Tecniche di analisi multivariata
|
|
|
- Adelmo Chiesa
- 9 anni fa
- Visualizzazioni
Transcript
1 Tecniche di analisi multivariata Metodi che fanno riferimento ad un modello distributivo assunto per le osservazioni e alla base degli sviluppi inferenziali - tecniche collegate allo studio della dipendenza (modello lineare generale, modelli lineari generalizzati), approccio confermativo (logica del giustificare). Applicazioni prevalentemente nell ambito delle scienze sperimentali. Metodologie giustificate prevalentemente da argomenti logicointuitivi - metodi di analisi dei dati, metodi esplorativi, statistica descrittiva multidimensionale, procedure di analisi euristiche, di carattere intuitivo-analogico (logica del trovare). Applicazioni prevalentemente in ambito socio-economico. A. Pollice - Statistica Multivariata
2 Analisi discriminante Insieme di metodologie che permettono di assegnare una generica osservazione x ad una delle p sottopopolazioni X 1,..., X p in cui è suddiviso un universo campionario k-dimensionale X R. A. Fisher (1936): attribuizione di alcuni reperti fossili alla categoria dei primati o a quella degli umanoidi in base a diverse misurazioni effettuate sugli stessi
3 Funzione discriminante lineare di Fisher L obiettivo è quello di individuare la sottopopolazione di appartenenza di un osservazione multidimensionale x in base alla conoscenza campionaria del comportamento delle p sottopopolazioni X 1,..., X p sulle quali non viene effettuata alcuna assunzione distributiva A tal fine si dispone di n osservazioni k-dimensionali già correttamente classificate nelle p sottopopolazioni, ovvero di p campioni X 1,..., X p di numerosità n j da ciascuna sottopopolazione X j con j = 1,..., p
4 L assegnazione dell osservazione x viene effettuata tramite una combinazione lineare W = a X delle k componenti della variabile X rilevata Il vettore k-dimensionale di costanti a deve essere tale da massimizzare la separazione (o discriminazione) tra i p campioni in modo da rendere meno ambigua la classificazione dell osservazione w = a x Ciò corrisponde a rendere massima la differenza tra le medie di W nei p campioni
5 matrice n j k del j-esimo campione X j = x 11j. x 1kj. x nj 1j x nj kj = [x ihj ] j-esimo vettore k-dimensionale delle medie campionarie X j = 1 n j X j u n j = ( X 1j,..., X kj ) j-esima matrice k k delle varianze e covarianze campionarie S j = 1 n j (X j u nj X j ) (X j u nj X j ) = [S hlj]
6 matrice n k di tutte le osservazioni disponibili X = (X 1,..., X p) vettore k-dimensionale delle medie campionarie complessive X = 1 n X u n = ( X 1,..., X k ) matrice k k delle varianze e covarianze campionarie complessive S = 1 n (X u n X ) (X u n X ) = [S hl ]
7 vettore n-dimensionale di tutte le osservazioni disponibili trasformate W = Xa media di tutte le osservazioni disponibili trasformate W = a X varianza di tutte le osservazioni disponibili trasformate S 2 W = a Sa
8 scomposizione della matrice di varianze e covarianze campionarie S S = S (w) + S (b) S (w) = p n j j=1 n S j matrice di varianze e covarianze all interno dei p campioni (within) S (b) matrice di varianze e covarianze tra i p campioni (between) scomposizione della varianza campionaria di W S 2 W = a Sa = a S (w) a + a S (b) a
9 Per definire W bisogna individuare il vettore a che massimizza le differenze tra le medie campionare W 1,..., W p, ovvero la varianza between di W a S (b) a Vincolo sulla dimensione di a dato dall espressione a Sa = 1, che corrisponde a pretendere che W abbia varianza unitaria. Problema di massimo vincolato: { maxa a S (b) a a Sa = 1 Funzione lagrangiana (a, λ) = a S (b) a λ(a Sa 1)
10 Sistema per la soluzione del problema di massimo vincolato (a,λ) a = 2S (b) a 2λSa = o (a,λ) λ = a Sa 1 = 0 = { λ = a S (b) a a Sa = 1 S 1 S (b) a = λa implica che λ è uno degli autovalori di S 1 S (b) ed a è l autovettore ad esso associato affinché sia λ = a S (b) a = max, bisogna scegliere il massimo tra gli autovalori
