1. Pompieri (Cat. 3) /ARMT/ II prova
|
|
|
- Ignazio Antonelli
- 9 anni fa
- Visualizzazioni
Transcript
1 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p Pompieri (Cat. 3) /ARMT/ II prova I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2 volte quella corta, - una lunga che misura 4 volte quella corta. I pompieri possono attaccare le tre scale per ottenere una scala molto lunga che misura 42 metri. Quanto misura ciascuna scala? Spiegate il vostro ragionamento : - Logica: gestione opportuna di diverse informazioni - Aritmetica: le quattro operazioni : - Procedere per tentativi (additivi o moltiplicativi) organizzati a partire dalla lunghezza totale e tenendo conto delle altre informazioni: capire che, ad esempio, se si parte dalla scala corta di 10 m, la lunga sarebbe già di 40 m e quindi certamente anche l'ipotesi di 9 m e di 8 m non vanno bene. Provare con 7 m: = 49. Ancora troppo. Con 6 m: = 42. oppure dividere 42 per 3 e fare aggiustamenti successivi o rendersi conto che potrebbero esserci in tutto 7 ( ) scale corte ed effettuare una divisione per 7 - Calcolare poi le lunghezze delle altre scale. : 4 Risposta corretta (6 m, 12 m, 24 m) con procedura esplicitata (che può rappresentare la giustificazione) 3 Risposta corretta, ma con procedura non chiaramente o completamente esplicitata oppure risposta incompleta (due lunghezze giuste) e procedura chiara 2 Risposta corretta senza esplicitazione della procedura o senza giustificazione oppure risposta con un errore di calcolo ma con procedura corretta oppure procedura esplicitata, ma senza risposta finale sulla lunghezza di ciascuna scala 1 Inizio corretto di ricerca oppure risposta che non tiene conto dell ultima informazione (42 m) Livello: 3 Origine: Parma
2 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p La casa di Viola (Cat. 3, 4) /ARMT/ II prova Cinque amiche, Azzurra, Bianca, Nerina, Rossana e Viola, abitano in Via dei Colori. Le loro case sono situate nella via una di seguito all altra e dalla parte della numerazione dispari (1, 3, 5, 7,...). Bianca abita al numero 17 La casa di Nerina ha il numero più alto Azzurra e Rossana non abitano accanto a Nerina Azzurra abita al numero 21 Completate l indirizzo della casa di Viola: Via dei Colori n.. Spiegate il vostro ragionamento. - Logica - Aritmetica: numeri pari e dispari - Dedurre che: dalla seconda condizione la casa di Nerina occupa nella fila delle cinque case uno dei due estremi; dalla terza condizione o Bianca o Viola abita accanto a Nerina; dalla prima e quarta condizione solo Viola può abitare accanto a Nerina - Segue che la disposizione delle case è: abitazione di Bianca (n 17), abitazione di Rossana (n 19) abitazione di Azzurra (n 21), abitazione di Viola (n 23) e abitazione di Nerina (n 25). 4 Risposta giusta (abitazione di Viola n 23) e ben argomentata 3 Risposta giusta con spiegazione poco chiara o con tabella completa o disegno delle case con i nomi e i numeri, senza spiegazioni a parole 2 Errore dovuto al non considerare una condizione oppure risposta giusta senza alcuna spiegazione 1 Inizio corretto di ragionamento Livello: 3-4 Origine: Siena e incontro di Parma
3 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p Francobolli (Cat. 3, 4) /ARMT/ II prova Il signor Meticoloso, impiegato delle Poste di Transalpino, ha di fronte a sé un foglio di francobolli quadrati, foglio dal quale sono già stati staccati due francobolli. Vorrebbe dividere questo foglio in due parti che si sovrappongano esattamente. Come deve fare il signor Meticoloso per ottenere due parti della stessa forma, con lo stesso numero di francobolli? Indicate la vostra soluzione. - Geometria, orientazione - Constatare che il foglio non può essere diviso con una semplice piegatura (è "irregolare", non ha assi di simmetria,...) - Contare eventualmente i francobolli per trovare che in ognuna delle due parti devono essercene 14 - Per tentativi successivi arrivare alla seguente suddivisione e osservare che bisogna girare il foglio perché le due parti possano sovrapporsi esattamente: 4 Risposta corretta con il disegno o collage preciso 3 Risposta corretta con disegno o collage impreciso 2 Suddivisione non corretta, ma con somiglianze fra le due parti 1 Inizio di ragionamento corretto Livello : 3-4 Origine : Luxembourg e incontro di Parma
4 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p Un pomeriggio in piscina (Cat. 3, 4, 5) /ARMT/ II prova All entrata della piscina di Pratobello c è questo cartello : PISCINA DI PRATOBELLO ADULTI 8 EURO BAMBINI 4 EURO La cassiera ha ricevuto 50 euro da un gruppo di persone che sono entrate in piscina. Ha dato 10 euro di resto. Da quante persone può essere formato questo gruppo? Indicate e spiegate le soluzioni che avete trovato. - Aritmetica: le quattro operazioni - Combinatoria - Sottrarre da 50 euro il resto per trovare il costo complessivo dei biglietti (50-10=40) - Scomporre il numero 40 come somma di multipli di 4 e di 8 o come somma di 4 e di 8 e dedurre la composizione del gruppo - Assicurarsi che siano state ottenute tutte le soluzioni possibili: Adulti Bambini Risposta corretta completa (le sei possibilità) con dettaglio dei calcoli 3 Risposta corretta completa senza dettaglio dei calcoli oppure 4 o 5 possibilità con dettaglio dei calcoli 2 4 possibilità senza il dettaglio dei calcoli oppure 3 con dettaglio dei calcoli 1 Due o una possibilità Livello: Origine: Parma e incontro di Parma
