Storia della Matematica
|
|
|
- Silvestro Piccinini
- 8 anni fa
- Visualizzazioni
Transcript
1 Lezione Dipartimento di Matematica Sapienza, Università di Roma Roma, 31 Marzo 2014
2 Lettura e commento di brani di Archimede Brani da leggere e commentare: Calcolo euristico del volume della sfera Calcolo del volume della sfera con il metodo di esaustione Calcolo del volume del paraboloide di rotazione Nelle prossime slide viene illustrato il procedimento euristico per il calcolo del volume della sfera e vanno considerate insieme all esposizione originale di Archimede.
3 Calcolo euristico del volume della sfera: configurazione di partenza
4 Calcolo euristico del volume della sfera: ruotare
5 Calcolo euristico del volume della sfera: tagliare e spostare
6 Calcolo euristico del volume della sfera: riassemblare
7 Diagramma per dimostrare le relazioni di Equilibrio
8 Osservazioni sul calcolo euristico del volume della sfera Le condizioni di bilanciamento dei dischi segato sul cilindro con i dischi segati sul cono e sulla sfera e trasportati opportunamente sono derivate da considerazioni geometriche. L unico punto euristico della dimostrazione riguarda il passaggio dal bilanciamento dei dischi a quello delle intere figure. La procedura sarebbe completamente formale se le sezioni fossero in numero finito, ma il passaggio dal procedimento finito a quello infinito è giustamente considerato euristico, in quanto ben nota ad Archimede la delicatezza e la sostanziale differenza del procedimento finito rispetto a quello infinito. Archimede osserva anche, alla fine della spiegazione della procedura per il calcolo del volume della sfera, la seguente analogia: il cerchio di raggio r è equivalente al triangolo di altezza r e base uguale alla lunghezza della circonferenza. La sfera di raggio r è equivalente al cono di altezza r e base uguale a quattro cerchi di raggio r. Archimede ipotizza allora che la superficie della sfera di raggio r sia equivalenti a quattro cerchi di raggio r.
9 Congettura falsa Si noti, come illustrazione della delicatezza delle induzioni aventi a che fare con l infinito, la non correttezza del seguente argomento. Sia fissato un cerchio di raggio r. Il triangolo rettangolo di base uguale a mezza circonferenza e altezza uguale al raggio (figura magenta) è equivalente a metà del cerchio (figura cìano). Facendo ruotare il triangolo intorno alla sua altezza e il semicerchio intorno al suo diametro otteniamo un cono e una sfera. Visto che facciamo ruotare superfici equivalenti potremmo congetturare che i solidi di rotazione ottenuti siano equivalenti. Questa congettura è falsa in quanto il cono ha volume 1 3 π2 r 3 e la sfera ha volume 4 3 πr 3 Riflttendo su casi più semplici si capisce subito il perché. Si immagini di far ruotare un segmento verticale di data lunghezza posto a una data distanza dall asse di rotazione e lo stesso segmento posto a una distanza superiore. Le due superfici cilindriche hanno area diversa.
10 Area e volume della sfera con il metodo di esaustione La costruzione di un cerchio equivalente alla superficie di una sfera è discussa nella proposizione 33 dell opera sulla sfera e il cilindro. La costruzione di un cono equivalente a una sfera è discussa nella proposizione 34 dell opera sulla sfera e il cilindro. In entrambe le proposizioni viene impiegato il metodo di esaustione che evita un uso diretto dell infinito, come si fa invece nel metodo euristico. Nella discussione del volume della sfera si approssima la sfera con l unione di tronchi di cono. Si evita di calcolare la somma dei volumi dei tronchi di cono, introducento un argomento geometrico per la costruizione di un solido equivalente. Si noti qui la difficoltà di Archimede di trattare direttamente le somme e le serie. Una ragione è che per lui non si tratta di sommare grandezze ma di operare su proporzioni (cfr. Saito, lettera matematica Pristem). Il calcolo diretto di una progressione aritmetica è fatto nel calcolo del volume del paraboloide.
11 Area e volume del paraboloide con il metodo di esaustione Nella trattazione di paraboloidi, iperboloidi ed elissoidi, Archimede sembra avvicinarsi molto alla procedura di integrazione di Cauchy - Riemann. L argomento utilizzato da Archimee si può dividere in due parti: considerazioni geometriche sulle proprietà dei solidi elmentari con cui si approssimano le figure; calcolo della somma di una progressione aritmetica. Questa divisione non è così netta nelle altre applicazioni di Archimede del metodo di esaustione. Questo ha suggerito ad alcuni studiosi (cfr. Saito) di ipotizzare che: manca ad Archimede un metodo generale automatico e algoritmico per il calcolo dei volumi; manca l idea di approssimare il volume di una figura con somme di volumi di figure più semplici, sia perché manca l idea che il volume è un numero, sia perché la somma di grandezze in proporzione è ben più ardua della somma di numeri.
12 Forma finale del metodo di esaustione Sia P una figura che vogliamo dimostrare equivalente a dx. Siano I e C due serie di figure, inscritte e circoscritte a P, che soddisfano le condizioni 1 I < X < C 2 La differenza C I può essere resa piccola a piacere: Data una grandezza E, si può prendere una figura inscritta I e una figura circoscritta C in modo che sia C I < E. Se fosse, X > P si avrebbe X I < C I < E = X P cioè P < I che è impossibile poichè I è inscritto a P. Analogamente si mostra che se fosse X < P, si avrebbe assurdo C < P. Quindi risulta dimostrato che X = P.
1 I solidi a superficie curva
1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una
Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia
Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Solidi di rotazione Un solido di rotazione è generato dalla rotazione
PROPOSIZIONI 33 E 34 SULLA SFERA E IL CILINDRO
PROPOSIZIONI 33 E 34 SULLA SFERA E IL CILINDRO Molte e mirabili furono le scoperte che egli fece; ma sulla tomba pregò, si dice, gli amici e i parenti di mettergli, dopo morto, un cilindro con dentro una
Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale è la capacità in litri del serbatoio?
Quesiti ord 011 Pagina 1 di 6 a cura dei Prof. A. Scimone, G. Florio,. R. Sofia Quesito 1 Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale
a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti:
1. Sia ABC un triangolo equilatero di area S. Siano L, M, N, i punti medi dei lati AB, BC, CA, e E, F, D, i punti medi dei lati LM, MN, NL.. L area del triangolo DEF è uguale a: a) S/ 4; b) S/ 8; c) S/12;
inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180
L approssimazione di π secondo al-kashi Al-Kashi calcola il π in modo tale che soddisfi una condizione, detta Condizione di Al-Kashi : La circonferenza di un cerchio deve essere espressa in funzione del
MISURA SPERIMENTALE DELLA CIRCONFERENZA E DELL AREA DEL CERCHIO
MISURA SPERIMENTALE DELLA CIRCONFERENZA E DELL AREA DEL CERCHIO Nella circonferenza, l inizio e la fine coincidono Eraclito La rettificazione della circonferenza è stato un argomento che ha interessato
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
SUL VOLUME DEI SOLIDI: ARCHIMEDE, KEPLERO E CAVALIERI
SUL VOLUME DEI SOLIDI: ARCHIMEDE, KEPLERO E CAVALIERI Francesca Gatti e Marina Brentegani ARCHIMEDE (287 a.c. 212 a.c. circa) Quadratura della parabola Sfera e cilindro (I e II) Metodo Conoidi e sferoidi
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2.
PAS 2014 GEOMETRIA Programma di massima: Elementi di logica elementare. La geometria degli Elementi di Euclide. De nizioni, assiomi e postulati. La geometria del triangolo. Criteri di uguaglianza. Teorema
M557 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO. Tema di: MATEMATICA
Maturità Sessione suppletiva 999 M7 ESAME DI STATO DI LICEO SCIENTIFICO COSO DI ODINAMENTO Tema di: MATEMATICA Il candidato scelga a suo piacimento due dei seguenti problemi e li risolva:. Data una semicirconferenza
Simmetrie e quadriche
Appendice A Simmetrie e quadriche A.1 Rappresentazione e proprietà degli insiemi nel piano Una delle prime difficoltà che si incontrano nell impostare il calcolo di un integrale doppio consiste nel rappresentare
Il problema di Marzo 2007
FLATlandia Il problema di Marzo 2007 1) Sia u una arbitraria unità di misura di lunghezza. Ritagliare da un cartoncino un semicerchio di diametro 20u e con esso formare un cono. Quali caratteristiche presenta
ORDINAMENTO 2011 QUESITO 1
www.matefilia.it ORDINAMENTO 0 QUESITO Consideriamo la sezione della sfera e del cilindro con un piano passante per l asse del cilindro: Indicando con x il diametro di base del cilindro, con y la sua altezza
ORDINAMENTO 2009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si inscriva in una semisfera di raggio R il tronco di cono di massima superficie laterale, avente la base maggiore coincidente
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la
MATEMATICA: competenza 1 e 4 - TERZO BIENNIO. classe V scuola primaria e classe I scuola secondaria. COMPETENZE ABILITÀ CONOSCENZE Il numero
MATEMATICA: competenza 1 e 4 - TERZO BIENNIO classe V scuola primaria e classe I scuola secondaria COMPETENZE ABILITÀ CONOSCENZE Il numero Utilizzare con sicurezza le tecniche e le procedure del calcolo
PROPOSIZIONI DELLA QUADRATURA DELLA PARABOLA
PROPOSIZIONI 18-24 DELLA QUADRATURA DELLA PARABOLA Non è la conoscenza, ma l'atto di imparare; non il possesso ma l'atto di arrivarci, che dà la gioia maggiore Karl Friedrich Gauss Nella Proposizione 24
U. A. 1 GLI INSIEMI CONOSCENZE
U. A. 1 GLI INSIEMI Acquisire il significato dei termini,dei simboli e caratteristiche dell'insieme delle parti, dell'insieme differenza e complementare della partizione di un insieme e del prodotto cartesiano.
rettangolo attorno ad un suo cateto.
IL CONO BM4 Teoria, pag. 51 55 ; Esercizi pag. 127 132 ; es. 47 0. Il cono circolare retto è il solido generato dalla rotazione completa (cioè di 30 ) di un triangolo V rettangolo attorno ad un suo cateto.
Superfici e solidi di rotazione. Cilindri indefiniti
Superfici e solidi di rotazione Consideriamo un semipiano α, delimitato da una retta a, e sul semipiano una curva g; facendo ruotare il semipiano in un giro completo attorno alla retta a, la curva g descrive
Anno 4 Cilindro, cono e tronco di cono
Anno 4 Cilindro, cono e tronco di cono 1 Introduzione In questa lezione parleremo di alcuni importanti solidi di rotazione. Al termine della lezione sarai in grado di: descrivere le caratteristiche del
SOLIDI DI ROTAZIONE. Superficie cilindrica indefinita se la generatrice è una retta parallela all asse di rotazione
SOLIDI DI ROTAZIONE Dato un semipiano α limitato dalla retta a, sia g una linea qualunque appartenente al semipiano α; ruotando il semipiano α di un angolo giro attorno alla retta a, la linea g genera
Il Principio di Piero della Francesca e il volume della volta a padiglione
Il Principio di Piero della Francesca e il volume della volta a padiglione Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche Ancona La volta a padiglione è la regione
Problemi di massimo e minimo
Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi
Esame di maturità scientifica, corso di ordinamento a. s
Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).
Equivalenza di solidi e Volumi. Nel piano: Postulati dell equivalenza tra solidi: 1- due solidi uguali sono anche equivalenti (non viceversa)
Equivalenza di solidi e Volumi Concetto primitivo : estensione spaziale Esemplificazione intuitiva: recipienti e liquidi. Due solidi aventi la stessa estensione si dicono equivalenti (suvvalenti o prevalenti).
Esercizi sulle superfici - aprile 2009
Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:
PNI SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it PNI 200 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Enunciare il teorema del valor medio o di Lagrange illustrandone il legame con il teorema di Rolle e le implicazioni ai fini della determinazione
RISPOSTE MOTIVATE QUIZ D AMMISSIONE MATEMATICA
RISPOSTE MOTIVATE QUIZ D AMMISSIONE 1999-2000 MATEMATICA 76. A cosa è uguale: a-b? A) a-b = (- b-a) B) a-b = (- a-b) C) a-b = (a/b) D) a-b = -( b- a) E) a-b = 1/(ab) L espressione a-b costituisce un polinomio,
Misura dei volumi dei solidi
Geometria euclidea dello spazio Presentazione n. 8 Misura dei volumi dei solidi Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Richiamo di geometria piana: misura delle aree Per misurare
1 La lunghezza della circonferenza
1 La lunghezza della circonferenza Ricordiamo che per misurare una grandezza bisogna scegliere un unità di misura e stabilire quante volte quest ultima è contenuta nella prima. Nel caso della circonferenza
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel
Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. ott. Franco Obersnel Esercizio 1 Sia R = [a 1, b 1 ] [a, b ] [a 3, b 3 ] IR 3 un parallelepipedo di IR 3. Si diano le
Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008
Soluzioni dei quesiti della maturità scientifica A.S. 007/008 Nicola Gigli Sun-Ra Mosconi 19 giugno 008 1. La proposizione è falsa. Per trovare un controesempio ad essa, si consideri un qualunque piano
14 Sulle orme di Euclide. Volume 2
PREFAZIONE Il nostro viaggio negli Elementi prosegue con lo studio delle proprietà della circonferenza e dell equivalenza tra poligoni. Le questioni relative alla superficie dei poligoni occupano parte
Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.
Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni
Storia di π. Alberto Saracco 1. Parma, 3/14/15 9:26:53... Preistoria Storia antica Rinascimento Matematica moderna
Storia di π Alberto Saracco 1 1 Dipartimento di Matematica e Informatica, Università di Parma Parma, 3/14/15 9:26:53... Outline 1 Preistoria 2 Storia antica Antica Grecia 3 Rinascimento 4 Matematica moderna
ORDINAMENTO 2014 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Si determini il dominio della funzione f(x) = e 2x 3e x + 2 e 2x 3e x + 2 e x, e x 2 x, x ln2 DOMINIO: < x, ln2 x < + QUESITO 2 3
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008 Soluzione: La risposta corretta è B. perché senza la parentesi l esponente si applica solo al numeratore:
APPUNTI DI GEOMETRIA SOLIDA
APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti
PROGRAMMAZIONE DI MATEMATICA 2016/2017
PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero
COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale.
SCUOLA SECONDARIA DI 1 GRADO TOVINI CURRICOLO DI SCIENZE MATEMATICHE PER LA CLASSE PRIMA COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale. _Il concetto di insieme.
Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico, scritto e mentale, anche con riferimento a contesti reali.
SCUOLA SECONDARIA DI 1 GRADO PIANI DI STUDIO MATEMATICA ANNO SCOLASTICO 2010/2011 Competenze Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico, scritto e mentale, anche con riferimento
PROGRAMMA DI MATEMATICA
Classe: IE Indirizzo: artistico-grafico PROGRAMMA DI MATEMATICA I numeri naturali e i numeri interi 1. Che cosa sono i numeri naturali 2. Le quattro operazioni 3. I multipli e i divisori di un numero 4.
METODI DELLA MATEMATICA ATTRAVERSO I TEMPI: CALCOLO DI AREE E VOLUMI. Liceo Scientifico Galileo Galilei Trieste
METODI DELLA MATEMATICA ATTRAVERSO I TEMPI: CALCOLO DI AREE E VOLUMI Liceo Scientifico Galileo Galilei Trieste Premessa Laboratorio organizzato nell ambito del Progetto nazionale Lauree Scientifiche Inserito
Esercizi sul cubo. Prisma e cilindro
Esercizi sul cubo 1. Dimostra la formula della diagonale del cubo. 2. Ein würfelförmiger Kasten hat eine Kantenlänge von 16cm. Er wird mit Würfeln von 4cm Kantenlänge ganz gefüllt. Wie viele Würfel kann
Il problema di Malfatti, due secoli di discussioni
Il problema di Malfatti, due secoli di discussioni Marco Andreatta Facoltá di Scienze MMFFNN Universitá di Trento 200 anni dopo... p.1/12 Gianfrancesco Malfatti Ala - Ferrara 1731-1807 200 anni dopo...
LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 015 - QUESTIONARIO QUESITO 1 y = f() ; il suo grafico è tangente alla retta y = + 5 nel secondo quadrante ed inoltre risulta: f () = + 6. Determinare l equazione y =
Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010
Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove
Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo?
Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Idea elementare: 1. fissare un quadratino come unità di misura 2. contare quante volte questo può essere riportato nella figura
I SOLIDI DI ROTAZIONE
GEOMETRIA 3 IL CILINDRO richiami della teoria n Il cilindro eá il solido generato dalla rotazione comleta di un rettangolo attorno ad uno dei suoi lati; n il cilindro equilatero ha diametro di base ed
December 16, solidi_generalità e prisma_sito scuola.notebook. da studiare solo sul file. La geometria solida. nov
da studiare solo sul file La geometria solida nov 20 8.33 1 I SOLIDI SI SUDDIVIDONO IN DUE GRANDI CATEGORIE POLIEDRI SOLIDI ROTONDI nov 20 8.40 2 POLIEDRI Cos'è un poligono? E' una parte di spazio delimitata
Gli integrali definiti
Gli integrali definiti Sia f : [a, b] ℝ una funzione continua definita in un intervallo chiuso e limitato e supponiamo che 0 [, ]. Consideriamo la regione T delimitata dal grafico di f(x), dalle rette
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 22/23 Baricentri Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a. 22/23
Anno 2. Circonferenza e retta: definizioni e proprietà
Anno 2 Circonferenza e retta: definizioni e proprietà 1 Introduzione I Sumeri furono tra i primi popoli ad occuparsi di matematica, e in particolare di problemi relativi alla. La è una figura geometrica
Risposte ai quesiti D E H D
Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:
I SOLIDI DI ROTAZIONE
GEOMETRIA PREREQUISITI l l l l l conoscere gli enti fondamentali della geometria iana e le loro rorietaá conoscere gli enti fondamentali della geometria solida e le loro rorietaá conoscere le formule er
IL CURRICOLO VERTICALE DI MATEMATICA
IL CURRICOLO VERTICALE DI MATEMATICA Sinossi delle competenze per ciascun grado scolastico Scuola primaria Scuola secondaria I grado Scuola secondaria II grado Operare con i numeri nel calcolo scritto
Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:
Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte
Indirizzo: Tema di Il candidato risolva uno dei due problemi e 4 quesiti del questionario. PROBLEMA 1 PROBLEMA 2
Sessione ordinaria all estero (EUROPA) 8-9 ESAMI DI STATO DI LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO: EUROPA CORSO DI ORDINAMENTO Indirizzo: SCIENTIFICO Tema di: MATEMATICA Il candidato risolva uno
Anna Montemurro. 3Geometria. e misura
Anna Montemurro Destinazione Matematica 3Geometria e misura ... verifico 1 Come si definisce il cerchio? Che cosa s intende per raggio e per diametro di un cerchio? Disegna tre cerchi, rispettivamente
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli
OBIETTIVI GENERALI OBIETTIVI SPECIFICI ALGEBRA
Revisione dei contenuti in data 21 aprile 2015 OBIETTIVI GENERALI Imparare a lavorare in classe (saper ascoltare insegnante e compagni, intervenire con ordine e nei momenti opportuni). Concepire il lavoro
ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base
Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali?
Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali? Enrico Schlesinger Laboratorio FDS Milano, 13 novembre, 2013 Decorazioni Alhambra Escher Sky and water
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli
Programmazione di Matematica Classe 4 F A.S
Programmazione di Matematica Classe 4 F A.S. 2016-2017 TEMA 1: Relazioni e funzioni TEMA 2: Geometria Esponenziali e logaritmi. Le funzioni goniometriche La trigonometria Successioni e progressioni Geometria
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
Matematica creativa e packaging
Matematica creativa e packaging Elena Marchetti - Luisa Rossi Costa Dipartimento di Matematica F. Brioschi Politecnico di Milano Piazza Leonardo da Vinci, 32-20133 Milano POLIGONI E TASSELLAZIONI DEL PIANO
LA GEOMETRIA DELLO SPAZIO
LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei
C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)
circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio
QUESTIONARIO FINALE DI AUTOVALUTAZIONE. a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi
QUESTIONARIO FINALE DI AUTOVALUTAZIONE a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 2006-2007 1 1) L espressione ( 2 log x)( 2 log 2 2 x) è definita
Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione
SCUOLA SECONDARIA DI PRIMO GRADO MATEMATICA Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione Descrittori Descrittori Descrittori 1.1.1 E in grado di comprendere testi e altre fonti di
1. Il triangolo ABC ha i lati lunghi 12 cm, 17
www.matematicamente.it Esame di stato scuola secondaria di primo grado - Esercitazione 1 1 Esame di stato scuola secondaria di primo grado Esercitazione a cura di Michela Occhioni Cognome e nome: data:
DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA
DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo I numeri naturali e il
I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri.
I solidi Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi che hanno superfici curve vengono chiamati solidi rotondi.
La funzione esponenziale e la funzione logaritmo
IV Liceo Artistico Statale A.Caravillani Anno Scolastico 2015/2016 Programmazione Didattica Classe IV sez. E Materia: Matematica Prof.ssa Eliana d Agostino Modulo 1 Modulo 2 Modulo 3 Modulo 4 La funzione
IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.
IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è
Corso Online MATEMATICA PER LE SUPERIORI. Corso Matematica per le Superiori
Corso Matematica per le Superiori Corso Online MATEMATICA PER LE SUPERIORI Accademia Domani Via Pietro Blaserna, 101-00146 ROMA (RM) [email protected] Programma Generale del Corso Matematica per
Soluzione Problema 1
Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed
La circonferenza e il cerchio
La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una
Università degli Studi di Roma Tor Vergata. Principio di induzione matematica
Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.
SCUOLA PRIMARIA MATEMATICA (Classe 1ª)
SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,
Gli enti geometrici fondamentali
capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento
