LEZIONE 36. si dice regolare se è. per ogni (u 0, v 0 ) D. Una superficie S R 3 is dice regolare se esiste una sua parametrizzazione regolare.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE 36. si dice regolare se è. per ogni (u 0, v 0 ) D. Una superficie S R 3 is dice regolare se esiste una sua parametrizzazione regolare."

Transcript

1 LEZIONE La definizione di superficie. In questo paragrafo iniziamo a dare alcuni esempi di superfici ed a definire alcuni oggetti ad esse naturalmente associati. Come già fatto per le curve, considereremo lo spazio S 3 con un fissato sistema di riferimento O ı j k e la sua usuale identificazione con R 3. Definizione Sia D R 2 un aperto. Ogni funzione f: D R 3 viene detta superficie parametrizzata. Un insieme di punti S R 3 si dice superficie se è l immagine di una superficie parametrizzata (cioè di una funzione) continua f: D R 3. La funzione f è anche detta rappresentazione parametrica o parametrizzazione di S. Si noti che una parametrizzazione di una superficie C può essere visto come un modo per definire un sistema di coordinate sulla superficie. Infatti si considerino per ogni (u 0, v 0 ) D le porzioni di rette x u0 = { (u 0, y) D } e y v0 = { (x, v 0 ) D }. Abbiamo allora due famiglie di curve parametrizzate su S le curve parametrizzate f xu0 : x u0 X u0 S R 3 t f xu0 (t) = f(u 0, t), f yv0 : y v0 Y v0 S R 3 t f xv0 (t) = f(t, v 0 ). Le curve X u0 e Y v0 ricoprono completamente la superficie S nel senso che per ogni suo punto passa una curva di ognuno dei due tipi: chiameremo tali curve curve coordinate. Si noti, però, che tali curve potrebbero non essere uniche: ciò accade, per esempio, se la parametrizzazione di S non è iniettiva. Anche per questo (ma non solo) si introduce la definizione di superficie regolare. Definizione Una superficie parametrizzata f: D R 3 iniettiva, f C 1 (D, R 3 ) e se rk(jf (u0,v 0 )) = 2 si dice regolare se è per ogni (u 0, v 0 ) D. Una superficie S R 3 is dice regolare se esiste una sua parametrizzazione regolare. 1 Typeset by AMS-TEX

2 IL PIANO E LA SFERA COME PRIMI ESEMPI DI SUPERFICI(E) Si ricordi che, indicate con f x, f y, f z le funzioni componenti di f, si ha Si noti inoltre che df xu0 dt f x u (u 0, v 0 ) Jf (u0,v 0 ) = f y u (u 0, v 0 ) f y u (u 0, v 0 ) (v 0 ) = f v (u 0, v 0 ), df yu0 dt f x v (u 0, v 0 ) f y v (u 0, v 0 ). f y v (u 0, v 0 ) (u 0 ) = f u (u 0, v 0 ). Sia g = (g u, g v ): I D R 2 una curva parametrizzata di classe C 1 tale che g(t 0 ) = (u 0, v 0 ). Allora F = f g: I C R 3 è una curva parametrizzata contenuta in S e risulta df dt (t 0) = f u (u 0, v 0 ) dg u dt (t 0) + f v (u 0, v 0 ) dg v dt (t 0). Se sia g che f sono regolari, allora tale risulta F : infatti linearmente indipendenti, dunque df dt (t 0) = f u (u 0, v 0 ) dg u dt (t 0) + f v (u 0, v 0 ) dg v dt (t 0) 0. f u (u 0, v 0 ) e f v (u 0, v 0 ) sono Ritorneremo sulla nozione di superficie regolare e, in particolare, sul significato della condizione sul rango della jacobiana nelle prossime lezioni Il piano e la sfera come primi esempi di superfici(e). I primi esempi di superfici parametrizzate sono il piano e la sfera che descriveremo in questo paragrafo Il piano. Sia α R 3 un piano. Tale piano è sempre parallelo ad un unico piano passante per l origine α e rimane completamente individuata da essa e da un punto qualsiasi A α. z A α O q p y α' x Figura 36.1

3 LEZIONE 36 3 Quindi per descrivere α è necessario descrivere α. Siano p e q due vettori contenuti in α e non paralleli: allora la Proposizione assicura che P α se e solo se esistono u, v R tali che OP = u q + v w. Sia ora P α. Allora per definizione P A = OP OA: segue che OP = OA+(P A). Poiché P A è parallelo al segmento P A, dunque a α, esso è contenuto in α, quindi esistono, per quanto osservato sopra, u, v R tali che P A = u p + v q. Mettendo assieme quanto visto segue che P S 3 giace su α se e solo se ( ) OP = OA + u p + v q, per un qualche u, v R (si veda Figura 36.2). z A P α O q p P-A y α' x Figura 36.2 Fissiamo un sistema di riferimento O ı j k in R 3. Allora A = (x A, y A, z A ), sicché OA = x A ı + y A j + z A k, p = px ı + p y j + p z k, q = qx ı + q y j + q z k : indicando con (x, y, z) le coordinate del punto generico P R 3 si ha OP = x ı +y j +z k, dunque l Equazione (8.2.2) diviene x ı + y j + z k = x A ı + y A j + z A k + u(px ı + p y j + p z k ) + v(qx ı + q y j + q z k ), o, eguagliando le componenti dei due vettori lungo gli assi coordinati, x = x A + p x u + q x v ( ) y = y A + p y u + q y v z = z A + p z u + q z v. u, v R Le Equazioni (8.2.4) vengono spesso chiamate equazioni parametriche del piano α passante per A = (x A, y A, z A ) e parallelo ai vettori p = p x ı + p y j + p z k, q = qx ı + q y j + q z k. In particolare il piano α è immagine della funzione f: R 2 R 3 (u, v) (x A + p x u + q x v, y A + p y u + q y v, z A + p z u + q z v).

4 IL PIANO E LA SFERA COME PRIMI ESEMPI DI SUPERFICI(E) Si verifichi, per esercizio, che tale funzione è iniettiva (questo dipende dal fatto che p q). Inoltre è evidente che f C 1 (R 2, R 3 ). Infine Jf (u0,v 0 ) = p x che ha rango 2 (sempre perché p q). Abbiamo perciò verificato che ogni piano in R 3 è una superficie regolare. Esempio Siano dati il punto A = (1, 2, 3) ed i vettori p = 2 ı 3 k, q = ı + j + k. I vettori p e q non sono paralleli, quindi i dati individuano un piano α le cui equazioni parametriche sono date da x = 1 + 2u + v ( ) y = 2 + v z = 3 3u + v. p y p z Si noti che la retta r di equazioni parametriche x = 1 + 2t y = 2 z = 3 3t, è contenuta in α: infatti i suoi punti si ottengono ponendo u = t e v = 0 nelle Equazioni ( ) Viceversa dati numeri reali fissati x A, y A, z A, p x, p y, p z, q x, q y, q z, si considerino il luogo α dei punti P = (x, y, z) dello spazio le cui coordinate sono della forma q x q y q z x = x A + p x u + q x v y = y A + p y u + q y v z = z A + p z u + q z v. al variare di u, v R. Allora, procedendo come nel caso della retta, è facile verificare che tale luogo è il piano α passante per il punto A = (x A, y A, z A ) e parallelo ai vettori p = p x ı + p y j + p z k, q = qx ı + q y j + q z k. È noto dalla geometria euclidea che un altro modo per descrivere un piano α è quello di dare tre suoi punti A, B e C non allineati. In tal caso ci si può ricondurre al caso precedente. Infatti un punto, per esempio A, l abbiamo: per costruire due vettori paralleli a α basta considerare B A e C A. Se, rispetto al sistema di riferimento O ı j k fissato in S 3, A = (x A, y A, z A ), B = (x B, y B, z B ), C = (x C, y C, z C ) allora B A = (x B x A ) ı + (y B y A ) j + (z B z A ) k e C A = (x C x A ) ı + (y C y A ) j + (z C z A ) k