5 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p C'è chi scende e c è chi sale (Cat. 3, 4, 5) /ARMT/ II prova Giorgio va a trovare Gigi. Quando arriva a casa dell'amico, Giorgio sale gli scalini uno o due alla volta, saltando in maniera irregolare. Gigi gli va incontro scendendo 3 scalini alla volta. I due amici si incontrano sull'ottavo scalino contando dal basso, dopo aver fatto lo stesso numero di salti. Di quanti scalini può essere la scala della casa di Gigi? Spiegate come avete trovato le vostre soluzioni. - Aritmetica: le quattro operazioni - Capire che per salire i primi 8 scalini con salti irregolari di 1 o 2 scalini alla volta, Giorgio ha tre possibilità: 3 salti da 2 e 2 salti da 1; 2 salti da 2 e 4 salti da 1; 1 salto da 2 e 6 salti da 1 (e che bisogna rinunciare a 4 salti da 2 così come a 8 salti da 1) - Contare il numero dei salti per ogni possibilità: 5 (3 + 2), 6 (2 + 4) e 7 (1 + 6), che corrispondono al numero di salti di Gigi - Moltiplicare 5, 6 e 7 per 3 (numero degli scalini di ogni salto di Gigi) e aggiungere il numero trovato a 8 (numero di scalini saliti da Giorgio. - Dedurre che la scala può avere 23, 26 o 29 scalini 4 Le 3 possibilità (23, 26 o 29 scalini) con spiegazione chiara e completa 3 2 possibilità con spiegazione chiara oppure le 3 possibilità con spiegazione confusa, oppure 5 possibilità (20, 23, 26, 29 o 32 scalini, con salti regolari) 2 1 soluzione corretta con spiegazione chiara oppure 2 o 5 possibilità con spiegazione confusa 1 Inizio corretto di ricerca Livello: Origine : Aosta e incontro di Parma
6 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p Punti da isolare (Cat. 4, 5, 6) /ARMT/ II prova Tracciando delle rette, si vuole suddividere questo rettangolo in diverse parti che contengano ognuna solo un punto. Una prima retta è già tracciata. Qual è il numero minore di rette che vi permette di isolare ogni punto del rettangolo? Disegnate la vostra soluzione migliore. : - Geometria: punti, rette, parti di piano : - Constatare che i punti formano tre allineamenti di cinque - Scoprire che con due rette orizzontali si separano i tre gruppi - Procedere per tentativi successivi per sistemare le altre rette (oblique o verticali) che permettono di isolare ogni punto - 4 Una soluzione corretta e completa minimale con 6 rette (compresa quella data) 3 Una soluzione con 7 rette 2 Una soluzione con 8 rette 1 Una soluzione con più di 8 rette o con 6 rette e con due punti dalla stessa parte 0 Altre soluzioni o incompresione del problema Livello: Origine : Canton Ticino
7 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p Incarichi di responsabilita (Cat. 4, 5, 6) /ARMT/ II prova Nella classe di Annalisa sono stati nominati all inizio dell anno scolastico 4 responsabili, per i seguenti incarichi: A capoclasse B controllo dei compiti C responsabile dei gessi D responsabile della biblioteca. Ogni bimestre, cioè ogni due mesi, i responsabili cambiano ruolo, in modo che alla fine dell anno ognuno dei 4 responsabili abbia svolto tutti e 4 gli incarichi (in un anno scolastico ci sono 4 bimestri). I compagni incaricati sono Elisa, Marzia, Paolo e Gino. - Nel primo bimestre Elisa è capoclasse, mentre Paolo controlla i compiti - Nel secondo bimestre il capoclasse è Paolo - Nel quarto bimestre Gino si occupa dei gessi Qual è l incarico dei 4 responsabili in ognuno dei 4 bimestri dell anno scolastico? Spiegate come avete trovato la vostra risposta. - Logica - Comprendere la situazione, e descrivere l itinerario risolutivo o attraverso delle tabelle, o con un argomentazione. La situazione iniziale è quella della tabella 1. - Nel quarto bimestre Paolo deve avere l incarico D, dato che ha già avuto A e B, e Gino ha C - Allora Elisa deve avere, sempre nel quarto periodo, l incarico B, perché ha già avuto A, e Paolo e Gino hanno D e C - Paolo, nel terzo bimestre, non può che avere C: è l unico incarico che gli manca - Nel quarto periodo Marzia deve avere A, dato che gli altri 3 incarichi sono già affidati - Gino nel primo bimestre deve avere D, perché restano liberi solo C e D, ma avrà C nel quarto bimestre - Allora a Marzia nel primo bimestre rimane C. A questo punto la situazione è quella della tabella 2 - Ad Elisa mancano gli incarichi C e D: poiché il C nel terzo periodo è di Paolo, Elisa può avere solo C nel secondo e D nel terzo periodo - A Marzia mancano D e B: ma D è già di Elisa nel terzo periodo, perciò Marzia avrà D nel secondo e B nel terzo bimestre - A Gino rimangono B nel secondo bimestre e A nel terzo. La soluzione è nella tabella 3. Tabella 1 Tabella 2 Tabella 3 I II III IV I II III IV I II III IV Elisa A Elisa A B Elisa A C D B Marzia Marzia C A Marzia C D B A Paolo B A Paolo B A C D Paolo B A C D Gino C Gino D C Gino D B A C 4 Risposta corretta con argomentazione o con almeno tre tabelle - che esprimono l ordine secondo il quale i compiti sono stati determinati 3 Risposta corretta senza spiegazione (solamente una tabella o una lista o la semplice ripetizione dei dati) 2 Risposta parzialmente corretta, con un solo errore (inversione, compito ripetuto per una delle persone,...) 1 Risposta con più di un errore Livello: Origine : Belluno