11 Sia a 1 l autovettore associato al maggiore degli autovalori λ 1 prima funzione discriminante lineare: combinazione lineare delle componenti della variabile k-dimensionale di partenza che separa maggiormente i p campioni W (1) = a (1) X l autovalore λ 1, equivalente alla varianza between della variable W (1), è detto potere discriminante di W (1) e ne misura la capacità di separare le medie dei p campioni
12 La seconda funzione discriminante lineare W (2) deve soddisfare la condizione di massimo e il vincolo precedenti, e deve essere incorrelata con W (1) W (2) = a (2) X il vettore a (2) è dato dalla soluzione del sistema max a(2) a (2) S (b) a (2) a (2) Sa (2) = 1 a (1) Sa (2) = 0 funzione lagrangiana (a (2), µ 1, µ 2 ) = a (2) S (b) a (2) µ 1(a (2) Sa (2) 1) 2µ 2a (1) Sa (2)
13 sistema per la soluzione del problema di massimo vincolato (a (2),µ 1,µ 2 ) a (2) = 2S (b) a (2) 2µ 1 Sa (2) 2µ 2 Sa (1) = o (a,µ 1,µ 2 ) µ 1 = a (2) Sa (2) 1 = 0 (a,µ 1,µ 2 ) µ 2 = a (1) Sa (2) = 0 dopo qualche passaggio algebrico la prima equazione del sistema diventa S 1 S (b) a (2) = µ 1 a (2) µ 1 = λ 2 è il secondo maggiore autovalore della matrice S 1 S (b) ed a (2) è l autovettore corrispondente e tale che a (2) Sa (2) = 1
14 tante funzioni discriminanti lineari quanti sono gli autovalori non nulli della matrice S 1 S (b) (numero pari al rango della matrice g = r(s 1 S (b) )) in genere si considera un numero t < g di funzioni discriminanti misura del potere discriminante complessivo delle prime t funzioni discriminanti tq=1 λ tq=1 q λ q g q=1 λ = q tr(s 1 S (b) )
15 Se si considerano t funzioni discriminanti lineari, l osservazione x è assegnata alla sottopopolazione j -esima tale che, calcolato per q = 1,..., t, si abbia t q=1 w (q) W (q),j = min j t q=1 w (q) W (q),j dove w (q) = a x è il valore dell osservazione non classificata (q) x corrispondente alla q-esima funzione discriminante e W (q),j è la media di W (q) nel j-esimo campione L output di un analisi discriminante deve includere il rango del modello discriminante (t), la posizione di ciascuna sua dimensione rispetto al riferimento originario (i vettori a (q) ), la posizione dei p campioni di osservazioni nel sottospazio delle variabili discriminanti (le medie W (q),j )
16 Funzioni discriminanti di massima verosimiglianza - sottopopolazioni normali con parametri noti La j-esima sottopopolazione abbia una certa distribuzione k-dimensionale p j (x) nota nella forma e nei parametri per j = 1,..., p L osservazione x è classificata nel gruppo per il quale la verosimiglianza è massima p j (x) p j (x) j j r = 1,..., p implica che x sia classificata nella j -esima sottopopolazione
17 Assunzione distributiva di normalità delle sottopopolazioni p j (x) = N k (µ j, Σ j ) si assume che µ j e Σ j siano noti Funzione discriminante quadratica: l osservazione x è assegnata alla j -esima sottopopolazione se vale τ j 1 2 (x µ j ) Σ 1 j (x µ j ) = max τ j 1 j 2 (x µ j) Σ 1 j (x µ j ) con τ j = 1 2 ln Σ j
18 Funzione discriminante lineare: se si può assumere Σ 1 = = Σ p = Σ, la funzione discriminante quadratica diventa con α j = 1 2 µ j Σ 1 µ j α j + x Σ 1 µ j = max j α j + x Σ 1 µ j
19 Funzioni discriminanti di massima verosimiglianza - sottopopolazioni normali con parametri incogniti Se i parametri delle delle sottopopolazioni µ 1,..., µ p e Σ sono incogniti bisogna stimarli tramite la matrice X = (X 1,..., X p) si calcolano le medie X j campionarie e la matrice di varianze e covarianze within del campione S (w) la funzione discriminante lineare diventa 1 2 ( X j ) S 1 (w) X j + x S 1 (w) X j = max 1 j 2 X j S 1 (w) X j + x S 1 (w) X j
20 Analisi discriminante bayesiana Alle sottopopolazioni sono assegnate delle probabilità di appartenenza a priori π j = Pr(x X j ) per j = 1,..., p il teorema di Bayes permette di calcolare le probabilità a posteriori che aggiornano le probabilità a priori tramite le osservazioni campionarie Pr(x X j x) = Pr(x X j) Pr(x x X j ) Pr(x) = π jp j (x) p j=1 π jp j (x) essendo p 1,..., p p le distribuzioni completamente specificate del carattere X nelle p sottopopolazioni
21 l osservazione x viene attribuita alla sottopopolazione j che ha la massima probabilità a posteriori di averla generata p(x j x) = max j p(x j x)
22 Minimizzazione del costo atteso di errata classificazione p = 2 sottopopolazioni k-dimensionali X 1 e X 2 con distribuzioni p 1 e p 2 Ω = Ω 1 Ω 2 spazio campionario k-dimensionale dei possibili valori di x x Ω 1 x viene assegnata alla prima sottopopolazione x Ω 2 x viene assegnata alla seconda sottopopolazione
23 probabilità a priori delle due sottopopolazioni: π 1 = Pr(x X 1 ), π 2 = Pr(x X 2 ) probabilità complessiva di una classificazione errata Pr[(x Ω 1 ) (x X 2 )] + Pr[(x Ω 2 ) (x X 1 )] = = Pr(x X 2 ) Pr[x Ω 1 x X 2 ]+Pr(x X 1 ) Pr[x Ω 2 x X 1 ] = = = π 1 + Ω 1 π 2 p 2 (x) π 1 p 1 (x)dx
24 la probabilità di classificazione errata è minima quando Ω 1 contiene elementi tali che π 2 p 2 (x) π 1 p 1 (x) < 0 = p 1(x) p 2 (x) > π 2 π 1 regola di classificazione: p 1 (x) p 2 (x) > π 2 π 1 x X 1 p 1 (x) p 2 (x) < π 2 π 1 x X 2
25 c(1 2) e c(2 1) perdite che si determinano assegnando erroneamente l osservazione x alla sottopopolazione X 1 e alla sottopopolazione X 2 perdita attesa complessiva: c(1 2) Pr[(x Ω 1 ) (x X 2 )]+c(2 1) Pr[(x Ω 2 ) (x X 1 )] = = = c(2 1)π 1 + Ω 1 c(1 2)π 2 p 2 (x) c(2 1)π 1 p 1 (x)dx
26 la perdita attesa complessiva risulta minima quando Ω 1 contiene elementi tali che c(1 2)π 2 p 2 (x) c(2 1)π 1 p 1 (x) < 0 = p 1(x) p 2 (x) > c(1 2)π 2 c(2 1)π 1 regola di classificazione: p 1 (x) p 2 (x) > c(1 2)π 2 c(2 1)π 1 x X 1 p 1 (x) p 2 (x) < c(1 2)π 2 c(2 1)π 1 x X 2
27 Stima della probabilità di errata classificazione (due gruppi) Metodo parametrico: forma distributiva nota delle due sottopopolazioni, parametri θ 1 e θ 2 stimati. Probabilità complessiva di errata classificazione: π 2 Ω 1 p 2 (x ˆθ 2 )dx + π 1 Ω 2 p 1 (x ˆθ 1 )dx Metodi non parametrici Tassi di errore apparenti: le osservazioni dei due campioni estratti da ciascuna delle sottopopolazioni sono riclassificate tramite la regola di decisione prescelta. Il tasso di errore è ottenuto calcolando la frazione di osservazioni classificate erroneamente
28 Cross-validation (sample splitting): ciascun campione viene suddiviso in due parti di cui una viene utilizzata per definire la regola di classificazione e l altra per valutarla, calcolando la proporzione degli individui classificati in modo sbagliato Cross-validation (leave one out): si prendono in considerazione n 1 1 osservazioni del primo campione e tutte le n 2 osservazioni del secondo per determinare la regola discriminante. In base ad essa si classifica l osservazione esclusa dal primo campione. Il procedimento esposto viene ripetuto escludendo volta per volta ciascuna osservazione del primo e successivamente ciascuna osservazione del secondo campione
Analisi discriminante
Capitolo 6 Analisi discriminante L analisi statistica multivariata comprende un corpo di metodologie statistiche che permettono di analizzare simultaneamente misurazioni riguardanti diverse caratteristiche
Istituzioni di Statistica e Statistica Economica
Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte
1. Distribuzioni campionarie
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie
Temi di Esame a.a. 2012-2013. Statistica - CLEF
Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei
E naturale chiedersi alcune cose sulla media campionaria x n
Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile
Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano
Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S
Esercizi test ipotesi. Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010
Esercizi test ipotesi Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Verifica delle ipotesi - Esempio quelli di Striscia la Notizia" effettuano controlli casuali per vedere se le pompe
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato
STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua
STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo febbraio 2015 Modelli continui di probabilità: la v.c. uniforme continua Esercizio 1 Anna ha una gift card da 50 euro. Non si sa se sia mai stata utilizzata
1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.
. Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,
Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni)
STATISTICA (2) ESERCITAZIONE 4 18.02.2013 Dott.ssa Antonella Costanzo Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) Sia X una popolazione distribuita secondo la legge Bernoulliana
Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C
Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato
Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia
Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 8 Marzo 007 Facoltà di Astronomia ESERCIZIO 1 La seguente tabella riporta la distribuzione congiunta della situazione lavorativa e dello
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca
Il modello media-varianza con N titoli rischiosi. Una derivazione formale. Enrico Saltari
Il modello media-varianza con N titoli rischiosi. Una derivazione formale Enrico Saltari La frontiera efficiente con N titoli rischiosi Nel caso esistano N titoli rischiosi, con N 2, il problema della
15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...
15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura
Ottimizzazione Multi Obiettivo
Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali
Relazioni tra variabili
Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea in Medicina e Chirurgia - A.A. 009-10 Scuole di specializzazione in: Medicina Legale, Medicina del Lavoro, Igiene e Medicina
Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1
Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo
Inferenza statistica. Statistica medica 1
Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella
min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5
IL METODO DEL SIMPLESSO 65 Esercizio 7.4.4 Risolvere utilizzando il metodo del simplesso il seguente problema di PL: min 4 + + + + = 4 + + = + = 5 Innanzitutto scriviamo il problema in forma standard:
Esercitazione n.2 Inferenza su medie
Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione
Autovalori e Autovettori
Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora
Computational Game Theory
Computational Game Theory Vincenzo Bonifaci 24 maggio 2012 5 Regret Minimization Consideriamo uno scenario in cui un agente deve selezionare, più volte nel tempo, una decisione tra un insieme di N disponibili:
Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.
Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando
Lezione n. 2 (a cura di Chiara Rossi)
Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,
SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14
SVM Veronica Piccialli Roma 11 gennaio 2010 Università degli Studi di Roma Tor Vergata 1 / 14 SVM Le Support Vector Machines (SVM) sono una classe di macchine di che derivano da concetti riguardanti la
OCCUPATI SETTORE DI ATTIVITA' ECONOMICA
ESERCIZIO 1 La tabella seguente contiene i dati relativi alla composizione degli occupati in Italia relativamente ai tre macrosettori di attività (agricoltura, industria e altre attività) negli anni 1971
LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010
LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno
Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI
Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni
Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.
Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione
Un modello matematico di investimento ottimale
Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente
Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare
Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista
PROBABILITA CONDIZIONALE
Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,
La Programmazione Lineare
4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi
Parte 6. Applicazioni lineari
Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Distribuzione di probabilità, funzione di ripartizione di una v.c. discreta Il tasso di cambio
1. la probabilità che siano tutte state uccise con pistole; 2. la probabilità che nessuna sia stata uccisa con pistole;
Esercizi di Statistica della 5 a settimana (Corso di Laurea in Biotecnologie, Università degli Studi di Padova). Esercizio 1. L FBI ha dichiarato in un rapporto che il 44% delle vittime di un omicidio
VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che
VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile
FOGLIO 6 - Esercizi Riepilogativi Svolti. Nei seguenti esercizi, si consideri fissato una volta per tutte un riferimento proiettivo per
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Edile/Architettura Esercizi per il corso di GEOMETRIA 2 - aa 2007/2008 Docente: Prof F Flamini - Tutore: Dott M Paganin FOGLIO 6 - Esercizi
Massimi e minimi vincolati
Massimi e minimi vincolati In problemi di massimo e minimo vincolato viene richiesto di ricercare massimi e minimi di una funzione non definita su tutto R n, ma su un suo sottoinsieme proprio. Esempio:
Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi
In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se
Probabilità Calcolo combinatorio, probabilità elementare, probabilità condizionata, indipendenza, th delle probabilità totali, legge di Bayes
Sessione Live #3 Settimana dal 7 all 11 marzo 2003 Probabilità Calcolo combinatorio, probabilità elementare, probabilità condizionata, indipendenza, th delle probabilità totali, legge di Bayes Lezioni
Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una
11. Analisi statistica degli eventi idrologici estremi
. Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche
Principi di analisi causale Lezione 2
Anno accademico 2007/08 Principi di analisi causale Lezione 2 Docente: prof. Maurizio Pisati Logica della regressione Nella sua semplicità, l espressione precedente racchiude interamente la logica della
Statistical Process Control
Statistical Process Control ESERCIZI Esercizio 1. Per la caratteristica di un processo distribuita gaussianamente sono note media e deviazione standard: µ = 100, σ = 0.2. 1a. Calcolare la linea centrale
T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:
T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1
2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale
BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health [email protected]
ESAME DI STATISTICA Nome: Cognome: Matricola:
ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli
Ricerca Operativa e Logistica
Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 2011/2012 Lezione 10: Variabili e vincoli logici Variabili logiche Spesso nei problemi reali che dobbiamo affrontare ci sono dei
Metodi Computazionali
Metodi Computazionali Elisabetta Fersini [email protected] A.A. 2009/2010 Catene di Markov Applicazioni: Fisica dinamica dei sistemi Web simulazione del comportamento utente Biologia evoluzione delle
Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica
Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -
ESERCITAZIONE 1. 15 novembre 2012
ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali
Sistemi Informativi Territoriali. Map Algebra
Paolo Mogorovich Sistemi Informativi Territoriali Appunti dalle lezioni Map Algebra Cod.735 - Vers.E57 1 Definizione di Map Algebra 2 Operatori locali 3 Operatori zonali 4 Operatori focali 5 Operatori
1 Applicazioni Lineari tra Spazi Vettoriali
1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!
Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani
Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.
EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.
EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema
Inferenza statistica I Alcuni esercizi. Stefano Tonellato
Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,
Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.
ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE
ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE Algebra lineare numerica 121 Ax = b A, b affetti dall errore di round-off si risolve sempre un sistema perturbato: con (A + A)(x + x) = b + b A = ( a i,j
RETTE, PIANI, SFERE, CIRCONFERENZE
RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,
STATISTICA INFERENZIALE
STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p
VC-dimension: Esempio
VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo [email protected] A.Studio dell interdipendenza tra variabili: riepilogo Concetto relativo allo studio delle relazioni tra
La teoria dell utilità attesa
La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.
Analisi dei gruppi (Cluster analysis)
Capitolo 10 Analisi dei gruppi (Cluster analysis) Partendo da un collettivo multidimensionale, l analisi dei gruppi mira ad assegnarne le unità a categorie non definite a priori, formando dei gruppi di
ELEMENTI DI STATISTICA
Dipartimento di Ingegneria Meccanica Chimica e dei Materiali PROGETTAZIONE E GESTIONE DEGLI IMPIANTI INDUSTRIALI Esercitazione 6 ORE ELEMENTI DI STATISTICA Prof. Ing. Maria Teresa Pilloni Anno Accademico
MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)
MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate
LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0
LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi
Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test
STATISTICA (2) ESERCITAZIONE 6 05.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test Il preside della scuola elementare XYZ sospetta che
Un applicazione della programmazione lineare ai problemi di trasporto
Un applicazione della programmazione lineare ai problemi di trasporto Corso di Ricerca Operativa per il Corso di Laurea Magistrale in Ingegneria della Sicurezza: Trasporti e Sistemi Territoriali AA 2012-2013
Corso di Psicometria Progredito
Corso di Psicometria Progredito 4.2 I principali test statistici per la verifica di ipotesi: Il test F Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico
Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni
Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica
ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)
ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Una immagine (digitale) permette di percepire solo una rappresentazione 2D del mondo La visione 3D si pone lo scopo di percepire il mondo per come è in 3 dimensioni
FONDAMENTI DI PSICOMETRIA - 8 CFU
Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso
ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA
ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai
Capitolo 4 Probabilità
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.
Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1
Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il
Luigi Piroddi [email protected]
Automazione industriale dispense del corso 10. Reti di Petri: analisi strutturale Luigi Piroddi [email protected] Analisi strutturale Un alternativa all analisi esaustiva basata sul grafo di raggiungibilità,
Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26
Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo
Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V
Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows.
( x) ( x) 0. Equazioni irrazionali
Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema
LE FUNZIONI A DUE VARIABILI
Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre
Verifica di ipotesi e intervalli di confidenza nella regressione multipla
Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo
Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera
Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro
LEZIONE n. 5 (a cura di Antonio Di Marco)
LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,
Metodi statistici per le ricerche di mercato
Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per
VERIFICA DELLE IPOTESI
VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi
Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica
Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim
STATISTICA IX lezione
Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri
Problema del trasporto
p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel
Esercitazione n.4 Inferenza su varianza
Esercizio 1 Un industria che produce lamiere metalliche ha ricevuto un ordine di acquisto di un grosso quantitativo di lamiere di un dato spessore. Per assicurare la qualità della propria fornitura, l
Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.
Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,
EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6
EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)
Slide Cerbara parte1 5. Le distribuzioni teoriche
Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle
