Algoritmi basati sulla tecnica Divide et Impera

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi basati sulla tecnica Divide et Impera"

Transcript

1 Qucksort

2 Algortm basat sulla tecnca Dvde et Impera In questo corso: Rcerca bnara Mergesort (ordnamento) Qucksort (ordnamento) Moltplcazone d nter Moltplcazone d matrc (non n programma) NOTA: nonostante la tecnca Dvde et mpera sembr così «semplce» ben due «top ten algorthms of the 20 century» sono basat su d essa: Fast Fourer Transform (FFT) Qucksort

3 Ordnamento INPUT: un nseme d n oggett a 1, a 2,, a n pres da un domno totalmente ordnato secondo OUTPUT: una permutazone degl oggett a 1, a 2,, a n tale che Applcazon: a 1 a 2 a n Ordnare alfabetcamente lsta d nom, o nseme d numer, o nseme d compt d esame n base a cognome studente Veloczzare altre operazon (per es. è possble effettuare rcerche n array ordnat n tempo O(log n) ) Subroutne d molt algortm (per es. greedy).

4 Algortm per l ordnamento Data l mportanza, esstono svarat algortm d ordnamento, basat su tecnche dverse: Insertonsort Selectonsort Heapsort Mergesort Qucksort Bubblesort Countngsort.. Ognuno con suo aspett postv e negatv. Il Mergesort e l Qucksort sono entramb basat sulla tecnca Dvde et Impera, ma rsultano avere dfferent prestazon

5 Mergesort Dato un array d n element I ) Dvde: trova l ndce della poszone centrale e dvde l array n due part cascuna con n/2 element (pù precsamente n/2 e n/2 ) II) Rsolve due sottoproblem rcorsvamente III) Impera: fonde due sotto-array ordnat usando la procedura Merge T(n) = (1) + 2T(n/2) + (n) La soluzone è T(n) = (n log n)

6 Qucksort Nota: sul lbro d testo trovate solo una versone randomzzata (cap. 13). Potete fare rfermento al lbro d Cormen, Leserson, Rvest, (Sten) Introduzone agl algortm, o ad altr test consglat.

7 Qucksort Dato un array d n element I ) Dvde: scegl un elemento x dell array (detto pvot o perno) e partzona la sequenza n element x ed element x II) Rsolv due sottoproblem rcorsvamente III) Impera: resttusc la concatenazone de due sotto-array ordnat x=

8 Scelta del pvot L algortmo funzona per qualsas scelta (prmo / ultmo / ), ma se voglamo algortmo determnstco devo fssare la scelta; nel seguto scegleremo l prmo. Altrment: scelgo random e avrò algortm randomzzat (ved Klenberg & Tardos, cap. 13)

9 Partzonamento Partzona l array n element x ed element x Banalmente: scorro l array da 1 ad n e nsersco gl element pvot n un nuovo array e quell del pvot n un altro nuovo array Però: 1) avre bsogno d array auslar 2) d che dmensone? I due sotto-array hanno un numero varable d element

10 Partzone n loco Partton: pvot = A[1] Scorr l array da destra verso snstra (con un ndce ) e da snstra verso destra (con un ndce ) : da destra verso snstra, c s ferma su un elemento del pvot da snstra verso destra, c s ferma su un elemento del pvot; Scamba gl element Rprend la scansone fnché e s ncrocano

11 Partton (Hoare 1962) Partton (A, p, r) x = A[p] = p-1 = r+1 whle True do repeat =-1 untl A[] x repeat =+1 untl A[] x f < then scamba A[] A[] else return Esste un dverso algortmo per l partzonamento dovuto a N. Lomuto ed esstono pccole varant d questo (che potreste ncontrare cambando lbro d testo) Attenzone: repeat op untl cond sgnfca che: eseguo op; se cond è verfcata esco, altrment rpeto. s ferma su un elemento x; s ferma su un elemento x.

12 Partzone n loco: un esempo pvot = 5 Scamba 3 con 5 Scamba 1 con 6 Resttusce q =. Gl element < x Resttusce q = staranno a snstra; gl element > x a destra; quell = x possono stare sa a snstra che a destra.

13 Partton: un altro esempo pvot = 5 Scamba 5 con 5 Scamba 1 con 6 Resttusce q =. Gl element < x staranno a snstra; gl element > x a destra; quell = x possono stare sa a snstra che a destra.

14 Partton su un array d element tutt ugual pvot = 5 Scamba 5 con 5 Scamba 5 con 5 Scamba 5 con Scamba 5 con Resttusce q = 5 5

15 Correttezza d Partton Perché funzona? Ad ogn terazone (quando raggungo l whle): la parte verde d snstra (da p ad ) contene element 5; la parte verde d destra (da a r) contene element 5. Tale affermazone è vera all nzo e s mantene vera ad ogn terazone (per nduzone) Nota: Partton resttusce p: al massmo s ferma sul prmo elemento, che è pvot. Anals Partton Il tempo d esecuzone è (n)

16 Qucksort (A, p, r) f p < r then q = Partton (A,p,r) Qucksort(A, p, q) Qucksort(A, q+1, r) Correttezza: la concatenazone d due array ordnat n cu l array d snstra contene element mnor o ugual degl element dell array d destra è un array ordnato Anals: T(n) = (n) + T(k) + T(n-k) Se k sono gl element da p a q (e n-k rmanent da q+1 a r) con 1 k n-1. Rcorda: Partton resttusce q p.

17 Anals Qucksort (caso peggore) Un prmo caso: ad ogn passo l pvot scelto è l mnmo o l massmo degl element nell array (la partzone è 1 n-1 ): T(n) = T(n-1) + T(1) + (n) essendo T(1)= (1) T(n) = T(n-1) + (n) La cu soluzone è T(n) = (n 2 ) S può dmostrare che questo è l caso peggore; qund per l Qucksort: T(n) = O(n 2 )

18 Un esempo del caso peggore del Qucksort Un array ordnato x = x = x = x = x = 5 5 6

19 Anals Qucksort (caso mglore) Un altro caso: ad ogn passo l pvot scelto è la medana degl element nell array (la partzone è n/2 n/2 ): T(n) = 2 T(n/2) + (n) La cu soluzone è T(n) = (n log n) (è la stessa relazone d rcorrenza del Mergesort) S può dmostrare che questo è l caso mglore; qund: T(n) = (n log n) Rassumendo, per l Qucksort: T(n) = O(n 2 ) e T(n) = (n log n) Il caso mglore è dverso dal caso peggore qund T(n) non è d nessuna funzone

20 Is Qucksort quck? Il Qucksort non ha un «buon» caso peggore, ma ha un buon caso medo (s può dmostrare che anche nel caso medo s comporta come nel caso mglore), per cu s può consderare una sua versone «randomzzata» Algortmo randomzzato: Introduce una chamata a random(a,b) (che resttusce un numero a caso fra a e b (a<b)) Forza l algortmo a comportars come nel caso medo Non esste una dstrbuzone d nput «peggore» a pror Nota: sul lbro d testo trovate solo una versone randomzzata. Per l resto potete fare rfermento al lbro d Cormen, Leserson, Rvest, (Sten) Introduzone agl algortm, o ad altr test consglat nel programma.

21 QuckSort randomzzato Random-Partton (A, p, r) random(p,r) scamba A[] <-> A[p] return Partton(A, p, r) Random-Qucksort (A, p, r) f p < r then q Random-Partton (A,p,r) Random-Qucksort(A, p, q) Random-Qucksort(A, q+1, r)

22 Qucksort vs Mergesort (entramb dvde et mpera)

23 Da rcordare sulla complesstà dell ordnamento Esstono algortm d ordnamento con tempo nel caso peggore (n 2 ) e (nlogn) Esstono anche algortm d ordnamento con tempo nel caso peggore (n), ma non sono basat su confront e funzonano solo sotto certe potes. Inoltre s può dmostrare che tutt gl algortm d ordnamento basat su confront rchedono Ω(n log n) confront nel caso peggore! S dce che Ω(n log n) è una delmtazone nferore (lower bound) al problema dell ordnamento, coè al numero d confront rchest per ordnare n oggett. Delmtazone nferore (lower bound) = quanttà d rsorsa necessara per rsolvere un determnato problema Indca la dffcoltà ntrnseca del problema.

Quicksort Moltiplicazione di interi Master Theorem Valutazione del tempo di esecuzione di algoritmi iterativi e ricorsivi

Quicksort Moltiplicazione di interi Master Theorem Valutazione del tempo di esecuzione di algoritmi iterativi e ricorsivi Quicksort Moltiplicazione di interi Master Theorem Valutazione del tempo di esecuzione di algoritmi iterativi e ricorsivi Algoritmi basati sulla tecnica Divide et Impera In questo corso: Ricerca binaria

Dettagli

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort Due algoritmi di ordinamento basati sulla tecnica Divide et Impera: Mergesort e Quicksort (13 ottobre 2009, 2 novembre 2010) Ordinamento INPUT: un insieme di n oggetti a 1, a 2,, a n presi da un dominio

Dettagli

Specifica, progetto e verifica della correttezza di algoritmi iterativi. Ragionamenti su di un algoritmo. Il metodo delle asserzioni (Floyd)

Specifica, progetto e verifica della correttezza di algoritmi iterativi. Ragionamenti su di un algoritmo. Il metodo delle asserzioni (Floyd) Specfca, progetto e verfca della correttezza d algortm teratv Il metodo delle asserzon Ragonament su d un algortmo Ragonare sulla specfca d un algortmo data con pre e post-condzon serve a: (a posteror)

Dettagli

Algoritmi di Ordinamento. Fondamenti di Informatica Prof. Ing. Salvatore Cavalieri

Algoritmi di Ordinamento. Fondamenti di Informatica Prof. Ing. Salvatore Cavalieri Algortm d Ordnamento Fondament d Informatca Prof. Ing. Salvatore Cavaler 1 Introduzone Ordnare una sequenza d nformazon sgnfca effettuare una permutazone n modo da rspettare una relazone d ordne tra gl

Dettagli

Allora v = v2 =

Allora v = v2 = Problema: a partre da due sequenze ordnate v1 e v2 d element voglamo costrurne una ordnata v con tutt gl element d v1 e v2 Algortmo rcorsvo: Se le due sequenze contengono element confronta prm due element

Dettagli

Scrivere programmi corretti

Scrivere programmi corretti Scrvere programm corrett L esempo della rcerca bnara o dcotomca J. Bentley, Programmng Pearls, Addson Welsey. 1 Schema processo produzone funzone teratva Algortmo n pseudo-codce Indvduazone nvarante Codfca

Dettagli

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica. Algoritmi

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica. Algoritmi Unverstà degl Stud d Roma Tor Vergata Facoltà d Ingegnera Corso d Laurea n Ingegnera Medca Algortm Rev.2.2 of 2016-04-20 Elaborazone dat Problem che s presentano spesso sono 1. rcorsvo (es. successone

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Laboratorio di Matematica e Informatica 1

Laboratorio di Matematica e Informatica 1 Laboratoro d Matematca e Informatca 1 Matteo Mondn Antono E. Porreca matteo.mondn@gmal.com porreca@dsco.unmb.t Dpartmento d Informatca, Sstemstca e Comuncazone Unverstà degl Stud d Mlano - Bcocca 10 Gennao

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Algoritmi euristici: III Ricerca Locale

Algoritmi euristici: III Ricerca Locale Algortm eurstc: III Rcerca Locale Danele Vgo D.E.I.S. - Unverstà d Bologna dvgo@des.unbo.t rev. 1.0 - dcembre 2003 Algortm d Rcerca Locale partono da una soluzone (ammssble) cercano teratvamente d mglorarla