8 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p La bandiera (Cat. 5, 6, 7) /ARMT/ II prova Per le giornate sportive della scuola, la squadra Rettangoli si è fabbricata una bandiera del tipo seguente: su un rettangolo di stoffa blu lungo 196 cm e largo 98 cm sono stati cuciti tanti rettangolini di stoffa rossa lunghi 20 cm e larghi 8 cm, a distanza di 2 cm l uno dall altro. 196 Questo disegno mostra la parte alta della bandiera dopo che sono stati cuciti i primi 7 rettangolini: Quanti rettangolini interi rossi la squadra Rettangoli ha potuto cucire in tutto sulle due facce della bandiera? Spiegate il vostro ragionamento. - Aritmetica: le quattro operazioni - Geometria: rettangolo, dimensioni, area - Comprendere la disposizione dei rettangolini rossi sulla bandiera - Tenere presenti le misure date e determinare il numero dei rettangolini rossi disposti sui bordi o procedendo per tentativi, per esempio considerando che lungo il lato più corto del rettangolo blu non si possono trovare più di 12 rettangolini rossi (98:8) e lungo il lato più lungo non possono essercene più di 9; controllare poi che 12 rettangolini comporterebbero per il rettangolo blu almeno 118 cm di larghezza, 11 rettangoli 108 cm, mentre con 10 rettangoli si ottiene la misura di 98 cm; stabilire in modo analogo che 9 devono essere i rettangolini rossi disposti lungo il lato maggiore del rettangolo blu o effettuando le divisioni 196:22=8 resto 20 e 98:10=9 resto 8, tenendo presente anche la larghezza della stoffa blu che separa due rettangoli e interpretando correttamente i resti ottenuti (i resti comportano la presenza di un ulteriore rettangolino rosso sia in lunghezza che in larghezza) o procedendo con il disegno dei rettangolini rossi lungo due lati consecutivi della bandiera, tenendo conto contemporaneamente della variazione delle misure - Dedurre che 90 (=9x10) è il numero dei rettangolini rossi su ciascuna faccia della bandiera 4 La risposta corretta 180, con il dettaglio delle operazioni e la procedura seguita (o disegno completo) 3 La risposta corretta 180, ma con spiegazione incompleta 2 Risposta 180 senza spiegazione, oppure risposta 90 (una sola faccia) con spiegazione completa, oppure procedimento corretto senza risposta numerica oppure con errore di conteggio 1 Inizio corretto di ragionamento Livello: Origine: Siena e incontro di Parma
9 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p Moltiplicazione in codice (Cat. 5, 6, 7, 8) /ARMT/ II prova In questa moltiplicazione, ogni cifra è stata sostituita con una lettera. Una stessa lettera sostituisce sempre la stessa cifra. Due lettere differenti sostituiscono due cifre differenti. A D E x F B A D E E D C D E B D D E Trovate a quale cifra corrisponde ciascuna lettera e ricostruite la moltiplicazione. Spiegate come avete fatto. : Aritmetica: moltiplicazione, addizione : Constatare che A D E x B = A D E, dedurne che B = 1 Constatare che il doppio di D ha come cifra delle unità D, dedurne che il solo valore possibile per D è 0 Osservare che F x E e F x A finiscono con 0, dedurne che il solo valore possibile per F è 5 5 x E = C0 e 5 x A = E0, i valori possibili per E ed A sono 4, 6 e 8 poiché C 1 Testare i valori possibili per E ed A, controllare che le altre consegne siano rispettate. A e C devono essere tali che si abbia A + C = 10 Soluzione: x Risposta corretta (le 6 cifre trovate) con spiegazione 3 Risposta corretta senza spiegazione, oppure 4 o 5 cifre giuste con spiegazione 2 3 cifre giuste con spiegazione, oppure cifre giuste senza spiegazione 1 2 cifre giuste con spiegazione, oppure 3 cifre giuste senza spiegazione oppure 1 cifra giusta con o senza spiegazione Livello: Origine: Bourg-en-Bresse
10 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p Miss Trepunte (Cat. 5, 6, 7, 8) Miss Trepunte è un'appassionata di puzzle. Con quattro triangoli rettangoli isosceli uguali, Miss Trepunte è riuscita a formare dei poligoni differenti fra loro. Nei poligoni che ha formato, i quattro triangoli non vanno messi uno sull altro e hanno ognuno almeno un lato in comune con uno degli altri triangoli. Disegnate i poligoni differenti che riuscite a trovare e classificateli secondo il numero dei loro lati. Ad esempio: A è una soluzione accettabile ed è la stessa di A in quanto i due rettangoli sono uguali (anche se all interno i 4 pezzi triangolari sono disposti in maniera diversa); B non è una soluzione accettabile in quanto il triangolo a sinistra non ha alcun lato in comune (compresi i vertici) con uno degli altri; C e C sono uguali in quanto si possono sovrapporre esattamente e rappresentano quindi la stessa soluzione: C' A A' B C : - Geometria: riconoscimento di figure isometriche : - Determinare le 14 figure, per tentativi, confronti, ricoprimenti,... 1 triangolo 5 quadrilateri 2 poligoni con 5 lati 3 poligoni con 6 lati senza simmetrie 3 poligoni con 6 lati con simmetrie 4 Le 14 soluzioni differenti, disegnate e classificate, senza poligoni sovrapponibili (né ripetizioni, né dimenticanze) 3 12 o 13 soluzioni differenti, disegnate e classificate (una o due dimenticanze), oppure 14 differenti e una o due ripetizioni, oppure 14 soluzioni differenti disegnate, ma senza classificazione 2 10 a 11 soluzioni differenti, disegnate e classificate (con 3 o 4 dimenticanze), oppure 12 o 13 differenti e 3 o 4 ripetizion, oppure 12 o 13 soluzioni disegnate, senza classificazione 1 Da 5 a 9 soluzioni differenti oppure «14» senza alcun disegno 0 Incompresnsione delle regole di costruzione oppure meno di 5 soluzioni differenti Livello: Origine Genova
1. Pompieri (Cat. 3) /ARMT/ II prova
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) /ARMT/2002-10 - II prova I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2
1. Pompieri (Cat. 3) /ARMT/ II prova
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) /ARMT/2002-10 - II prova I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2
1. Pompieri (Cat. 3) Quanto misura ciascuna scala? Spiegate il vostro ragionamento. 2. La casa di Viola (Cat. 3, 4)
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2 volte quella corta, - una
1. Pompieri (Cat. 3) Quanto misura ciascuna scala? Spiegate il vostro ragionamento
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2 volte quella corta, - una
Tracciando delle rette, si vuole suddividere questo rettangolo in diverse parti che contengano ognuna solo un punto. Una prima retta è già tracciata.