5 LEZIONE 36 5 sicché sostituendo nell Equazione (8.2.4) otteniamo le equazioni parametriche del piano α passante per A = (x A, y A, z A ), B = (x B, y B, z B ), C = (x C, y C, z C ) x = x A + (x B x A )u + (x C x A )v ( ) y = y A + (y B y A )u + (y C y A )v z = z A + (z B z A )u + (z C z A )v. o anche x = (1 u v)x A + ux B + vx C y = (1 u v)y A + uy B + vy C z = (1 u v)z A + uz B + vz C (talvolta si scrive sinteticamente P = (1 u v)a + ub + vc). Se poi vogliamo descrivere le coordinate dei punti del triangolo ABC è sufficiente che ci limitiamo a considerare i punti le cui coordinate si possono esprimere tramite la Formula (8.2.6) con u, v [0, 1] e u + v 1, cioè P = (x, y, z) ABC se e solo se x = (1 u v)x A + ux B + vx C y = (1 u v)y A + uy B + vy C u, v, u + v [0, 1], z = (1 u v)z A + uz B + vz C o, equivalentemente, se x = λx A + µx B + νx C y = λy A + µy B + νy C λ, µ, ν 0, λ + µ + ν = 1. z = λz A + µz B + νz C Esempio Siano dati i puntia = (1, 2, 3), B = (2, 1, 1), C = (2, 2, 2): chiaramente A B, quindi esiste unico un piano α contenente A, Be C le cui equazioni parametriche si ottengono utilizzando la Formula x = 1 + u + v y = 2 u z = 3 + 4u + 5v La sfera. Sia S R 3 la sfera di centro l origine O = (0, 0, 0) e raggio ϱ > 0. Allora sappiamo che i punti P = (x, y, z) S sono tutti e soli quelli soddisfacenti l equazione x 2 + y 2 + z 2 = ϱ 2. Sia P xy la proiezione ortogonale del punto P sul piano xy. Indichiamo con v l angolo formato dai vettori OP e OP xy (quindi π/2 v è l angolo fra OP e k ) e con u l angolo formato da ı e OP xy.

6 IL PIANO E LA SFERA COME PRIMI ESEMPI DI SUPERFICI(E) z S ρ P O u P xy v y x Figura 36.3 Chiaramente P = (ϱ cos u cos v, ϱ sin u cos v, ϱ sin v). In particolare S è immagine dell applicazione f: R 2 R 3 (u, v) (ϱ cos u cos v, ϱ sin u cos v, ϱ sin v). Se pensiamo alla sfera come superficie di un pianeta che ruota intorno all asse z, allora i parametri u e v rappresentano rispettivamente la longitudine (distanza dal meridiano di riferimento) e la latitudine (distanza dal piano equatoriale cioè dal piano xy) del punto P. Tale funzione è C 1 e Jf (u0,v 0 ) = ϱ sin u 0 cos v 0 cos u 0 sin v 0 cos u 0 cos v 0 sin u 0 sin v 0. 0 cos v 0 Chiaramente, se v 0 π/2 + kπ, k Z, tale matrice ha rango 2. Se, invece v 0 π/2 + kπ, k Z, risulta rk(jf (u0,v 0 )) = 1. Ovviamente f non è iniettiva. Siano D = { (u, v) R 2 u ]0, 2π[, v ] π/2, π/2[ }. Allora è facile vedere che la restrizione di f a D è iniettiva, ma non suriettiva: infatti i punti che si possono ottenere in questo modo sono tutti e soli quelli che non giacciono nel piano xz (cioè quelli del meridiano di riferimento G = { (u, v) R 2 u = 0, 2π, v ] π/2, π/2 }). Deduciamo, da quanto visto, che S è una superficie regolare in tutti i punti di S \ { y = 0 }. In realtà, cambiando la parametrizzazione (per esempio considerando u ] π, π[) è facile vedere che anche i punti di S { y = 0 } possono essere considerati regolari ad eccezione di (0, 0, 1) e (0, 0, 1) (cioè dei poli, ovvero dei punti intersezione dell asse di rotazione della sfera con la sfera stessa). Per tener conto anche di questi punti bisogna cambiare ancora parametrizzazione (per esempio scegliendo v ]0, π[ o v ] π, 0[).

7 LEZIONE 36 7 Osservazione Si consideri ora l ellissoide S di semiassi a, b, c > 0. Tale ellissoide è il luogo dei punti P = (x, y, z) soddisfacenti l equazione x 2 a 2 + y2 b 2 + z2 c 2 = 1. Ragionando in maniera analoga a quanto fatto nell esempio precedente osserviamo che S è immagine dell applicazione f: R 2 R 3 (u, v) (a cos u cos v, b sin u cos v, c sin v).

LEZIONE 8. Figura 8.1.1

LEZIONE 8. Figura 8.1.1 LEZIONE 8 8.1. Equazioni parametriche di rette. In questo paragrafo iniziamo ad applicare quanto spiegato sui vettori geometrici per dare una descrizione delle rette nel piano e nello spazio. Sia r S 3

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

LEZIONE 37. x 2 a 2 + y2. b 2 = 2z, x 2. a 2 y2. b 2 = 2z. Esempio Sia S il cilindro luogo dei punti P = (x, y, z) soddisfacenti l equazione

LEZIONE 37. x 2 a 2 + y2. b 2 = 2z, x 2. a 2 y2. b 2 = 2z. Esempio Sia S il cilindro luogo dei punti P = (x, y, z) soddisfacenti l equazione LEZIONE 37 37.1. Altri esempi di superfici. In questo paragrafo daremo altri esempi di superfici. Esempio 37.1.1. Sia D R 2 un aperto. Allora il grafico Γ ϕ di una funzione ϕ: D R 3 di classe C 1 è una

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2 Formulario Componenti di un vettore di estremi A(x 1, y 1 e B(x 2, y 2 B A = AB = (x2 x 1 i + (y 2 y 1 j Distanza tra due punti A(x 1, y 1 e B(x 2, y 2 : AB = (x 2 x 1 2 + (y 2 y 1 2 Coordinate del punto

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

Esercizi su Rette e Piani

Esercizi su Rette e Piani Esercizi su Rette e Piani Raffaella Di Nardo dinardo@calvino.polito.it 1 aprile 2004 Esercizio 1. In R 2, determinare l equazione dellal retta per P 0 e parallela al vettore u = 3i j. Esercizio 2. Data

Dettagli

Esercizi di Algebra Lineare - Foglio 9

Esercizi di Algebra Lineare - Foglio 9 Esercizi di Algebra Lineare - Foglio 9 Soluzioni Esercizio 1. Nello spazio R 3, si considerino i quattro punti A (0, 1, 0), B (, 1, ), (3,, 0) e D (3,, ). (a) Determinare il baricentro del triangolo AB.

Dettagli

Soluzioni dello scritto di Geometria del 28 Maggio 2009

Soluzioni dello scritto di Geometria del 28 Maggio 2009 Soluzioni dello scritto di Geometria del 8 Maggio 9 1) Trovare le equazioni del sottospazio V(w, x, y, z) R 4 generato dalle quaterne c 1 = (,,, 1) e c = (, 1, 1, ). ) Trovare una base per OGNI autospazio

Dettagli

LEZIONE 13. f + g: I R n

LEZIONE 13. f + g: I R n LEZINE 13 13.1. Funzioni a valori in R n. Ricordiamo che gli elementi R n sono le n uple ordinate ( 1,..., n ) di numeri reali. Se = ( 1,..., n ) R n e α R, poniamo + = ( 1 + 1,..., n + n ), α = (α 1,...,

Dettagli

viene detto il sostegno della curva. Se σ è iniettiva, diciamo che la superficie è semplice. Le equazioni

viene detto il sostegno della curva. Se σ è iniettiva, diciamo che la superficie è semplice. Le equazioni Fondamenti di Analisi Matematica 2 - a.a. 2010-11 (Canale 1) Corso di Laurea in Ingegneria Gestionale, Meccanica e Meccatronica Valentina Casarino Appunti sulle superfici 1. Superfici regolari Ricordiamo

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Mauro Saita Gennaio Equazioni cartesiane di rette e equazioni parametriche di piani Esempi...

Mauro Saita   Gennaio Equazioni cartesiane di rette e equazioni parametriche di piani Esempi... ette e piani in ette e piani in. Esercizi e-mail: maurosaita@tiscalinet.it Gennaio 2016. Indice 1 Equazioni parametriche della retta 2 1.1 Esempi........................................ 2 2 Equazione cartesiana

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

Geometria BAER Canale A-K Esercizi 9

Geometria BAER Canale A-K Esercizi 9 Geometria BAER 2016-2017 Canale A-K Esercizi 9 Esercizio 1. Si considerino i punti del piano A (1, 1), B (4, 1), C ( 1/2, 2) (a) Si determini se i punti A, B, C sono allineati e, in caso affermativo, si

Dettagli

Geometria BAER Canale I Esercizi 10

Geometria BAER Canale I Esercizi 10 Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 4 giugno 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

Esercizi di geometria per Fisica / Fisica e Astrofisica

Esercizi di geometria per Fisica / Fisica e Astrofisica Esercizi di geometria per Fisica / Fisica e strofisica Foglio 5 - Soluzioni Esercizio 1. Nello spazio R 3, si considerino i punti (1,0,0), (1,0,2), (0, 1,0), D (2, 1,2), E (2,1, 0), F (0, 1,2), G (3,2,0),

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

1 Rette e piani in R 3

1 Rette e piani in R 3 POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 1. Sez. D - G. Docenti: Federico G. Lastaria, Mauro Saita, Nadir Zanchetta,. 1 1 Rette e piani in R 3 Una retta parametrizzata

Dettagli

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento)

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento) CORSO D LAUREA in ngegneria nformatica (Vecchio Ordinamento) Prova scritta di Geometria assegnata il 19/3/2002 Sia f : R 3 R 4 l applicazione lineare la cui matrice associata rispetto alle basi canoniche

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

Algebra Lineare e Geometria, a.a. 2012/2013

Algebra Lineare e Geometria, a.a. 2012/2013 Diario delle esercitazioni e lezioni per il corso di Algebra Lineare e Geometria, a.a. 2012/2013 (solo la parte per Fisici e Matematici, non ci sono le lezioni del Modulo B) Lidia Stoppino Lezione 1 9

Dettagli

Esercizi di geometria affine in 3 dimensioni

Esercizi di geometria affine in 3 dimensioni Esercizi di geometria affine in 3 dimensioni Nicola Sansonetto febbraio 009 Esercizio 1. Si consideri nel piano affine A (R) un riferimento cartesiano, la retta τ di equazione affine y + x = 1 e il triangolo

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1.

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1. LEZIONE 16 16.1. Autovalori, autovettori ed autospazi di matrici. Introduciamo la seguente definizione. Definizione 16.1.1. Siano k = R, C e A k n,n. Un numero λ k si dice autovalore di A su k) se rka

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Piano euclideo. In E 2 (R) fissiamo un riferimento cartesiano ortonormale [O, B], con B = ( e 1, e 2 ).

Piano euclideo. In E 2 (R) fissiamo un riferimento cartesiano ortonormale [O, B], con B = ( e 1, e 2 ). Definizione Si dice spazio (affine) euclideo di dimensione n sul campo reale, uno spazio affine A[A, (V n (R), ), a] in cui il prodotto scalare è definito positivo. Lo si indica con E n (R). In E 2 (R)

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

Appunti di geometria analitica dello spazio. di Fabio Maria Antoniali

Appunti di geometria analitica dello spazio. di Fabio Maria Antoniali Appunti di geometria analitica dello spazio di Fabio Maria Antoniali versione del 23 maggio 2017 1 Un po di teoria 1.1 Vettori e punti 1.1.1 Componenti cartesiane e vettoriali Fissato nello spazio un riferimento

Dettagli

Osservazioni generali

Osservazioni generali Osservazioni generali Innanzitutto Non si può dividere per. Per i numeri complessi Quando si risolve z 3 = az con a dato, ricordarsi di stare attento per che cosa si divide. Infatti non si può dividere

Dettagli

Geometria Differenziale 2017/18 Esercizi 3

Geometria Differenziale 2017/18 Esercizi 3 Geometria Differenziale 217/18 Esercizi 3 1 Superfici I 1.1 Esercizio a) Verificare che l ellissoide Σ : x2 a 2 + y2 b 2 + z2 c 2 = 1 è una superficie regolare in tutti i suoi punti. b) Dare una parametrizzazione

Dettagli

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso?

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso? A. Languasco - Esercizi Matematica B - 4. Geometria 1 A: Vettori geometrici Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Siano u, v, w vettori. Quali tra le seguenti operazioni

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente,

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente, Corso di Laurea in Fisica. Geometria 1. a.a. 2006-07. Gruppo B. Prof. P. Piazza Esonero del 1/12/06 con soluzione Esercizio. Spazio vettoriale R 2 con base canonica fissata e coordinate associate (x 1,

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

Geometria BAER Canale A-K Esercizi 10

Geometria BAER Canale A-K Esercizi 10 Geometria BAER 2016-2017 Canale A-K Esercizi Esercizio 1. Data la retta r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di

Dettagli

Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile) 1. Tra le seguenti matrici, eseguire tutti i prodotti possibili:

Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile) 1. Tra le seguenti matrici, eseguire tutti i prodotti possibili: Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 0 5 F = 4 2

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi 11 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

RETTE E PIANI NELLO SPAZIO

RETTE E PIANI NELLO SPAZIO VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio

Dettagli

6 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

6 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

22 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

22 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici Sfere Coordinate sferiche e sfere in forma parametrica Sfere, rette e piani Circonferenze nello spazio Circonferenze in forma parametrica 2 2006 Politecnico di Torino

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Esercizi per Geometria II Geometria affine e euclidea

Esercizi per Geometria II Geometria affine e euclidea Esercizi per Geometria II Geometria affine e euclidea Filippo F. Favale 4 marzo 04 Esercizio Si dica, per ciascuno dei seguenti casi, se A ha la struttura di spazio affine o euclideo su V. A R 3 con coordinate

Dettagli

LEZIONE 13. Figura 13.1

LEZIONE 13. Figura 13.1 LEZIONE 3 Ritorniamo al nostro rettangolo R di vertici A = (, ), B = (, ), C = (, 3), D = (, 3) a partire dal segmento OU unitario di estremi l origine O ed il punto U = (, ). y D C R A B O Figura 3. Tra

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

1 Esercizi di ripasso 4

1 Esercizi di ripasso 4 Esercizi di ripasso 4. Determinare k in modo che il piano kx + 2y 6z + = 0 sia parallelo al piano x + y z + = 0. Soluzione. La condizione di parallelismo richiede che ( ) k 2 6 rg = Ne segue che k = e

Dettagli

Il piano proiettivo appunti del corso di Geometria 1, prof. Cristina Turrini. anno acc. 2008/2009

Il piano proiettivo appunti del corso di Geometria 1, prof. Cristina Turrini. anno acc. 2008/2009 appunti del corso di Geometria 1, prof. anno acc. 2008/2009 Alcune "asimmetrie" del piano affine Nel piano affine A 2, si hanno le seguenti proprietà di incidenza. 1 P, Q A 2, con P e Q, punti distinti

Dettagli

15 Aprile 2016 Svolgimento della prova scritta (OA + BC)OB 2. 2(4 + k ) 2

15 Aprile 2016 Svolgimento della prova scritta (OA + BC)OB 2. 2(4 + k ) 2 Dipartimento di Matematica e Informatica Anno Accademico 015-016 Corso di Laurea in Informatica (L-1) Prova in itinere di Matematica Discreta (1 CFU) 15 Aprile 016 B1 Compito A Tempo a disposizione 10

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

21. (cenni di) Geometria analitica del piano.