Dettagli

Il problema dell'ordinamento. Algoritmi e Laboratorio a.a Lezioni. prof. Elio Giovannetti

Il problema dell'ordinamento. Algoritmi e Laboratorio a.a Lezioni. prof. Elio Giovannetti Unverstà d Torno Facoltà d Scenze MFN Corso d Stud n Informatca Currculum SR (Sstem e Ret) Algortm e Laboratoro a.a. 25-6 Lezon prof. Elo Govannett Parte 7 Algortm d ordnamento elementar (quadratc). versone

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Code a priorità (Heap) Definizione Heapify (mantenimento coda a priorità) Costruire un Heap Insert, Maximum e Extract-Max

Code a priorità (Heap) Definizione Heapify (mantenimento coda a priorità) Costruire un Heap Insert, Maximum e Extract-Max Code a prortà (Heap) Defnzone Heapfy (mantenmento coda a prortà) Costrure un Heap Insert, Maxmum e Extract-Max Coda a prortà (Heap) Una coda a prortà può essere rappresentato da un albero bnaro completo.

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

Errata corrige del libro Fondamenti di Informatica in Java

Errata corrige del libro Fondamenti di Informatica in Java corrge del lbro Fondament d Informatca n Java Emlo D Gacomo, Walter Ddmo Captolo 1 R1 R2 R3 Rn PC IR PSW Untà d controllo Pag. 23, Fgura 1.2 Bus nterno ALU MAR MDR al bus dat al bus ndrzz al bus d controllo

Dettagli

Le operazioni che vogliamo realizzare sono. Supporremo che una tabella T abbia i seguenti attributi: 1. Table(T): costruisce una tabella vuota T.

Le operazioni che vogliamo realizzare sono. Supporremo che una tabella T abbia i seguenti attributi: 1. Table(T): costruisce una tabella vuota T. tabelle dnamche Tabelle dnamche Spesso non s conosce a pror quanta memora serve per memorzzare una struttura dat (tabella d dat ~ array, tabella hash, heap, stack, ecc.. Può captare qund d allocare una

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 7/0/006 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 0 soggett. Soggetto Sesso Età Reddto

Dettagli

Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano. Usa la tecnica del divide et impera:

Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano. Usa la tecnica del divide et impera: MergeSort Usa la tecnica del divide et impera: 1 Divide: dividi l array a metà 2 Risolvi i due sottoproblemi ricorsivamente 3 Impera: fondi le due sottosequenze ordinate 1 Esempio di esecuzione 7 2 4 5

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 4 Ordinamento Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Esempi: ordinare una lista di nomi alfabeticamente, o un

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

Un quadro della situazione. Lezione 7 Logica Digitale (1) Dove siamo nel corso. Organizzazione della lezione. Dove siamo. Dove stiamo andando..

Un quadro della situazione. Lezione 7 Logica Digitale (1) Dove siamo nel corso. Organizzazione della lezione. Dove siamo. Dove stiamo andando.. Un quadro della stuazone Lezone 7 Logca Dgtale () Vttoro Scarano rchtettura Corso d Lauren Informatca Unverstà degl Stud d Salerno Input/Output Memora Prncpale Sstema d Interconnessone Regstr Central Processng

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Struttura delle ret logstche Sstem produttv multstado Struttura logstca

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Lezione 20 Maggio 29

Lezione 20 Maggio 29 PSC: Progettazone d sstem d controllo III Trm 2007 Lezone 20 Maggo 29 Docente: Luca Schenato Stesor: Maran F, Marcon R, Marcassa A, Zanella F Fnora s sono sempre consderat sstem tempo-nvarant, ovvero descrtt

Dettagli

Misure Ripetute ed Indipendenti

Misure Ripetute ed Indipendenti Msure Rpetute ed Indpendent Una delle metodologe pù semplc per valutare l affdabltà d una msura consste nel rpeterla dverse volte, nelle medesme condzon, ed esamnare dvers valor ottenut. Ovvamente, una

Dettagli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli Realzzazone d FSM sncrone M. Favall Engneerng Department n Ferrara Realzzazone d FSM Anals e sntes de sstem dgtal / Introduzone Realzzazone d FSM Anals e sntes de sstem dgtal 2 / Una volta ottenuto l automa

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

IL GRUPPO SIMMETRICO S n

IL GRUPPO SIMMETRICO S n EMILIO ZAPPA MATRICOLA UNIVERSITA DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA ANNO ACCADEMICO 00/00 TESINA PER IL LABORATORIO DI COMBINATORICA IL GRUPPO SIMMETRICO S n IL GIOCO DEL Sa A un nseme fnto

Dettagli

Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott.

Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott. Lezon d Rcerca Operatva Corso d Laurea n Informatca Unverstà d Salerno Lezone n 18 - Teora de graf: defnzon d base - Problema del flusso a costo mnmo Prof. Cerull Dott.ssa Gentl Dott. Carrabs Teora de

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Università di Verona Prof. S. De Marchi Verona, 30 gennaio 2007

Università di Verona Prof. S. De Marchi Verona, 30 gennaio 2007 LABORATORIO DI CALCOLO NUMERICO Autovalor d matrc: II Unverstà d Verona Prof. S. De March Verona, 30 gennao 2007 Data una matrce quadrata A n n, a coeffcent real, cu autovalor possono essere ordnat come

Dettagli

Algoritmi e Strutture di Dati

Algoritmi e Strutture di Dati Algotm e Stuttue d Dat Quck-sot m.patgnan Nota d copyght queste sldes sono potette dalle legg sul copyght l ttolo ed l copyght elatv alle sldes (nclus, ma non lmtatamente, mmagn, foto, anmazon, vdeo, audo,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 4: 28 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Usando le equazon dfferenzal a varabl separabl,

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

Efficient Algorithms for Mining Outliers from Large Data Sets

Efficient Algorithms for Mining Outliers from Large Data Sets Effcent Algorthms for Mnng Outlers from Large Data Sets Artcolo d S. Ramaswamy, R. Rastog, K. Shm Presentazone a cura d Marcoln Serena, Marno Renato 1 Indce dell ntervento Defnzon d Outlers Algortm Rsultat

Dettagli

QUICKSORT. Basato sul paradigma divide-et-impera (come MERGE-SORT)

QUICKSORT. Basato sul paradigma divide-et-impera (come MERGE-SORT) QUICKSORT Basato sul paradigma divide-et-impera (come MERGE-SORT) Divide: stabilisce un valore di q tale da dividere l array A[p.. r] in due sottoarray non vuoti A[p.. q] e A[q+1.. r], dove ogni elemento

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 03-4, lez.9) Matematca Computazonale, Ottmzzazone,

Dettagli

Tempo ammortizzato. Come valutare strutture dati? Analisi ammortizzata. Analisi della complessità delle operazioni su una struttura dati

Tempo ammortizzato. Come valutare strutture dati? Analisi ammortizzata. Analisi della complessità delle operazioni su una struttura dati Tepo aortzzato Anals della clesstà delle erazon su una struttura dat Coe valutare strutture dat? Possao farlo surando lo spazo occupato n eora Iportante, a non è tutto! Anals aortzzata Il Il tepo aortzzato

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Università di Verona Prof. S. De Marchi Verona, 6 febbraio 2006

Università di Verona Prof. S. De Marchi Verona, 6 febbraio 2006 LABORATORIO DI CALCOLO NUMERICO : Gruppo A Autovalor d matrc: II Unverstà d Verona Prof. S. De March Verona, 6 febbrao 2006 Data una matrce quadrata A n n, a coeffcent real, cu autovalor possono essere

Dettagli

Tempo ammortizzato. Analisi della complessità delle operazioni su una struttura dati. Ugo de' Liguoro - Algoritmi e Sperimentazioni 03/04 - Lez.

Tempo ammortizzato. Analisi della complessità delle operazioni su una struttura dati. Ugo de' Liguoro - Algoritmi e Sperimentazioni 03/04 - Lez. epo aortzzato Anals della coplesstà delle operazon su una struttura dat Coe valutare strutture dat? Possao farlo surando lo spazo occupato n eora Iportante, a non è tutto! Anals aortzzata Il Il tepo aortzzato

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

Capitolo 3. Cap. 3-1

Capitolo 3. Cap. 3-1 Statstca Captolo 3 Descrzone Numerca de Dat Cap. 3-1 Obettv del Captolo Dopo aver completato l captolo, sarete n grado d: Calcolare ed nterpretare la meda, la medana e la moda d un set tdd dat Trovare

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 1 =103 2 2 =97 3 3 =90 4 4 =119

Dettagli

Algoritmi e Strutture di Dati (3 a Ed.) Ricerca tabù. Alan Bertossi, Alberto Montresor

Algoritmi e Strutture di Dati (3 a Ed.) Ricerca tabù. Alan Bertossi, Alberto Montresor Algortm e Strutture d Dat (3 a Ed.) Rcerca tabù Alan Bertoss, Alberto Montresor La tecnca della rcerca locale passa attraverso una sequenza S 0, S 1,..., S m d soluzon, fno ad arrestars su un ottmo locale

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

Flusso a costo minimo

Flusso a costo minimo Flusso a costo mnmo Consderamo un grafo G=(N, A), con capactà u sugl arch. Il problema: mn c (, j) A x s.t. (, j) δ + x ( ) ( j, ) δ x j ( j) = b( ) N x u (, j) A s dce problema d flusso a costo mnmo.

Dettagli

Flusso a costo minimo

Flusso a costo minimo Flusso a costo mnmo Consderamo un grafo G=(N, A), con capactà u sugl arch. Il problema: mn s.t. c (, j) A x (, j) δ x + x ( ) u ( j, ) δ x j ( ) = b( ) N (, j) A s dce problema d flusso a costo mnmo. Assumamo

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Pattern Recognition. Bayes decision theory

Pattern Recognition. Bayes decision theory Computer Scence Department Unversty of Verona A.A. 015-16 Pattern Recognton Bayes decson theory 1 Rev. Thomas Bayes, F.R.S 170-1761 Introduzone Approcco statstco fondamentale d classfcazone d pattern Ipotes:

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

VII esercitazione. Corso di Laurea in Informatica Calcolo Scientifico II a.a. 07/08

VII esercitazione. Corso di Laurea in Informatica Calcolo Scientifico II a.a. 07/08 VII eserctazone Una fattorzzazone che rvela propretà della matrce: La Sngular value decomposton (SVD) fattorzza una matrce rettangolare reale o complessa è utlzzata nelle applcazon: nella trasmssone d

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni Introduzone al calcolo numerco Dervazone Integrazone Soluzone d equazon Dervazone numerca Il calcolo della dervata d una unzone n un punto mplca un processo al lmte ce può solo essere approssmato da un

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Esercitazioni di Analisi Matematica Prof. A. Bonfiglioli

Esercitazioni di Analisi Matematica Prof. A. Bonfiglioli Eserctazon d Anals Matematca Prof. A. Bonfglol Numer compless Eserczo. Per cascuno de seguent numer compless z, nel pano complesso C, dsegnare z e l suo conugato z; portare z n forma algebrca, se è scrtto

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Segmentazione di immagini

Segmentazione di immagini Segmentazone d mmagn Introduzone Segmentazone: processo d partzonamento d un mmagne n regon dsgunte e omogenee. Esempo d segmentazone. Tratta da [] Introduzone (def. formale ( Sa R l ntera regone spazale

Dettagli

Esame del corso di Tecniche Avanzate per il Trattamento delle Immagini

Esame del corso di Tecniche Avanzate per il Trattamento delle Immagini Esame del corso d Tecnche Avanzate per l Trattamento delle Immagn Data: 18 Settembre 2007 1 Es.1 [pt. 5]: Nella fgura (10x10 pxel) rportata a fanco l rettangolo banco è d dmenson 6x4 pxel. Indcando con

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Il paradigma della programmazione dinamica

Il paradigma della programmazione dinamica Il paradgma della programmazone dnamca Paolo Camurat Dp. Automatca e Informatca Poltecnco d Torno Tpologe d problem Problem d rcerca: ete una oluzone valda? cclo Hamltonano: dato un grafo non orentato,

Dettagli

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta Metod ad un passo esplct con passo adattvo Metod Runge - Kutta Scrvere un programma che approssm l problema d Cauchy: u (t) = f(t, u), t 0 t T, u R d, u(t 0 ) = v per un sstema d equazon dfferenzal ordnare

Dettagli

Prima prova di gruppo

Prima prova di gruppo Prma prova d gruppo Es. Una metodologa d anals produce fals postv nel 3% de cas e fals negatv nell % de cas. Calcolate quale è l esto pù probable (postvo o negatvo se due anals consecutve esegute sullo

Dettagli

Elementi di calcolo numerico

Elementi di calcolo numerico Element d calcolo numerco Molto sesso nel calcolo scentco sorge la necesstà d calcolare l valore numerco d ntegral che non ossono essere calcolat analtcamente oure occorre calcolare l valore del mnmo d

Dettagli

La sincronizzazione. (Libro) Trasmissione dell Informazione

La sincronizzazione. (Libro) Trasmissione dell Informazione La sncronzzazone (Lbro) Problem d sncronzzazone La trasmssone e la dverstà tra gl OL del trasmetttore e del rcevtore ntroducono (anche n assenza d fadng) un errore d d frequenza, d fase e d camponamento

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 28/0/2008 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 20 soggett. Soggetto Età Resdenza

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Statistica Descrittiva II

Statistica Descrittiva II Organzzazone de dat Statstca Descrttva II Indc d poszone Indc d varabltà Indc d asmmetra Indc d normaltà Outler Box-plot Sere statstche monovarate Carattere: Cellular possedut Popolazone: 7 student d Botecnologe

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Elettronica dei Sistemi Digitali LA

Elettronica dei Sistemi Digitali LA Elettronca de Sstem Dgtal LA Unverstà d Bologna, sede d Cesena Artmetca Computazonale F.Camp A.a. 5-6 Artmetca Computazonale S studano possbl archtetture hardware (ASIC) per realzzare operazon Matematche

Dettagli

Algoritmi di ordinamento

Algoritmi di ordinamento Algoritmi e Strutture Dati Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Algoritmi di ordinamento Esempi: ordinare una lista di nomi alfabeticamente, o

Dettagli

La logica nell informatica

La logica nell informatica La logca nell nformatca La logca goca un ruolo mportante nell nformatca Logc plays a smlar role n computer scence to that played by calculus n the physcal scences and tradtonal engneerng dscplnes (M. Vard,

Dettagli

Corso di Tecniche elettromagnetiche per la localizzazione e il controllo ambientale. Test scritto del 08 / 09 / 2005

Corso di Tecniche elettromagnetiche per la localizzazione e il controllo ambientale. Test scritto del 08 / 09 / 2005 Corso d Tecnche elettromagnetche per la localzzazone e l controllo ambentale Test scrtto del 8 / 9 / 5 S rsponda alle seguent domande marcando con un segno le rsposte che s reputano corrette. S rsolva

Dettagli

Statistica Descrittiva II

Statistica Descrittiva II Organzzazone de dat Statstca Descrttva II Indc d poszone Indc d varabltà Indc d asmmetra Indc d normaltà Outler Box-plot Sere statstche monovarate Carattere: Cellular possedut Popolazone: 7 student d Botecnologe

Dettagli