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 6. Punti da isolare (Cat. 4, 5, 6) /ARMT/2002-10 - II prova Tracciando delle rette, si vuole suddividere questo rettangolo in
Quanti alunni preparano il balletto? Quanti alunni preparano la rappresentazione teatrale? Spiegate come avete trovato le vostre risposte.
13 o RALLY MATEMATICO TRANSALPINO PROVA II - marzo - aprile 2005 ARMT.2005 p. 1 1. SPETTACOLO DI FINE ANNO (Cat. 3) ARMT.2005-13 - II prova Nella classe di Luca ci sono 21 alunni che hanno tutti nomi differenti.
I problemi di questa prova
I problemi di questa prova Categoria Problemi 3 1-2-3-4-5 4 1-2-3-4-5-6 5 1-2-3-4-5-6-7 6 7-8-9-10-11-12-13 7 8-9-10-11-12-13-14 8 8-9-10-11-12-13-14 9 10-11-12-13-14-15-16 10 10-11-12-13-14-15-16 Correzione
Quali tipi di marmellata può aver acquistato? Indicate tutti i modi possibili di comprare due tipi diversi di marmellata.
13 RALLY MATEMATICO TRANSALPINO finale maggio 2005 ARMT.2005 1 1. LE MARMELLATE (Cat. 3) ARMT.2005-13 - finale Una contadina del paese di Boscoverde prepara cinque tipi di marmellata: alle castagne, all
12 o RALLY MATEMATICO TRANSALPINO - FINALE ARMT.2004 p. 1
12 o RALLY MATEMATICO TRANSALPINO - FINALE ARMT.2004 p. 1 1. AL CINEMA (Cat. 3) ARMT.2004-12 - Finale Quattro amiche, Angela, Daniela, Gabriella e Lucia vanno al cinema insieme e si siedono una accanto
Addiziona poi questi tre numeri e trova come somma 45 che è proprio l età di sua mamma.
1. I BOTTONI DI ERNESTO (Cat 3, 4) ARMT 2003 - finale 11 Per il suo prossimo spettacolo il clown Ernesto deve preparare un nuovo vestito. Vuole cucire 3 bottoni sul suo vestito, nel posto indicato nel
22 Rally Matematico Transalpino, prova 1!
22 Rally Matematico Transalpino, prova 1 I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata la provenienza del problema inserendo la dicitura " ARMT".
Risolvete anche voi il quesito di mago Merlino e spiegate il vostro ragionamento.
11 o RALLY MATEMATICO TRANSALPINO - PROVA II marzo 2003 ARMT.2003 p. 1 7. IL QUESITO DI MAGO MERLINO (Cat. 4, 5, 6) /ARMT/2003-11 - II prova Mago Merlino vuol mettere alla prova le capacità matematiche
1. NEL PAESE DI PIOVEPOCO (Cat. 3) ARMT II prova
o RALLY MATEMATICO TRANSALPINO - PROVA II marzo - aprile ARMT. p.. NEL PAESE DI PIOVEPOCO (Cat. ) ARMT. - - II prova Nel paese PIOVEPOCO manca l acqua. Due amiche, Laura e Paola, vanno a prendere l acqua
Kangourou della Matematica 2019 Coppa Kangourou a squadre Semifinale turno A Cervia, 3 maggio Quesiti
Kangourou della Matematica 209 Coppa Kangourou a squadre Semifinale turno A Cervia, 3 maggio 209 Quesiti. La sostituzione Se sostituite i numeri N =, 2, 3, nell espressione N 2 209N + 209 ottenete una
Nella seconda partita Tommaso ha vinto o perso delle figurine? E quante?
11 o RALLY MATEMATICO TRANSALPINO - PROVA II marzo 2003 ARMT.2003 p. 1 1. GIOCHI CON ME? (Cat. 3) Tommaso va a casa di Francesco per giocare con le figurine. Tommaso ha 27 figurine. Nella prima partita
14 RMT PROVA I gennaio-febbraio 2006 ARMT
14 RMT PROVA I gennaio-febbraio 2006 ARMT.2006 1 7. OGNUNO AL SUO POSTO (Cat. 4, 5, 6) ARMT.2006-14 - I prova Alfredo, Bice, Carla, Danilo, Emilio, Franco, Gina ed Ilario si dispongono attorno ad una tavola
17 Rally Matematico Transalpino, prova finale
17 O RMT PROVA FINALE - maggio-giugno ARMT 2009 1 17 Rally Matematico Transalpino, prova finale I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata
Indicate il numero di mattonelle bianche e il numero di mattonelle grigie che mancano. Spiegate come avete trovato la risposta.
12 o RALLY MATEMATICO TRANSALPINO - FINALE ARMT.2004 p. 1 1. AL CINEMA (Cat. 3) ARMT.2004-12 - Finale Quattro amiche, Angela, Daniela, Gabriella e Lucia vanno al cinema insieme e si siedono una accanto
Fra quanti anni i quattro bambini avranno insieme la stessa età della loro mamma? Indicate la vostra soluzione e spiegate il vostro ragionamento.
12 o RALLY MATEMATICO TRANSALPINO - PROVA I - gen. - feb. 2004-8 a cat. /ARMT/2004 1 6. IL COMPLEANNO DELLA MAMMA (Cat. 4, 5, 6) /ARMT/2004 Andrea, Anna, Annalisa e Alberto hanno rispettivamente 11, 9,
Test di autovalutazione
UNITÀ LE TRSFORMZIONI GEOMETRIHE: OMOTETIE E SIMILITUDINI Test Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è L omotetia è una trasformazione geometrica che a lascia
OBIETTIVI MINIMI DI MATEMATICA
OBIETTIVI MINIMI DI MATEMATICA TERZA NUCLEI TEMATICI OBIETTIVI SPECIFICI COMPETENZE VERIFICHE IL NUMERO Conoscere la struttura del numero intero fino a 999. - Contare oggetti in senso progressivo e regressivo.
Indicate il numero di mattonelle bianche e il numero di mattonelle grigie che mancano. Spiegate come avete trovato la risposta.
12 o RALLY MATEMATICO TRANSALPINO - FINALE ARMT.2004 p. 1 1. AL CINEMA (Cat. 3) ARMT.2004-12 - Finale Quattro amiche, Angela, Daniela, Gabriella e Lucia vanno al cinema insieme e si siedono una accanto
per un altro; le più importanti sono quelle di seguito elencate.
2 Abilità di calcolo I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici. Prima di cimentarti con i test proposti,
quadrilatero generico parallelogramma rombo rettangolo quadrato
Pavimentare 1. Quali forme di quadrilateri puoi costruire? Schizza tutte le forme possibili e scrivi il loro nome. 2. Cosa rappresentano i piccoli punti rossi sui lati del quadrilatero? 3. a) Costruisci
Kangourou della Matematica 2017 Coppa Kangourou a squadre Finale Cervia, 7 maggio Quesiti
Kangourou della Matematica 2017 Coppa Kangourou a squadre Finale Cervia, 7 maggio 2017 Quesiti 1. Speciale Chiamiamo numero speciale un numero intero (positivo) di quattro cifre (significative) tale che
LE FIGURE PIANE CON GLI OCCHI DEI BAMBINI
LE FIGURE PIANE CON GLI OCCHI DEI BAMBINI Monica Falleri CLASSE V a.s. 2014-15 METODOLOGIA LABORATORIALE che utilizza il PROBLEMA come MOTORE dell ESPLORAZIONE, della SCOPERTA, della COSTRUZIONE DI CONOSCENZA
IGiochidiArchimede-SoluzioniBiennio 23 novembre 2005
PROGETTO OLIMPIADI DI MATEMATIA U.M.I. UNIONE MATEMATIA ITALIANA SUOLA NORMALE SUPERIORE IGiochidiArchimede-SoluzioniBiennio 3 novembre 00 1 Griglia delle risposte corrette Risoluzione dei problemi Problema
Trovate e indicate tutti i modi possibili di sistemare tutti i gettoni nelle scatole.
9 RALLY MATEMATICO TRANSALPINO FINALE maggio 21 p. 1 21 ARMT 1. I GETTONI (Cat. 3) Antonio ha 3 gettoni da sistemare in alcune scatole. Due scatole sono rosse e tre sono blu. Antonio vuol mettere lo stesso
8 RALLY MATEMATICO TRANSALPINO PROVA II (marzo 2000) 1. 1. IN BICICLETTA (Cat. 3)
1. IN BICICLETTA (Cat. 3) Claudio, Hans, Alfio, Jacky e Giancarlo partecipano ad una gara di biciclette e passano la linea del traguardo uno dopo l altro. Claudio arriva dopo Hans ma prima di Alfio. Giancarlo
L ampiezza degli angoli si misura in gradi (simbolo ), da 0 a 360. sottomultipli
In un poligono possiamo prendere diversi tipi di misure: L ampiezza degli angoli La misura dei lati ed il perimetro La misura della sua superficie o area. L ampiezza degli angoli si misura in gradi (simbolo
Come può Zoe ricoprire completamente la sua tavoletta? Indicate tutte le diverse possibilità. Spiegate il vostro ragionamento.
14 RMT PROVA I gennaio-febbraio 2006 ARMT.2006 1 4. TAVOLETTA DA RICOPRIRE (Cat. 3, 4, 5) ARMT.2006-14 - I prova Zoe deve ricoprire completamente questa tavoletta di 9 caselle quadrate. Per farlo, ha a
19 RMT PROVA II marzo aprile 2011 ARMT 2011 1. Problemi Categorie Argomenti Origine
19 RMT PROVA II marzo aprile 11 ARMT 11 1 Problemi Categorie Argomenti Origine 7. Il pirata Barbanera (II) 5 6 Ar Co AO 8. Rettangoli ingranditi 5 6 7 Geo gp geo2d 9. Tappeto da srotolare 5 6 7 Ar Geo
CENTRO PRISTEM-UNIVERSITÀ BOCCONI
CENTRO PRISTEM-UNIVERSITÀ BOCCONI CATEGORIA C1 Problemi 1-2-3-4-5-6-7-8 CATEGORIA C2 Problemi 5-6-7-8-9-10-11-12 CATEGORIA L1 Problemi 9-10-11-12-13-14- 15-16 CATEGORIA L2 Problemi 11-12-13-14-15-16- 17-18
MATEMATICA CLASSE QUARTA
MATEMATICA CLASSE QUARTA a) I NUMERI NATURALI E LE 4 OPERAZIONI U.D.A. : 1 I NUMERI NATURALI 1. Conoscere l evoluzione dei sistemi di numerazione nella storia dell uomo. 2. Conoscere e utilizzare la numerazione
10. Quale dei seguenti numeri
Test d'ingresso di matematica per la secondaria di secondo grado (liceo classico) Il test si basa su alcuni test di ingresso (opportunamente modificati) assegnati al liceo classico e trovati in Rete Nome:
Kangourou della Matematica 2009 finale nazionale italiana Mirabilandia, 11 maggio 2009
Kangourou della Matematica 2009 finale nazionale italiana Mirabilandia, 11 maggio 2009 LIVELLO JUNIOR J1. (5 punti ) Un asta lunga 10 metri va spezzata in modo che sia possibile riporre (eventualmente
1. NEL PAESE DI PIOVEPOCO (Cat. 3) ARMT II prova
o RALLY MATEMATICO TRANSALPINO - PROVA II marzo - aprile ARMT. p.. NEL PAESE DI PIOVEPOCO (Cat. ) ARMT. - - II prova Nel paese PIOVEPOCO manca l acqua. Due amiche, Laura e Paola, vanno a prendere l acqua
15 RMT finale, maggio 2007 ARMT
15 RMT finale, maggio 2007 ARMT 2007 1 1. LE MONETE DI EMILIA (Cat. 3) ARMT.2007-15 - finale Nel suo portamonete Emilia ha solo monete da 5, 10, 20 o 50 centesimi. Ne prende otto e osserva che formano
In questa tabella si possono vedere molti quadrati di quattro caselle:
10 o RALLY MATEMATICO TRANSALPINO - PROVA I - gen. - feb. 2002 /ARMT/2002 p. 1 1. Quadrati di quattro caselle (Cat. 3) /ARMT/2002-10 - I prova 3 14 17 11 14 In questa tabella si possono vedere molti quadrati
21 Rally Matematico Transalpino, prova finale
21 Rally Matematico Transalpino, prova finale I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata la provenienza del problema inserendo la dicitura
Moltiplicazione. Divisione. Multipli e divisori
Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini
6. I PROBLEMI DEL RALLY
14 o RMT FINALE maggio-giugno 2006 ARMT 2006 pag. 1 6. I PROBLEMI DEL RALLY (CAT. 4, 5, 6) ARMT.2006-14 - finale Un gruppo di insegnanti prepara i problemi per il prossimo Rally, per gli allievi delle
20 0 RMT PROVA I gennaio - febbraio 2012 ARMT
20 0 RMT PROVA I gennaio - febbraio 2012 ARMT 2012 18 14. A MEZZOGIORNO (Cat. 7, 8, 9, 10) Andrea, appena sveglio, chiede alla mamma che ora è. La mamma gli risponde: Ho guardato l ora esattamente cinquanta
21 o RMT Finale maggio giugno 2013 armt2013
Titolo Categorie Ar Alg Geo Lo/Co Origine 1. La cordicella (I) 3 4 x x rc 2. I bicchieri 3 4 x RO 3. I coniglietti 3 4 x 10.II.1 4. Bianco o grigio? 3 4 5 x 2.F.11 5. Pesciolini 3 4 5 x SI 6. Il puzzle
1. I TRENI DI MARIA (Cat. 3) /ARMT/ I prova Maria ha molti vagoni; su ogni vagone è indicato un numero da 1 a 9.
12 o RALLY MATEMATICO TRANSALPINO - PROVA I - gen. - feb. 2004 /ARMT/2004 1 1. I TRENI DI MARIA (Cat. 3) /ARMT/2004-12 - I prova Maria ha molti vagoni; su ogni vagone è indicato un numero da 1 a 9. 1 4
22 o RMT PROVA I gennaio - febbraio 2014 ARMT
o RMT PROVA I gennaio - febbraio 014 ARMT 014 1 Titolo Categorie Tema Origine 1. Numeri sconosciuti 3 4 numerazione 6.I.03. Le giuste somme 3 4 addizione (numeri naturali < 50) SR 3. Le tre case 3 4 5
Le quattro operazioni fondamentali
1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
Foglio1. I sistemi di numerazione. Leggere e scrivere i numeri interi naturali e decimali indicando il valore
MATEMATICA COMPETENZA DI AREA COMPETENZE DISCIPLINARI classe QUARTA AREA DISCIPLINARE: MATEMATICO SCIENTIFICO - TECNOLOGICA Mettere in relazione il pensare con il fare. Affrontare situazioni problematiche
Le quattro operazioni fondamentali
SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del
Spiegate la vostra soluzione. 8 e RALLY MATEMATICO TRANSALPINO ARMT 2000 FINALE - maggio 2000
1. L'ACQUARIO (cat. 3, 4) Paolo ha comprato dei pesci rossi che vuole mettere in un acquario da 36 litri. Per riempire l acquario, va a prendere dell acqua. Egli ha a disposizione due brocche, una da 3
Kangourou Italia Gara del 17 marzo 2005 Categoria Junior Per studenti di seconda o terza superiore
junior_05_d.qxp 21/02/2005 16.13 Pagina 22 Kangourou Italia Gara del 17 marzo 2005 Categoria Per studenti di seconda o terza superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. A Kangourou
Compiti delle vacanze di Aritmetica - Classe IIB (6 o 7 in pagella)
Compiti delle vacanze di Aritmetica - Classe IIB (6 o 7 in pagella) 1. Trasforma i seguenti numeri decimali in frazioni: 1,34 3,055 0,4 2. Trasforma i numeri decimali in frazioni e risolvi le espressioni:
22 RMT prova 1 gennaio febbraio
RMT prova 1 gennaio febbraio Titolo Categorie Tema Origine 1. Numeri sconosciuti 3 4 numerazione 6.I.03. Le giuste somme 3 4 addizione (numeri naturali < 50) SR 3. Le tre case 3 4 5 logica 6.I.05 4. Il
B7. Problemi di primo grado
B7. Problemi di primo grado B7.1 Problemi a una incognita Per la risoluzione di problemi è possibile usare le equazioni di primo grado. Il procedimento può essere solo indicativo; è fondamentale fare molta
Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD.
Esercizio 1a Disegna un piano cartesiano ortogonale ed in esso inserisci i punti che seguono, poi uniscili nell ordine dato: Secondo te che tipo di quadrilatero hai ottenuto? Perché? Quali sono le sue
SCUOLA PRIMARIA MATEMATICA (Classe 1ª)
SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,
Progettazione Didattica Matematica 4
Progettazione Didattica Matematica 4 COMPETENZE CHIAVE EUROPEE Comunicazione nella madrelingua Comunicazione nelle lingue straniere Competenza digitale Imparare a imparare Competenze sociali e civiche
1. LA CORDICELLA (I) (Cat. 3, 4) Tommaso ha trovato una cordicella annodata con la quale si diverte a formare delle figure:
1. LA CORDICELLA (I) (Cat. 3, 4) Tommaso ha trovato una cordicella annodata con la quale si diverte a formare delle figure: Forma dapprima un triangolo con i tre lati che misurano ognuno 16 cm. Poi forma
11 o RALLY MATEMATICO TRANSALPINO - PROVA II marzo 2003 ARMT.2003 p. 1
11 o RALLY MATEMATICO TRANSALPINO - PROVA II marzo 2003 ARMT.2003 p. 1 No titolo 3 4 5 6 7 8 Ar. Alg Geo. Lo Co Or. 1. Giochi con me? 3 xx PR 2. Corsa ad ostacoli 3 4 xx Ri 3. Il copriletto della Nonna
15 RMT finale, maggio 2007 ARMT 2007 1
15 RMT finale, maggio 2007 ARMT 2007 1 1. LE MONETE DI EMILIA (Cat. 3) ARMT.2007-15 - finale Nel suo portamonete Emilia ha solo monete da 5, 10, 20 o 50 centesimi. Ne prende otto e osserva che formano
DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a
DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a COMPETENZE 1. Operare con i numeri nel calcolo scritto e mentale CONOSCENZE CONTENUTI A. I numeri da 0 a 20 B. I numeri da 20 a 100
PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta
PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta Lo studio dei numeri decimali, se non si limita all utilizzo non ragionato di formule, ci può condurre molto lontano e ci
Esercitazioni di. LOGICA e MATEMATICA. per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA
Esercitazioni di LOGICA e MATEMATICA per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA prof.ssa Lina Migliaccio 1 I test di Bertoldino 1. In una stalla ci sono 15 pecore. Scappano tutte tranne
ESERCIZI DI MATEMATICA
DI MATEMATICA PER GLI STUDENTI IN INGRESSO ALLA CLASSE PRIMA Rev. Luglio 2019 Pag. 1 di 18 NUMERI NATURALI L insieme dei numeri naturali si indica con N. TABELLA DEI NUMERI PRIMI DIVISIBILITÀ E MULTIPLI
1. LA TORTA QUADRATA (Cat. 3, 4) ARMT finale Quattro bambini si ritrovano per mangiare una torta quadrata. - Ogni bambino vuole chiaramente
1. LA TORTA QUADRATA (Cat. 3, 4) ARMT 2014-22 - finale Quattro bambini si ritrovano per mangiare una torta quadrata. - Ogni bambino vuole chiaramente avere la stessa quantità di torta degli altri; - due
Matematica CONOSCENZE. I numeri naturali fino a 1000. Rappresentazione dei numeri naturali in base dieci: il valore posizionale delle cifre.
Classe 3^ Scuola Primaria COMPETENZA DI RIFERIMENTO Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali OBIETTIVI
VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...
VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Scuola Secondaria Superiore Classe Prima Scuola..........................................................................................................................................
B6. Sistemi di primo grado
B6. Sistemi di primo grado Nelle equazioni l obiettivo è determinare il valore dell incognita che verifica l equazione. Tale valore, se c è, è detto soluzione. In un sistema di equazioni l obiettivo è
ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 };
ESERCIZI. INSIEMISTICA. Sia l insieme dei punti dello spazio, Γ una sfera e N il suo polo nord. Quali delle seguenti relazioni sono corrette? N Γ; N ; Γ ; Γ ; N ; Γ N.. Dire quali dei seguenti insiemi
I POLIGONI. DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata.
I POLIGONI COS È UN POLIGONO? DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata. Un poligono è fatto di: - SEGMENTI detti LATI - ESTREMI DEI
Il Geopiano Figure geometriche sul reticolo
Il Geopiano Figure geometriche sul reticolo Un laboratorio di geometria Classe 2B IC Piazza Winckelmann a.s. 2018/19 I Lincei per la scuola «Con la mente e con le mani» LAB. NUMERI - Francesca Tovena -
Piastrelliamo i rettangoli
Per la quarta classe della scuola primaria Piastrelliamo i rettangoli Qui sotto vedete un rettangolo, disegnato sulla carta a quadretti. Potete immaginare che sia una stanza, che vogliamo piastrellare,
6 o RALLY MATEMATICO TRANSALPINO - PROVA I gennaio 1998 ARMT 1 POLLICINO E I SUOI FRATELLI
6 o RALLY MATEMATICO TRANSALPINO - PROVA I gennaio 1998 ARMT 1 POLLICINO E I SUOI FRATELLI Pollicino e i suoi 4 fratelli camminano nel bosco, tutti in fila. Pollicino è l'ultimo della fila e lascia cadere
METODO DI CAVALIERI-SIMPSON (o delle parabole) (per il calcolo approssimato 1 di integrali definiti)
METODO DI CVLIERI-SIMPSON (o delle parabole) (per il calcolo approssimato di integrali definiti) ssieme ai metodi dei Rettangoli e dei Trapezi costituisce l insieme dei metodi di Integrazione Numerica
PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi
PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso
GRIGLIA DI CORREZIONE Matematica Classe I Scuola secondaria di I grado
GRIGLIA DI CORREZIONE Matematica Classe I Scuola secondaria di I grado LEGENDA AMBITI: NU (Numeri), SF (Spazio e figure), DP (Dati e previsioni), RF (Relazioni e funzioni) LEGENDA PROCESSI: 1. Conoscere
MATEMATICA - Curricolo verticale scuola primaria - Istituto comprensivo statale di Mestrino
MATEMATICA - Curricolo verticale scuola primaria - Istituto comprensivo statale di Mestrino TRAGUARDI per lo sviluppo delle COMPETENZE Al termine della classe PRIMA l alunno L alunno si muove nel calcolo
1. NUMERI Contare, eseguire semplici operazioni aritmetiche mentalmente e per iscritto
ISTITUTO COMPRENSIVO DI BERTINORO PROGETTAZIONE 1 QUADRIMESTRE Disciplina MATEMATICA Classe QUARTA 1 Quadrimestre COMPETENZA CHIAVE EUROPEA: Competenze di base in matematica Competenze specifiche Abilità
Selezione di Carlo Marchini Dipartimento di Matematica Università di Parma.
Selezione di Carlo Marchini Dipartimento di Matematica Università di Parma. Il Rallye Mathématique Transalpin (RMT), è una competizione Matematica per classi. Nel corso degli anni ha presentato problemi
ISTITUTO COMPRENSIVO DI DONGO curricolo verticale per la scuola primaria Area di apprendimento: MATEMATICA
IL NUMERO ISTITUTO COMPRENSIVO DI DONGO curricolo verticale per la scuola primaria Area di apprendimento: MATEMATICA - opera con numeri naturali e decimali - utilizza il calcolo scritto e mentale 1 2 ordinare
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2003 2004 PROVA DI MATEMATICA. Scuola Media. Classe Prima. Codici. Scuola:...
Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico
Istituzioni di Matematiche II Recupero seconda prova intermedia (6 giugno 2003)
Istituzioni di Matematiche II Recupero seconda prova intermedia (6 giugno 2003) Nome Cognome 1. Considerando gli oggetti in figura, costruire: (a) il poligono ottenuto dal poligono A per riflessione rispetto
quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:
) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica
FINALE del 23 campionato: 29 agosto giornata
FINALE del 23 campionato: 29 agosto 2009-2 giornata INIZIO DI TUTTE LE CATEGORIE 1 Il numero del giorno (coefficiente 1) Ogni giorno dopo il 1 gennaio, Matilde addiziona le cifre della data. Per esempio,
Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano
Pagina 1 di 13 I poligoni I poligoni sono figure piane che hanno come contorno una linea spezzata chiusa formatada almeno tre segmenti consecutivi. Un poligono può avere tre, quattro, cinque o più lati.
24 Rally Matematico Transalpino, prima prova
24 Rally Matematico Transalpino, prima prova I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata la provenienza del problema inserendo la dicitura
COMPETENZE ABILITA CONOSCENZE
SCUOLA PRIMARIA PIANI DI STUDIO MATEMATICA ANNO SCOLASTICO 2010/2011 CLASSE PRIMA Utilizzare le tecniche e le procedure del Associare la quantità al numero: simbolo e Aspetto cardinale e ordinale. calcolo
CURRICOLO VERTICALE MATEMATICA
ISTITUTO COMPRENSIVO ITALO CALVINO GALLIATE Scuola Primaria CURRICOLO VERTICALE MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA OBIETTIVI DI APPRENDIMENTO OBIETTIVI
