tra loro rapporto minore di quello esistente tra le figure considerate. Ciò è possibile in base alla proposizione 2 del primo libro di Sfera e cilindro: Date due grandezze disuguali, è possibile trovare due rette disuguali tali che la retta maggiore abbia rispetto alla minore rapporto minore di quello che la grandezza maggiore ha rispetto alla grandezza minore. 3
4 DIMOSTRAZIONE da Sfera e cilindro Archimede ricava il rapporto tra sfera e cilindro dal fatto che il volume della sfera è il quadruplo di quello del cono avente per base il cerchio massimo e per altezza il raggio della sfera. Viene utilizzato il metodo di esaustione, ragionando per assurdo sulle figure ottenute ruotando i poligoni inscritti e circoscritti al cerchio massimo della sfera. METODO DI ESAUSTIONE Metodo indiretto Metodo rigoroso Archimede ne fa uso per dimostrare rigorosamente anche teoremi la cui tesi è stata raggiunta mediante altri metodi. METODO MECCANICO Metodo diretto Metodo non rigoroso Applica il principio di equilibrio delle leve 4
5 DIMOSTRAZIONE da Metodo Dalle considerazioni meccaniche, AEF + sfera = 1/2 EFGL ma EFGL = 3 AEF, quindi AEF + sfera = 3/2 AEF semplificando: sfera = 1/2 AEF = 4 ADB Il cilindro considerato appare in figura come EFGL, si considera come seconda figura l insieme del cono AEF e della sfera AC. I solidi vengono considerati come somma di sezioni piane pesanti. Le sezioni di sfera e cono vengono traslate in modo che il baricentro sia nel punto H (con HA uguale al diametro AC). Sia K il baricentro del cilindro EFGL. Si applica il principio di equilibrio alla leva di fulcro A considerata, ottenendo la proporzione AH : AK = cilindro : (sfera + cono). DIMOSTRAZIONE DI KEPLERO Keplero suddivide la sfera BG in infiniti coni con vertice nel centro della sfera. Il cerchio BC è il quadruplo del cerchio massimo della sfera, e quindi ha area uguale alla superficie della sfera. BDC = BG BCIA = 3 BDC NMLK = 1/2 BCIA NMLK = 3/2 BDC = 3/2 BG 5
6 SUPPLEMENTUM AD ARCHIMEDEM Solidi generati dalla rotazione di: Circonferenza Ellisse Parabola Iperbole ANELLO APERTO SFERA ANELLO CHIUSO CEDRO MELA 6
7 Asse parallelo all asse maggiore UOVO ANELLO ELLITTICO CHIUSO MELA COTOGNA ANELLO ELLITTICO APERTO OLIVA Asse parallelo all asse minore LENTE LENTE CON DUE RIENTRANZE ANELLO ELLITTICO CHIUSO LARGO ANELLO ELLITTICO APERTO LARGO PRUGNA 7
8 Asse parallelo all asse di simmetria CONOIDE PARABOLICO CRATERE ACERVO PARABOLICO MAGGIORE CORNO ACERVO PARABOLICO MINORE (ACUTO) Asse perpendicolare all asse di simmetria SOLIDO CON RIENTRANZE SEMIANELLO PARABOLICO FUSO PARABOLICO SEMIANELLO PARABOLICO CHIUSO 8
9 Asse parallelo all asse di simmetria CONOIDE IPERBOLICO CRATERE ACERVO IPERBOLICO MAGGIORE CORNO ACERVO IPERBOLICO MINORE (OTTUSO) Asse perpendicolare all asse di simmetria SOLIDO CON RIENTRANZE SEMIANELLO IPERBOLICO FUSO IPERBOLICO SEMIANELLO IPERBOLICO CHIUSO 9
10 METODO A BUCCIA Nel Supplementum ad Archimedem Keplero suddivide i solidi di rotazione in cilindri cavi coassiali di spessore costante. Tali cilindri vengono quindi trasformati in prismi aventi lo stesso volume, detti zoccoli, ed infine sommati. Si ottiene un solido avente per base la figura generatrice del solido di rotazione e per altezza la circonferenza disegnata dal suo punto più distante dall asse di rotazione. 10
11 DIMOSTRAZIONE DEL TEOREMA 22 La zona di un cedro troncato da entrambe le parti da due cerchi uguali è composto dal volume del cedro minore creato dallo stesso segmento circolare che dà luogo alla parte esterna della zona e dal volume del segmento di cilindro la cui base maggiore è il segmento circolare che genera il cedro escluse le parti tolte e la cui base minore è il segmento circolare che genera il cedro minore, di altezza uguale alla circonferenza troncante. La figura a sinistra mostra il risultato del metodo a buccia applicato al cedro. I disegni in basso riportano sul cedro la parte colorata in giallo a fianco e la parte in verde, chiaro e scuro: L enunciato del teorema afferma l equivalenza del cedro troncato con la somma del segmento di cilindro le cui basi sono BHQRC e ZXR e del segmento di cilindro ZXR S, che viene visto come sviluppo del cedro generato dalla sezione ZXR. 11
12 GEOMETRIA DEGLI INDIVISIBILI Un indivisibile di una figura piana è un segmento (linea) parallelo ad una retta data (regula). Un indivisibile di una figura solida è una sua sezione piana (planum) parallela ad un piano di riferimento fisso (regula). Il continuo è generato dal movimento fluente di un suo indivisibile, ma non è la somma dei suoi indivisibili. CONTRIBUTI FONDAMENTALI DI CAVALIERI Gli insiemi vengono individuati da una proprietà caratteristica dei loro elementi Viene introdotto il concetto di confrontabilità di due insiemi infiniti, ad esempio quelli composti dagli indivisibili di due figure La validità del metodo è garantita da un elevato numero di riscontri con i risultati ottenuti con altri metodi (Cavalieri ha occasione di applicare il metodo ai solidi già considerati da Keplero nel Supplementum ad Archimedem) I teoremi introdotti hanno un carattere generale 12
13 IL PRINCIPIO DI CAVALIERI TEOREMA III LIBRO II Figure piane hanno tra di loro il medesimo rapporto, che hanno tutte le linee di esse prese con un riferimento qualunque; e figure solide lo stesso rapporto che hanno tutti i piani di esse presi rispetto a un riferimento qualunque. Da questo teorema, Cavalieri deduce la possibilità di calcolare il rapporto tra due figure piane o solide attraverso il rapporto tra tutte le linee, o tutti i piani, di esse. Questa nova ratio è alla base della Geometria di Cavalieri. IL PRINCIPIO DI CAVALIERI TEOREMA I LIBRO VII Figure piane quali si vogliano, collocate tra le medesime parallele, nelle quali - condotte linee rette qualunque equidistanti alle parallele in questione - le porzioni intercette di una qualsivoglia di dette rette sono uguali, sono del pari uguali tra di loro. E figure solide quali si vogliano collocate tra i medesimi piani paralleli, nelle quali condotti piani qualunque equidistanti a quei piani paralleli le figure piane generate nei solidi stessi da uno qualsivoglia dei piani condotti sono uguali, saranno del pari uguali tra di loro. 13
14 IL TEOREMA XXXIII Di rilevante generalità è il fondamentale TEOREMA XXXIII del libro III: Solidi quali si vogliano mutuamente similari, generati dalle figure sopra considerate in questo libro III, rispetto ai riferimenti ivi stesso scelti, delle quali si sia trovato il rapporto di tutti i quadrati, hanno tra di loro un rapporto noto. I rapporti tra i solidi vengono esaminati in corollari dipendenti da questo teorema. I corollari descrivono la costruzione dei solidi e fanno riferimento ai teoremi precedenti, relativi ai rapporti tra le figure piane generatrici. Corollario XX Nella proposizione XXIII, presa dalla figura del teorema XXI, comunque, una porzione minore, RFV, la quale sia una porzione di circolo, con il rettangolo V ad essa circoscritto, preso anche l intero asse FH, e il punto su di esso così come ivi è stato preso, è evidente che il solido similare generato da V sta al solido ad esso similare generato dalla porzione minore, RFV, come una volta e mezza FM sta a M allora il cilindro descritto da V starà al solido descritto dalla porzione RFV come una volta e mezza FM sta a M Si chiami poi frutto di cedro il solido descritto attraverso la sua rivoluzione dalla porzione minore del circolo, RFV. 14
15 Proposizione XXIII Tutti i quadrati di V stanno a tutti i quadrati di RFV come una volta e mezza FM sta a M, con tale che 3MN : H = V : RFV Tutti i quadrati sono i quadrati costruiti sui segmenti tagliati sulla figura da una retta fatta scorrere parallelamente a se stessa, appartenente al piano della figura. I rettangoli costruiti su due figure, che sono poste alla medesima altezza, sono i rettangoli aventi per dimensioni i segmenti tagliati sulle figure dalla stessa retta, fatta scorrere parallelamente a se stessa. Dimostrazione schematica 15
Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia
Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Solidi di rotazione Un solido di rotazione è generato dalla rotazione
Superfici e solidi di rotazione. Cilindri indefiniti
Superfici e solidi di rotazione Consideriamo un semipiano α, delimitato da una retta a, e sul semipiano una curva g; facendo ruotare il semipiano in un giro completo attorno alla retta a, la curva g descrive
SOLIDI DI ROTAZIONE. Superficie cilindrica indefinita se la generatrice è una retta parallela all asse di rotazione
SOLIDI DI ROTAZIONE Dato un semipiano α limitato dalla retta a, sia g una linea qualunque appartenente al semipiano α; ruotando il semipiano α di un angolo giro attorno alla retta a, la linea g genera
Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2.
PAS 2014 GEOMETRIA Programma di massima: Elementi di logica elementare. La geometria degli Elementi di Euclide. De nizioni, assiomi e postulati. La geometria del triangolo. Criteri di uguaglianza. Teorema
METODI DELLA MATEMATICA ATTRAVERSO I TEMPI: CALCOLO DI AREE E VOLUMI. Liceo Scientifico Galileo Galilei Trieste
METODI DELLA MATEMATICA ATTRAVERSO I TEMPI: CALCOLO DI AREE E VOLUMI Liceo Scientifico Galileo Galilei Trieste Premessa Laboratorio organizzato nell ambito del Progetto nazionale Lauree Scientifiche Inserito
PROPOSIZIONI DELLA QUADRATURA DELLA PARABOLA
PROPOSIZIONI 18-24 DELLA QUADRATURA DELLA PARABOLA Non è la conoscenza, ma l'atto di imparare; non il possesso ma l'atto di arrivarci, che dà la gioia maggiore Karl Friedrich Gauss Nella Proposizione 24
APPUNTI DI GEOMETRIA SOLIDA
APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti
PROIEZIONI ORTOGONALI: SEZIONI CONICHE
www.aliceappunti.altervista.org PROIEZIONI ORTOGONALI: SEZIONI CONICHE 1) PREMESSA: Il cono è una superficie generata da una retta con un estremo fisso e l altro che ruota. La retta prende il nome di GENERATRICE.
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................
LA GEOMETRIA DELLO SPAZIO
LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da
GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche
GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell
C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)
circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Modulo 1: Le coniche Geometria elementare retta e circonferenza nel piano
LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.
LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza
Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva
Università degli Studi di Roma Facoltà di Architettura Ludovico Quaroni - AA 2014-2015 Corso di Laurea in Scienze dell Architettura Corso di Fondamenti e Applicazioni di Geometria Descrittiva Riccardo
Misura dei volumi dei solidi
Geometria euclidea dello spazio Presentazione n. 8 Misura dei volumi dei solidi Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Richiamo di geometria piana: misura delle aree Per misurare
Storia della Matematica
Lezione 8 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 31 Marzo 2014 Lettura e commento di brani di Archimede Brani da leggere e commentare: Calcolo euristico del volume della sfera
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Contenuti Coniche
DISEGNO E RAPPRESENTAZIONE
29. Osservando la sezione longitudinale dell Auditorium di Ibirapuera costruito da Oscar Niemeyer a San Paolo nel 2005, qual è la corretta disposizione dei piani verticali per ottenere le sezioni trasversali
01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5
GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di
PROPOSIZIONI 33 E 34 SULLA SFERA E IL CILINDRO
PROPOSIZIONI 33 E 34 SULLA SFERA E IL CILINDRO Molte e mirabili furono le scoperte che egli fece; ma sulla tomba pregò, si dice, gli amici e i parenti di mettergli, dopo morto, un cilindro con dentro una
1 I solidi a superficie curva
1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri.
I solidi Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi che hanno superfici curve vengono chiamati solidi rotondi.
I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica
I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio
Postulati e definizioni di geometria piana
I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una
QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE
QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a GEOMETRIA PIANA EQUAZIONI E DISEQUAZIONI a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1) Nel piano
Note sulle coniche. Mauro Saita. Aprile 2016
Note sulle coniche. e-mail: [email protected] Aprile 2016 Indice 1 Coniche 2 1.1 Parabola....................................... 2 1.2 Proprietà focale della parabola.......................... 2
a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti:
1. Sia ABC un triangolo equilatero di area S. Siano L, M, N, i punti medi dei lati AB, BC, CA, e E, F, D, i punti medi dei lati LM, MN, NL.. L area del triangolo DEF è uguale a: a) S/ 4; b) S/ 8; c) S/12;
Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale è la capacità in litri del serbatoio?
Quesiti ord 011 Pagina 1 di 6 a cura dei Prof. A. Scimone, G. Florio,. R. Sofia Quesito 1 Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale
Coniche e conicografi
Coniche e conicografi Teoria tridimensionale La teoria delle coniche si sviluppa nella seconda metà del IV secolo a.c. ad opera di Menecmo (Euclide) e successivamente di Apollonio. Le coniche, ottenute
LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI
LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso
Testi verifiche 3 C 3 I a. s. 2008/2009
Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente
Progetto Matematica in Rete - Complementi di geometria analitica - Le coniche. Le sezioni di un cono
Le coniche Le sezioni di un cono Parabola, ellisse, circonferenza, iperbole sono dette coniche poiché si possono ottenere sezionando un cono a doppia falda. Infatti: se il piano incontra tutte le generatrici
Gli enti geometrici fondamentali
capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento
Verifiche di matematica classe 3 C 2012/2013
Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico
1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza
Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel
LA CURVATURA DI UNA SUPERFICIE - Insegnante
LA CURVATURA DI UNA SUPERFICIE - Insegnante sul libro: capitolo 6, par. 6.2, 6.3. 1. La definizione di curvatura Avete visto che cosa è la curvatura di una curva piana in un suo punto. Adesso passiamo
Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh
Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni
Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono
SUPERFICI CONICHE. Rappresentazione di coni e cilindri
SUPERFICI CONICHE Rappresentazione di coni e cilindri Si definisce CONO la superficie che si ottiene proiettando tutti i punti di una curva, detta DIRETTRICE, da un punto proprio, non appartenente al piano
ORDINAMENTO 2011 QUESITO 1
www.matefilia.it ORDINAMENTO 0 QUESITO Consideriamo la sezione della sfera e del cilindro con un piano passante per l asse del cilindro: Indicando con x il diametro di base del cilindro, con y la sua altezza
3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0.
1 Calcolo vettoriale 1 Scrivere il vettore w =, 6 sotto forma di combinazione lineare dei vettori u = 1, e v = 3, 1 R w = v 4u Determinare la lunghezza o il modulo del vettore, 6, 3 R 7 3 Determinare la
LE CONICHE IN LABORATORIO Attività per osservare la matematica prima parte A cura di Silvia Defrancesco
LE CONICHE IN LABORATORIO Attività per osservare la matematica prima parte A cura di Silvia Defrancesco Le coniche con la luce 1)Visualizzare un cono di luce con la macchina per la nebbia e intercettare
COS È UN PRISMA. Due POLIGONI congruenti e paralleli, come basi. È UN POLIEDRO DELIMITATO DA
PRISMI E PIRAMIDI COS È UN PRISMA È UN POLIEDRO DELIMITATO DA Due POLIGONI congruenti e paralleli, come basi. Tanti PARALLELOGRAMMI quanti sono i lati del poligono di base (come facce laterali). PRISMA
La matematica di Euclide e di Archimede
La matematica di Euclide e di Archimede Pier Daniele Napolitani Dipartimento di Matematica, Pisa San Giovanni Valdarno 11 marzo 2010 Caratteri della matematica greca (1) separazione netta fra geometria
SOLUZIONI DEI QUESITI PROPOSTI
SOLUZIONI DEI QUESITI PROPOSTI Manca di mentalità matematica tanto chi non sa riconoscere rapidamente ciò che è evidente, quanto chi si attarda nei calcoli con una precisione superiore alla necessità QUESITO
N. Domanda A B C D. circonferenza in quattro parti la base del triangolo isoscele che genera il cono
1 Se in un triangolo circocentro e incentro coincidono allora esso come è? 2 Un angolo di un triangolo misura 50 gradi. Quanto misrano gli altri due angoli? 3 In un trapezio avente l'area di 320 m^2 le
Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA
Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA CERCHIO SIMMETRIA GEOMETRIA SOLIDA A cura di Maurizio Cesca PROGETTO STRANIERI SMS Maffucci-Pavoni -
Teoremi di geometria piana
la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:
Geometria analitica del piano
Geometria analitica del piano dott.ssa Vita Leonessa Università degli Studi della Basilicata (27 marzo 2008) (Analisi) Matematica 2 CdL in Chimica, Biotecnologie, Scienze Geologiche Rette Fissato un sistema
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO 2014-2015 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione dei numeri naturali e delle quattro operazioni
Elementi di Euclide (Gela; 323 a.c. 285 a.c) Il libro I degli Elementi di Euclide. L'opera consiste in 13 libri, che trattano:
Elementi di Euclide (Gela; 323 a.c. 285 a.c) L'opera consiste in 13 libri, che trattano: Libro I la teoria dei triangoli, delle parallele e delle aree (ciò che oggi chiamiamo equivalenza di figure piane);
Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva
Università degli Studi di Roma Facoltà di Architettura Ludovico Quaroni - AA 2014-2015 Corso di Laurea in Scienze dell Architettura Corso di Fondamenti e Applicazioni di Geometria Descrittiva Riccardo
PIANO CARTESIANO E RETTA
PIANO CATESIANO E ETTA Distanza tra due punti: d(a, B) = (x A x B ) + (y A y B ) Distanza tra due punti su una retta di coefficiente angolare m: d(a, B) = x A x B + m Punto medio di un segmento: M = (
Problemi di massimo e minimo
Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi
GEOMETRIA DESCRITTIVA DINAMICA Indagine insiemistica sulla doppia proiezione ortogonale di Monge
GEOMETRIA DESCRITTIVA DINAMICA Indagine insiemistica sulla doppia proiezione ortogonale di Monge Questa presentazione, riguardante le operazioni geometriche, sviluppa un esempio relativo alla compenetrazione
ELEMENTI DI GEOMETRIA DELLO SPAZIO
ELEMENTI DI GEOMETRIA DELLO SPAZIO Lo spazio euclideo è un insieme infinito di elementi detti punti e contiene sottoinsiemi propri ed infiniti detti piani. In ogni piano valgono gli assiomi del piano euclideo.
VOLUMI DI SFERE E CILINDRI: DA ARCHIMEDE AL CALCOLO INTEGRALE
VOLUMI DI SFERE E CILINDRI: DA ARCHIMEDE AL CALCOLO INTEGRALE Anche quando certe conoscenze matematiche si sono obliate del tutto, rimane saldo l'abito del rettamente ragionare, il gusto per le dimostrazioni
La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).
Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.
Equivalenza nello spazio
Equivalenza nello spazio Livello scolare: 2 biennio Abilità interessate Calcolare aree e volumi di solidi. Conoscenze Nuclei coinvolti Collegamenti esterni Equivalenza nello Spazio e figure Disegno spazio.
14 Sulle orme di Euclide. Volume 2
PREFAZIONE Il nostro viaggio negli Elementi prosegue con lo studio delle proprietà della circonferenza e dell equivalenza tra poligoni. Le questioni relative alla superficie dei poligoni occupano parte
la velocità degli uccelli è di circa (264:60= 4.4) m/s)
QUESTIONARIO 1. Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 260 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si allontana da lei in linea retta,
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
TRIANGOLI. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI
TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. a) RISPETTO AI LATI CLASSIFICAZIONE DEI TRIANGOLI SCALENO:
Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze
Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.
Elementi di Euclide. Libro I. Definizioni. 1. Un punto è ciò che non ha parti. 2. Una linea è lunghezza senza larghezza.
Elementi di Euclide Libro I Definizioni 1. Un punto è ciò che non ha parti. 2. Una linea è lunghezza senza larghezza. 3. Gli estremi di una linea sono punti. 4. Una retta è una linea che giace ugualmente
Introduzione alle geometrie non euclidee
Introduzione alle geometrie non euclidee Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Il metodo assiomatico della geometria euclidea Gli Elementi di Euclide (III sec. a.c.) si aprono
SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE
SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei
CLASSE II A LICEO LINGUISTICO A.S. 2015/2016. Prof.ssa ANNA CARLONI
CLASSE II A LICEO LINGUISTICO A.S. 2015/2016 Prof.ssa ANNA CARLONI OBIETTIVI la scomposizione dei polinomi le frazioni algebriche X X X scomposizione in fattori dei Scomporre a fattor comune polinomi Calcolare
UNIVERSITÀ DEGLI STUDI DI CASSINO - DICeM
Esercitazione n. 1 da eseguire a mano libera SCRITTURA, NOMENCLATURA E CONVENZIONI GRAFICHE ELEMENTARI A. Inserire nella tavola un prova di scrittura, e la nomenclatura degli enti Fondamentali 1. Asse
Formulario di Geometria Analitica a.a
Formulario di Geometria Analitica a.a. 2006-2007 Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore [email protected]).
Alcuni Elementi di Geometria Euclidea Schemi di lezione di Margherita Motteran
Scuola Interateneo di Specializzazione per la Formazione degli Insegnanti della Scuola Secondaria del Veneto Indirizzo Tecnologico ANNO ACCADEMICO 2006-2007 DIDATTICA DELLA MATEMATICA Alcuni Elementi di
December 16, solidi_generalità e prisma_sito scuola.notebook. da studiare solo sul file. La geometria solida. nov
da studiare solo sul file La geometria solida nov 20 8.33 1 I SOLIDI SI SUDDIVIDONO IN DUE GRANDI CATEGORIE POLIEDRI SOLIDI ROTONDI nov 20 8.40 2 POLIEDRI Cos'è un poligono? E' una parte di spazio delimitata
- Introduzione alle Sezioni coniche
- Introduzione alle Sezioni coniche Le sezioni coniche che studiamo si ottengono sezionando coni regolari. In particolare il nostro cono poggia con la base circolare sul PO e può essere determinato dalla
Risposte ai quesiti D E H D
Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli
GEOMETRIA. Congruenza, angoli e segmenti
GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre
Esame di Stato di Liceo Scientifico Corso di Ordinamento
Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 8 Sessione Ordinaria 8 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto d) 5 Problema 6 Punto
Elementi di Geometria euclidea
Elementi di Geometria euclidea Proprietà dei triangoli isosceli Il triangolo isoscele ha almeno due lati congruenti, l eventuale lato non congruente si chiama base, i due lati congruenti si dicono lati
Corso di Matematica II
Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IVB. Anno Scolastico
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IVB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 Le coniche nella discussione dei problemi (Richiami)
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
Problemi sull ellisse
1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi
Gli integrali definiti
Gli integrali definiti Sia f : [a, b] ℝ una funzione continua definita in un intervallo chiuso e limitato e supponiamo che 0 [, ]. Consideriamo la regione T delimitata dal grafico di f(x), dalle rette
Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune.
Le figure solide Nozioni generali Un piano nello spazio può essere individuato da: 1. tre punti A, B e C non allineati. 2. una retta r e un punto A non appartenente ad essa. 3. due rette r e s incidenti.
Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel
Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. ott. Franco Obersnel Esercizio 1 Sia R = [a 1, b 1 ] [a, b ] [a 3, b 3 ] IR 3 un parallelepipedo di IR 3. Si diano le
LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1
LA GEOMETRIA EUCLIDEA Seminario Cidi, Roma 13/05/2013 - prof.ssa Dario Liliana 1 Le difficoltà degli studenti nell apprendere la geometria nel 1 anno della scuola secondaria Gli argomenti della geometria
COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale.
SCUOLA SECONDARIA DI 1 GRADO TOVINI CURRICOLO DI SCIENZE MATEMATICHE PER LA CLASSE PRIMA COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale. _Il concetto di insieme.
Lezione V. 1. La quadratura della parabola
1. La quadratura della parabola Lezione V In questo paragrafo mostriamo il metodo "meccanico" di Archimede per calcolare l'area di un segmento parabolico. Di questo problema Archimede ha dato tre dimostrazioni:
Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI
Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI LATI: equilatero, isoscele, scaleno CLASSIFICAZIONE RISPETTO