21. (cenni di) Geometria analitica del piano. . (cenni di) Geometria analitica del piano... Definizione. Sia π un piano e sia O un suo punto. Siano i e j due versori ortogonali tra loro e paralleli al piano π. Diremo che la terna ordinata (O, i, j)

Dettagli

Coordinate cartesiane e coordinate omogenee

Coordinate cartesiane e coordinate omogenee Coordinate cartesiane e coordinate omogenee Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Ad ogni punto P del piano possiamo associare le coordinate cartesiane (x, y),

Dettagli

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono

Dettagli

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale) Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

Soluzioni. 1. Disegnare il grafico della funzione f : R 2 R, nei casi:

Soluzioni. 1. Disegnare il grafico della funzione f : R 2 R, nei casi: Soluzioni. Disegnare il grafico della funzione f : R 2 R, nei casi: (a) f(, ) =. La funzione dipende solo dalla coordinata. In questo caso il grafico rappresenta un piano (vedi figura). (b) f(, ) = 2.

Dettagli

Esercizi di Geometria e Algebra Lineare

Esercizi di Geometria e Algebra Lineare Esercizi di Geometria e Algebra Lineare 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}) 2) Nello spazio vettoriale R 3 sul campo R, sia

Dettagli

Figura Segue allora dalla Proposizione 8.5 e dalla Definizione 8.6 che i punti P 2 sono tutti e soli i punti dello spazio tali che

Figura Segue allora dalla Proposizione 8.5 e dalla Definizione 8.6 che i punti P 2 sono tutti e soli i punti dello spazio tali che Lezione. Equazioni cartesiane di piani Sia S 3 un piano. Nella lezione precedente abbiamo visto che può essere individuato da un suo punto qualsiasi A edaduedirezioniadessoparallele;è però anche possibile

Dettagli

25 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

25 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

ALGEBRA LINEARE E GEOMETRIA

ALGEBRA LINEARE E GEOMETRIA ALGEBRA LINEARE E GEOMETRIA A 11 luglio 2017 60 minuti Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata

Dettagli

LEZIONE 21 [ ] D [ ] 1. k n. k m. k n,1 k m,1

LEZIONE 21 [ ] D [ ] 1. k n. k m. k n,1 k m,1 LEZIONE 21 21.1. Matrice di un applicazione lineare. Siano V e W spazi vettoriali su k = R, C finitamente generati e siano = (v 1,..., v n ) e = (w 1,..., w m ) basi di V e W rispettivamente. Come abbiamo

Dettagli

Geometria analitica - Testo pagina 1 di 5 67

Geometria analitica - Testo pagina 1 di 5 67 Geometria analitica - Testo pagina di 5 67 5. GEOMETRI NLITI: Geometria lineare nel piano È fissato nel piano un sistema di coordinate cartesiane ortogonali monometriche Oxy. 50. 502. 503. 504. Scrivere

Dettagli

IL GRUPPO SO(3) , b a a R 2φ g R 1. a 2 + b 2 e i2φ N. Valendo a 2 + b 2 = 1, abbiamo dunque tr(r 2φ g R 1. Se diagonalizziamo R 2φ g R 1.

IL GRUPPO SO(3) , b a a R 2φ g R 1. a 2 + b 2 e i2φ N. Valendo a 2 + b 2 = 1, abbiamo dunque tr(r 2φ g R 1. Se diagonalizziamo R 2φ g R 1. IL GRUPPO SO3). Semplicità di SO3) Usando l omomorfismo suriettivo ρ : SU2) SO3) che abbiamo già descritto, possiamo dimostrare che SO3) è un gruppo semplice. In effetti, per far questo ci basta mostrare

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Geometria analitica pagina 1 di 5

Geometria analitica pagina 1 di 5 Geometria analitica pagina 1 di 5 GEOMETRIA LINEARE NEL PIANO È fissato nel piano un sistema di coordinate cartesiane ortogonali monometriche Oxy. 01. Scrivere due diverse rappresentazioni parametriche

Dettagli

LEZIONE 24. a 1,1 x 2 + a 2,2 y 2 + a 3,3 z 2 + 2a 1,2 xy + 2a 1,3 xz+ + 2a 2,3 yz + 2a 1,4 x + 2a 2,4 y + 2a 3,4 z + a 4,4 = 0 (24.1.

LEZIONE 24. a 1,1 x 2 + a 2,2 y 2 + a 3,3 z 2 + 2a 1,2 xy + 2a 1,3 xz+ + 2a 2,3 yz + 2a 1,4 x + 2a 2,4 y + 2a 3,4 z + a 4,4 = 0 (24.1. LEZIONE 24 24.1. Riduione delle quadriche a forma canonica. Fissiamo nello spaio un sistema di riferimento Oxy e consideriamo un polinomio q(x, y, ) di grado 2 in x, y, a meno di costanti moltiplicative

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio

Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio Sansonetto Nicola 15 aprile 2016 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A 2 (R) dotato del riferimento canonico,

Dettagli

16 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

16 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 16 gennaio 017 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 016-017 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

Problema 1.5. Mostra che una retta immaginaria r nello spazio contiene al più un punto reale.

Problema 1.5. Mostra che una retta immaginaria r nello spazio contiene al più un punto reale. 1 Complessificazione Problema 1.5. Mostra che una retta immaginaria r nello spazio contiene al più un punto reale. Soluzione. Se r è di prima specie, allora r è complanare con la sua coniugata: se, in

Dettagli

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadriche è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee

Dettagli

Esericizi Quadriche e Coniche nello spazio

Esericizi Quadriche e Coniche nello spazio Esericizi Quadriche e Coniche nello spazio 1. In R 3 sia A = (1, 1, 0) e sia r la retta passante per A, parallela al piano x + y + z = 0 e complanare alla retta s di equazione cartesiana x + y z = 0 =

Dettagli

Esercizi Riepilogativi Svolti

Esercizi Riepilogativi Svolti Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile-Architettura e dell Edilizia SPAZI EUCLIDEI. TRASFORMAZIONI. ORIENTAZIONI. FORMULE DI GEOMETRIA IN R. Docente:

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio.

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. A [8] Sono date le matrici A M 34 (IR) e b M 31 (IR) A = 1 0 2 2 0 k 1 k, b = 1

Dettagli

Tempo a disposizione: 150 minuti. 1 Studiare, al variare del parametro reale k, il seguente sistema lineare: x + ky = k 2x + ky + z = 0.

Tempo a disposizione: 150 minuti. 1 Studiare, al variare del parametro reale k, il seguente sistema lineare: x + ky = k 2x + ky + z = 0. Università degli Studi di Catania Anno Accademico 014-015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (1 CFU) 1 Dicembre 014 A Tempo a disposizione: 150 minuti 1 Studiare, al

Dettagli

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione LEZIONE 27 27.1. Ellisse, iperbole, parabola. Nelle prossime lezioni illustreremo come la teoria delle forme quadratiche e della riduzione ortogonale si applichi allo studio di alcuni oggetti geometrici

Dettagli

a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene

a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene Esercizi svolti Esercizio 1. Dati i punti: A(1, 1, 0), B( 1, 1, 4), C(1, 1, 3), D(2, 2, 8) dello spazio R 3 a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene

Dettagli

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ ESAME DI GEOMETRIA 6 febbraio CORREZIONE QUIZ. La parte reale di ( + i) 9 è positiva. QUIZ Si può procedere in due modi. Un primo modo è osservare che ( + i) =i, dunque ( + i) 9 =(+i)(i) 4 = 4 ( + i) :

Dettagli

Prova scritta di Geometria 18/01/2016, Soluzioni Ing. Meccanica a.a

Prova scritta di Geometria 18/01/2016, Soluzioni Ing. Meccanica a.a Prova scritta di Geometria 8//26, Soluzioni Ing. Meccanica a.a. 25-6 Esercizio È data la conica γ : 3x2 2xy + 3y 2 + 8x + 3 =. a) Verificare che la conica è un ellisse e determinarne la forma canonica.

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli