L ANALIZZATORE DI SPETTRO
|
|
|
- Ortensia Pesce
- 9 anni fa
- Visualizzazioni
Transcript
1 A.R.I. Sezione di Parma Conversazioni del 1 Venerdì del Mese L ANALIZZATORE DI SPETTRO DEL LABORATORIO DEL RADIOAMATORE Venerdi, 6 marzo 2015, ore 21:15 - Carlo, I4VIL
2 STRUMENTAZIONE DI LABORATORIO Oscilloscopio - strumento adatto a misurare ed analizzare l ampiezza e la forma dei segnali nel dominio del tempo. Il segnale composito è mostrato su un display (asse y) in funzione del tempo (asse x). A = ampiezza [ V ] In genere su 50 Ω o su 1 MΩ t = tempo [s] Analizzatore di spettro - strumento adatto a misurare la frequenza e l ampiezza dei segnali elettrici nel dominio delle frequenze. Il segnale composito è mostrato su un display (asse y) in funzione della frequenza (asse x). P = potenza [dbm] In genere su 50 Ω f = frequenza [Hz]
3 DOMINIO DEL TEMPO E DOMINIO DELLE FREQUENZE Gli stessi segnali elettrici possono essere mostrati nel dominio del tempo (time domain) con un oscilloscopio oppure nel dominio delle frequenze (frequency domain) con un analizzatore di spettro. Le presentazioni dei segnali nei due domìni portano le stesse informazioni. Operatore matematici (Trasformata e Antitrasformata di Fourier ) permettono di passare dall uno all altro dominio. Ma, allora, se i due strumenti danno le stesse informazioni, perché si è diffuso l uso dell analizzatore di spettro che costa circa 10 volte di più dell oscilloscopio?
4
5 Ma non è tutto così semplice... né in teoria, né in pratica Un segnale espresso da una funzione reale f(t) caratterizzato da ampiezza, frequenza e fase può essere Fourier-trasformato con una operazione F(w) complessa nella quale tutte le informazioni iniziali sono conservate. In genere, però, si è interessati solo all ampiezza e frequenza del segnale, non alla fase. Anzi, può essere fastidioso ottenere uno spettro di frequenze che dipende dalle relazioni di fase iniziali del segnale f(t) campionato
6 Di uno stesso segnale periodico e stessa durata del campionamento Dt, le frequenze principali contenute nello spettro sono bene individuabili, ma l aspetto può essere molto diverso in dipendenza della fase iniziale. Può manifestarsi uno spettro di assorbimento o di dispersione od un mix dei due.
7 Conviene, pertanto, utilizzare il quadrato del segnale trasformato (diviene una potenza); si perdono le informazioni sulla fase che, però, non sono utili.
8 Gli accessori e gli sviluppi particolari dei due strumenti (oscilloscopio e analizzatore di spettro) hanno portato a preferire l uno o l altro. Il dominio del tempo è maggiormente usato per ottenere informazioni sui tempi ( e intervalli di tempo) e sulle fasi relative di segnali elettrici in punti diversi di un circuito. Per questo si è diffuso l oscilloscopio multicanale (almeno con due sonde). La max. frequenza di lavoro è, in genere, minore di quella utilizzabile con un analizzatore di spettro. Amplificatori, filtri, oscillatori, misure su antenne, ecc.. sono meglio caratterizzati dalle informazioni ottenibili da un analizzatore di spettro che rimane il più versatile strumento disponibile per misure elettriche a radio frequenza e microonde. I moderni analizzatori di spettro hanno anche la capacità di demodulare i segnali (in AM o FM, per esempio) o anche segnali digitali.
9 Due segnali di frequenza diversa, f1 e f2, quando sommati, danno luogo ad un segnale complicato. L oscilloscopio visualizza perfettamente questo segnale che cambia al variare della fase dei due segnali originali. Sommando due segnali di frequenza diversa, la forma del segnale risultante osservato all oscilloscopio dipende dalla fase dei due segnali. L aspetto risultante è diverso e l oscilloscopio è in grado di mostrare l ampiezza istantanea in funzione del tempo che dipende proprio dalla fase. Non consente, però, di capire facilmente le frequenze presenti.
10 Lo stesso segnale somma visto all analizzatore di spettro consente di osservare facilmente le frequenze presenti e relative armoniche. Qui è presente un segnale a 100 khz ed un secondo segnale a 140 khz con ampiezza metà. Sono presenti anche deboli tracce di seconde armoniche dei due segnali (non facilmente misurabili).
11 Usando la scala logaritmica che ogni analizzatore di spettro può fornire, diviene facilmente misurabile anche il livello delle singole frequenze presenti con ottima precisione. Anche il livello delle armoniche è facilmente misurabile.
12 L osservazione nel frequency domain permette una misura quantitativa della risposta in frequenza e della presenza di armoniche e spurie e permette un analisi della distorsione introdotta dagli elementi circuitali. Si perdono, però, le informazioni sulla fase. Esempio: misura di distorsione armonica. Nel test, la distorsione armonica è direttamente in relazione con l ampiezza relativa delle armoniche rispetto all ampiezza del segnale sinusoidale applicato all ingresso. E difficile l osservazione ed il calcolo della distorsione nel caso si usi un semplice oscilloscopio. Molto più facile è il calcolo con l uso di un analizzatore di spettro.
13 MISURA DI DISTORSIONE ARMONICA Distorsione per presenza di una componente a frequenza doppia di ampiezza 1/10 della fondamentale. La distorsione è appena distinguibile. Lo stesso segnale osservato nel dominio delle frequenze. La presenza della seconda armonica è osservabile e misurabile facilmente: -20 db sotto la fondamentale.
14 CALCOLO DEL THD (TOTAL HARMONIC DISTORTION) Il calcolo viene effettuato con: con An = ampiezza (tensione) della nma armonica Si siano osservate e misurate le armoniche prodotte da un amplificatore con ingresso normalizzato: a1= 0 db pari a A1 = 1, a2= -40 db pari a A2 = 0.01 a3= -42 db pari a A3= a4= -44 db pari a A4= Si può calcolare, così, la distorsione totale:
15 LIMITE UTILIZZO ALLE BASSE FREQUENZE L oscilloscopio è particolarmente adatto all osservazione delle frequenze basse che possono raggiungere anche frequenza zero (DC) senza particolari difficoltà. L analizzatore di spettro, invece, incontra delle limitazioni pratiche d uso alle frequenze basse (facilmente a f < 10 khz). Il mixer, che è essenziale e caratteristico dell analizzatore di spettro, è alimentato da un oscillatore locale che presenta un tipico rumore di fase. Il rumore di fase aumenta moltissimo avvicinandosi alla frequenza del carrier. Nell osservazione di frequenze molto basse, il segnale da osservare presente dopo il mixer viene mascherato dal rumore introdotto dalla portante dell oscillatore locale.
16 PHASE NOISE
17
18 L Analizzatore di spettro è molto utile per controllare e valutare la presenza di armoniche o spurie. Ammesso che non sia lo strumeto stesso a generarle! Un buon metodo per capire la provenienza di segnali spuri è inserire un attenuatore a scatti all ingresso dell analizzatore. Se, inserendo un attenuazione di 3 o 6 db, i segnali spuri vengono attenuati dei corrispondenti 3 o 6 db, è il segnale all ingresso che è sporco. Se, invece, inserendo sempre 3 o 6 db, i segnali spuri diminuiscono di più di 3 o 6 db, allora è lo strumento stesso che li genera, probabilmente perché qualche suo stadio lavora in condizioni non lineari.
19 TIPI DI ANALIZZATORI DI SPETTRO Ci sono due tipi di analizzatori di spettro: swept tuned e real-time. Nel tipo swept tuned, la frequenza osservata varia in un intervallo di frequenze per mezzo di un mixer con un oscillatore locale variabile in frequenza. Le componenti del segnale da analizzare sono osservati in sequenza temporale. Ovviamente questo porta alla impossibilità di osservare segnali di breve durata e transienti in genere.
20 Gli analizzatori swept tuned sono basati sul principio di ricezione supereterodina : il segnale di ingresso è convertito ad un valore di media frequenza attraverso un mixer il cui oscillatore locale è spazzolato in frequenza. Il canale di media frequenza è costituito da un filtro di larghezza variabile; quando la differenza di frequenza tra le componenti del segnale di ingresso e la frequenza (variabile) dell oscillatore locale è uguale al valore della media frequenza, apparirà una risposta sul display. L uso del principio della supereterodina consente un alta sensibilità ed una costanza dell ampiezza del canale in osservazione indipendentemente dalla frequenza. Spesso vengono utilizzate le armoniche dell oscillatore locale per osservare frequenze elevate con ampi intervalli di frequenza. Ovviamente il tempo di spazzata deve essere consistente con l ampiezza del canale di media frequenza e con l ampiezza del range osservato.
21 Negli amplificatori real time viene memorizzato istantaneamente il segnale nell intero intervallo temporale desiderato. Questo consente di analizzare anche transienti e segnali casuali mantenendo la dipendenza temporale tra le componenti del segnale. Il campionamento consiste nel prelievo di campioni di segnale analogico in un intervallo di tempo (tempo di campionamento) t ovvero con frequenza di campionamento fs =1/ t (sampling frequency). Il teorema di campionamento di Nyquist-Shannon stabilisce che, se la frequenza massima contenuta nel segnale analogico è f M, lo stesso segnale analogico può essere ricostruito a partire dai suoi campionamenti solo se la frequenza di campionamento fs è maggiore di due volte la frequenza massima fm. Il segnale campionato viene poi analizzato con un processo matematico (FFT) che lo trasforma nel dominio delle frequenze mostrando lo spettro del segnale d ingresso....
22 PRINCIPALI CARATTERISTICHE DI UN ANALIZZATORE DI SPETTRO -) Frequency range. La frequenza max. è legata alla frequenza massima che può generare l oscillatore locale e che è ben gestita dal mixer. La frequenza minima è limitata, in pratica, dal sideband noise dello stesso oscillatore locale. -) Precisione (ampiezza e frequenza). L ampiezza delle righe spettrali e delle loro frequenze è legata alla presenza di una sorgente di calibrazione interna e da routine di correzione degli errori. -) Risposta in frequenza. La risposta in frequenza deve essere possibilmente piatta, indipendente dalla frequenza.. -) Stabilità di frequenza. E ottenuta con oscillatori locali di buona qualità o sintetizzatori
23 -) Risoluzione di frequenza - Caratteristica importante di un buon analizzatore che deve poter osservare le frequenze costituenti la modulazione del segnale da analizzare (qualche centinaio di Hz). -) Sensibilità. Altra caratteristica importante. Occorre uno stadio di ingresso di buona qualità. La sensibilità, anche teoricamente, dipende dalla larghezza di banda osservata. -) Presentazione delle ampiezza su scale logaritmiche (10 db/div, 3 db/div, 1 db/div) e lineari
24 SENSIBILITA La sensibilità di un analizzatore è la capacità di rivelare segnali di debole ampiezza che è limitata dal rumore generato internamente dallo strumento stesso. Questo ha diverse sorgenti e cause. Anche in un amplificatore ideale la sensibilità è limitata dalla presenza del rumore termico (Johnson noise). La potenza di rumore presente come Johnson noise è espressa da: Si osserva quindi che, anche in uno strumento ideale, il rumore termico è sempre presente e dipende, oltre che dalla temperatura di lavoro T, dalla larghezza di banda osservata. Per migliorare la sensibilità, conviene, quindi, limitare la banda osservata.
25 NOISE FIGURE In un amplificatore reale il rumore ha numerose altre fonti e si aggiunge al rumore termico teorico. Con il termine Noise Figure (NF) si intende il rapporto tra il S/N all uscita dell amplificatore rispetto al S/N presente all ingresso (espresso in db). E evidente che in un amplificatore ideale il rapporto S/N non si degrada attraverso un amplificazione. In questo caso NF= 0 db. In un amplificatore vero, invece, una degradazione più o meno evidente è da accettare. Più il Noise Figure è espresso da un numero piccolo, più l amplificatore è di buona qualità.
26 Il rumore di base di un analizzatore aumenta di 10 db per ogni aumento della banda passante di un fattore 10.
27 SWEEP TIME e BAND WIDTH Se la larghezza di banda IF viene ridotta, il tempo di escursione dell intervallo di frequenza da osservare aumenta. In pratica occorre che almeno un periodo dell onda analizzatadal filtro di limitata larghezza di banda abbia il tempo di attraversare il filtro stesso prima che l intervallo di frequenze analizzato passi al canale adiacente. Ciò significa che il tempo di seep deve essere aumentato per permettere al filtro IF di rispondere e presentare un segnale indistorto al rivelatore. Altrimenti il segnale mostrato è ridotto in ampiezza e sensibilmente allargato. Alcuni analizzatori di spettro eseguono questa operazione automaticamente cambiando lo sweep time mostrando il nuovo valore sul monitor, altri si limitano ad avvisare, con l accensione di una lampadina di segnalazione, che il valori di sweep time e band width non sono corretti.
28 MISURA DI FREQUENZA E DI INTERVALLO DI FREQUENZA Per la misura della frequenza è utile la quadrettatura dello schermo ed è facilitata se sono presenti i marker. La distanza in frequenza tra due componenti dello spettro può essere ottenuta moltiplicando il valore impostato di SPAN/DIVISION per il numero di divisioni che intercorrono tra loro.
29 MISURE DI POTENZA Mentre il power meter misura con molta precisione la potenza complessiva di tutto lo spettro, l analizzatore di spettro può misurare la potenza di ogni singola componente spettrale. L analizzatore di spettro dispone di maggiore sensibilità e dinamica dato che l influenza del rumore di fondo può essere limitata riducendo la RESOLUTION BANDWIDTH e l intervallo di frequenze osservato.
30 MISURE DI DISTORSIONE La distorsione di una portante modulata in ampiezza può essere facilmente osservata e calcolata applicando una sola frequenza di modulazione fm. La portante è affiancata da due frequenze laterali e la distorsione è data dalla differenza (in db) tra i livelli di una di queste frequenze di modulazione e quello della frequenza doppia (2 fm) comparsa per presenza di distorsione. fm = 1 khz = 30 db Distorsione = 3.3 %
31 MISURE DI INTERMODULAZIONE CON TWO-TONE TEST Il test a due toni è spesso usato per controllare in modo rapido la linearità dei trasmettitori SSB (Banda Laterale Unica). Sono necessari due toni di modulazione audio di uguale ampiezza, di ottima purezza spettrale e che non siano legati armonicamente (Per esempio: f1 = 800 Hz, f2=1300 Hz). L uscita RF, se l amplificatore non è perfetto, presenta anche i prodotti di intermodulazione del terzo ordine (2f2-f1 e 2f1-f2 ) e superiori che sono stati generati nell amplificatore.
32 TRENO DI IMPULSI analisi spettrale Una sequenza continua di impulsi RF (a frequenza f) di durata t e di frequenza di ripetizione fr = 1/T presenta uno spettro di frequenze costituito da molte righe spettrali equidistanti che presenta un inviluppo caratteristico. E quello della funzione:
33 TRENO DI IMPULSI analisi spettrale Osservando lo spettro della sequenze di impulsi si osserva che la durata tdi ogni impulso RF è identificabile misurando, tramite i marker, l intervallo di frequenza tra due lobi secondari adiacenti e calcolandone il reciproco.
34 TRENO DI IMPULSI analisi spettrale Riducendo lo SPAN si osserva il pettine di frequenze e si può calcolare la distanza tra le righe spettrali f (è la frequenza di ripetizione). Il periodo di ripetizione T è il suo reciproco.
35 MISURA DELLA DEVIAZIONE - Modulazione FM Spettro di NBFM Lo spettro di una modulazione di frequenza consiste di una portante e di un numero n di bande laterali le cui ampiezze sono date dai valori Jn(m) delle funzioni di Bessel di primo genere con argomento m = d/ fm. m = indice di modulazione (deviation ratio) d= deviazione di frequenza dalla portante (peak deviation) fm = frequenza di modulazione
36 FUNZIONI DI BESSEL ED INDICE DI MODULAZIONE FM NBFM Primi sette ordini delle funzioni di Bessel di primo genere. Per ogni valore dell argomento m, i corrispondenti valori delle funzioni sono proporzionali alle ampiezze della fondamentale ed delle nme bande laterali.
37 MISURA DELLA DEVIAZIONE - Modulazione FM In una WBFM quasi tutta la potenza è concentrata in una larghezza di banda BW = 2 (m + 1) fm (Carson s Rule). In questo esempio, con fm=5 khz e δ =42 khz, si ha: BW = 2(8.4+1) 5 = 94 khz m=42/5 = 8.4 e
38 SOMMA DI POTENZE espresse in db Date due potenze P1 e P2, la loro somma è: P = P1 + P2 Se le due potenze sono espresse in db, occorre usare la seguente: dove: GPdB= incremento di potenza (in db), da aggiungere al valore più grande tra P1dB e P2dB. DPdB = P1dB - P2dB (differenza tra le potenze espresse in db).
39 Esempio: Sull analizzatore di spettro si osservino due segnali di livello P1dB = -20 dbm e P2dB = -23 dbm. Qual è la potenza totale espressa in dbm? Si può calcolare la potenza P1 e P2 dei due segnali (con l antilogaritmo), sommare le due potenze, e calcolare nuovamente il logaritmo del nuovo valore. In questo caso è : P1 = 0.01 mw, P2 = mw. La potenza totale è P1 + P2 = mw, che, espressa in unità logaritmiche diviene: 10 log(0.015) = dbm. Oppure, più semplicemente, osservare dal grafico che, per una differenza di 3 unità tra le due potenze (espresse in unità logaritmiche), in ordinate si ritrova un incremento di 1.75 unità da aggiungere al valore più grande tra P1dB e P2dB. Perciò la soma delle due potenze, in questo caso, è : = dbm.
40 RELAZIONE TRA (S+N/N) E S/N a bassi livelli di segnale RAPPORTO(S+N / N)
41 ESEMPIO
Strumentazione per la misura a banda stretta del campo elettromagnetico. Laura Vallone
Strumentazione per la misura a banda stretta del campo elettromagnetico Laura Vallone Strumentazione a banda stretta Un misuratore di campo EM a banda stretta si compone di varie parti: o Sistema di ricezione
Analizzatore di spettro. Generalità sull analisi spettrale. Analizzatori a scansione. Analizzatori a doppia conversione. Analizzatore di spettro
Analizzatore di spettro Analizzatore di spettro Analizzatori a scansione Analizzatori a doppia conversione 2 2006 Politecnico di Torino 1 Obiettivi della lezione Metodologici come eseguire l analisi spettrale
Le modulazioni impulsive
Le modulazioni impulsive a cura di Francesco Galgani (www.galgani.it) Indice 1 Introduzione 2 2 La modulazione PAM 3 2.1 Cenni teorici....................................... 3 2.2 Simulazione con il computer
In elettronica un filtro elettronico è un sistema o dispositivo che realizza
Filtri V.Russo Cos è un Filtro? In elettronica un filtro elettronico è un sistema o dispositivo che realizza delle funzioni di trasformazione o elaborazione (processing) di segnali posti al suo ingresso.
20/10/2015. Segnali Periodici. Serie di Fourier per segnali periodici
Segnali Periodici Serie di Fourier per segnali periodici 1 Segnale pari Segnale dispari Onda quadra dispari 2 Onda quadra pari Generatore LF + oscilloscopio Si imposta sul generatore LF Vout = 1 V f 99.9981
CORSO%DI%% A.A.% % Sezione%03c% SPETTRO ACUSTICO FISICA%TECNICA%AMBIENTALE%
1 CORSO%DI%% FISICA%TECNICA%AMBIENTALE% A.A.%201352014% Sezione%03c%!! Prof. Ing. Sergio Montelpare! Dipartimento INGEO! Università G. d Annunzio Chieti-Pescara" 2 Le caratteristiche fondamentali del suono"
Elementi di informatica musicale Conservatorio G. Tartini a.a Sintesi del suono. Sintesi del suono
Elementi di informatica musicale Conservatorio G. Tartini a.a. 2001-2002 Sintesi del suono Ing. Antonio Rodà Sintesi del suono E neccessaria una tecnica di sintesi, ossia un particolare procedimento per
Prove Strumentali del Ricetrasmettitore Flex Flex-1500: Ser. Num
Prove Strumentali del Ricetrasmettitore Flex-1500. Flex-1500: Ser. Num. 2210-0027 Set-up: Hardware: PC HP 6715b. CPU AMD Turion 64X2 Sistema Op: XP professional SP2. Programma: PowerSDR Ver. 2.0.8. Strumenti
Il tema proposto può essere risolto seguendo due ipotesi:
Per la trattazione delle tecniche TDM, PM e Trasmissione dati si rimanda alle schede 41, 42, 43, 44, 45, 46, 47 e 48 del libro Le Telecomunicazioni del Prof. F. Dell Aquila. Il tema proposto può essere
BOCCHIGLIERO Sistema di comunicazione ---- Materia: Telecomunicazioni. Serafini Rossella. prof. Ing. Zumpano Luigi
I.P.S.I.A. Di BOCCHIGLIERO a.s. 2010/2011 -classe III- Materia: Telecomunicazioni ---- Sistema di comunicazione ---- alunna Serafini Rossella prof. Ing. Zumpano Luigi Sistema di comunicazione Messaggi
Il suono: periodo e frequenza
Il suono: periodo e frequenza Effetti di risonanza e interferenza Un video Clic Analisi di suoni semplici e complessi Un altro video Clic IL DIAPASON (I) ll diapason è un oscillatore armonico. Il valore
In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo
Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,
Le misure di tempo e frequenza
Le misure di tempo e frequenza Le misure di tempo e frequenza costituiscono un importante branca delle misure elettriche ed elettroniche ed in generale delle misure di grandezze fisiche. E possibile raggiungere
Page 1. ElapB2 08/12/ DDC 1 ELETTRONICA APPLICATA E MISURE. Generatori sinusoidali. Ingegneria dell Informazione.
Ingegneria dell Informazione Generatori sinusoidali Schema tipico ELETTRONICA APPLICATA E MISURE F1 Generatori di segnali» a bassa frequenza» a radiofrequenza» a microoonde Generatori di funzioni Sintetizzatori
Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali
Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 2009 Amplificatore operazionale perché? Moltiplicazione
MISURATORE DI CAMPO PER TV ANALOGICO E DIGITALE MC-577
MISURATORE DI CAMPO PER TV ANALOGICO E DIGITALE MC-577 1. GENERALE 1.1 Descrizione L'MC-577 è uno strumento di misura estremamente compatto e leggero, che offre agli installatori tutte le funzioni base
CAPITOLO 7 Misurazioni nel dominio della frequenza pagina 133 CAPITOLO 7 MISURAZIONI NEL DOMINIO DELLA FREQUENZA CON ANALIZZATORE DI SPETTRO
CAPITOLO 7 Misurazioni nel dominio della frequenza pagina 133 CAPITOLO 7 MISURAZIONI NEL DOMINIO DELLA FREQUENZA CON ANALIZZATORE DI SPETTRO Si sono viste, nel capitolo precedente, le modalità con le quali
2.3.6 La modulazione angolare
2.3.6 La modulazione angolare Dato il segnale modulante m(t), limitato nella banda B e con ampiezza normalizzata m(t)
Informatica. Caratterizzazione del canale I simboli emessi dalla sorgente passano attraverso un canale di trasmissione.
Informatica Pietro Storniolo [email protected] http://www.pa.icar.cnr.it/storniolo/info267 Entropia e flusso di informazione di una sorgente La sorgente viene caratterizzata dal valor medio di I(x
Campionamento e quantizzazione
Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione
Modulazioni di ampiezza
Modulazioni di ampiezza 1) Si consideri un segnale z(t) modulato in ampiezza con soppressione di portante dal segnale di informazione x(t): z(t) = Ax(t)cos(2πf 0 t) Il canale di comunicazione aggiunge
Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento.
ITEC - ELETTRONICA ED ELETTROTECNICA Sessione ordinaria 206 ARTICOLAZIONE ELETTRONICA Tema di: ELETTROTECNICA ED ELETTRONICA Soluzione: prof. Stefano Mirandola PRIMA PARTE ) 2) Schema a blocchi e progetto
Rappresentazione digitale del suono
Rappresentazione digitale del suono Perché rappresentazione del suono Trasmettere a distanza nel tempo e nello spazio un suono Registrazione e riproduzione per tutti Elaborazione del segnale audio per
I.T.I. Modesto PANETTI B A R I
1 I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Intranet http://10.0.0.222 - Internet http://www.itispanetti.it email : [email protected] Laboratorio
ANALISI DI FREQUENZA
Giada Grosoli matr. 1391 Lezione del 19/1/ ora 8:3-1:3 ANALISI DI FREQUENZA Nello studio dell acustica è molto importante l analisi di frequenza del suono. E fondamentale infatti valutare, oltre al livello
Power meter Misure di potenza assoluta Misure di potenza relativa. Misure di potenza. F. Poli. 10 aprile F. Poli Misure di potenza
Misure di potenza F. Poli 10 aprile 2008 Outline Power meter 1 Power meter 2 3 Misure di potenza Misure di potenza = base della metrologia in fibra ottica. Misure di potenza 1 assoluta: necessarie in relazione
La strumentazione NMR. ed alcuni dettagli sul metodo a Trasformata di Fourier
La strumentazione NMR ed alcuni dettagli sul metodo a Trasformata di Fourier 1 Lo Spettrometro NMR 2 Il magnete: genera il campo B 0, intenso, stabile ed omogeneo 600MHz 15 T 900 MHz 22 T 60MHz 1.5 T 3
OROS A2S OROS Advanced Swept Sine
OROS A2S OROS Advanced Swept Sine Descrizione OROS A2S è uno strumento di misura dedicato per pa determinazione della risposta in frequenza e le funzioni di trasferimento. La determinazione della funzione
ANALISI DI SEGNALI TEMPO VARIANTI
ANALISI DI SEGNALI TEMPO VARIANTI Nel corso di questa esercitazione verrà illustrato come utilizzare Excel per eseguire la FFT di un segnale. Algebra complessa Excel consente di eseguire calcoli anche
SPECIFICHE RADIO A.1 INTRODUZIONE
SPECIFICHE RADIO A.1 INTRODUZIONE Il ricetrasmettitore Bluetooth TM opera nella banda ISM a 2.4 GHz. Le seguenti specifiche definiscono i requisiti che devono soddisfare i ricetrasmettitori Bluetooth TM
Rappresentazione digitale del suono
Rappresentazione digitale del suono Rappresentazione del suono Trasmettere a distanza, tempo e spazio Registrazione, riproduzione, elaborazione segnale Consumer e professional flessibilità, velocità costi
FILTRI ANALOGICI L6/1
FILTRI ANALOGICI Scopo di un filtro analogico è l eliminazione di parte del contenuto armonico di un segnale, lasciandone inalterata la porzione restante. In funzione dell intervallo di frequenze del segnale
Segnale e Rumore Strumentale
Chimica Analitica dei Processi Industriali Corso di Laurea Magistrale in Chimica Industriale Università degli Studi di Padova Segnale e Rumore Strumentale Andrea Tapparo Università degli Studi di Padova
Sistemi di Telecomunicazione
Sistemi di Telecomunicazione Doppi bipoli rumorosi: esercizi ed esempi numerici Universita Politecnica delle Marche A.A. 2014-2015 A.A. 2014-2015 Sistemi di Telecomunicazione 1/15 Esempio 1 Il segnale
Radiotecnica 4 Oscillatori e tipi di modulazione
A.R.I. - Sezione di Parma Corso di preparazione esame di radiooperatore 2015 Radiotecnica 4 Oscillatori e tipi di modulazione Carlo Vignali, I4VIL FEEDBACK OSCILLATORE ARMSTRONG Tuned grid tuned plate
Uso dell oscilloscopio. Generalita Banda passante Input e amplificazione verticale Trigger Analogico vs. Digitale
Uso dell oscilloscopio Generalita Banda passante Input e amplificazione verticale Trigger Analogico vs. Digitale Generalita Possiamo considerare l oscilloscopio semplicemente come un voltmetro in grado
Esercitazione Oscilloscopio
Esercitazione Oscilloscopio - 1 Esercitazione Oscilloscopio 1 - Oggetto Uso dell oscilloscopio. Rilievo della caratteristica tensione-corrente di un diodo. Misure di capacità mediante misure di sfasamento.
Un filtro Passa-Basso consente alle frequenze che precedono il punto chiamato frequenza di taglio f c (cutoff frequency) di passare attraverso di
I filtri I filtri vengono utilizzati per eliminare delle bande di frequenze dal segnale originario. Generalmente vengono realizzati con una circuiteria passiva, sono identificati da una frequenza di taglio
AFFIDABILITA' E PRECISIONE DELLE MISURE ACUSTICHE EFFETTUATE UTILIZZANDO SCHEDE AUDIO
AFFIDABILITA' E PRECISIONE DELLE MISURE ACUSTICHE EFFETTUATE UTILIZZANDO SCHEDE AUDIO Paolo Guidorzi, Valerio Tarabusi Universita' di Bologna DIENCA 1. INTRODUZIONE L'utilizzo di schede audio per computer
UNITA DI MISURA LOGARITMICHE
UNITA DI MISURA LOGARITMICHE MOTIVAZIONI Attenuazione del segnale trasmesso esponenziale con la lunghezza mentre si propaga sulle linee di trasmissione (conduttori metallici) Utilizzando le unità logaritmiche
Generatore di funzioni GW Instek SFG Laboratorio Canali
Generatore di funzioni GW Instek SFG-2110 Caratteristiche Range di frequenza: da 0.1Hz a 10MHz (1MHz per l onda triangolare) Ampiezza massima: 10V p-p con carico a 50Ω 20V p-p a circuito aperto Tipi di
LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA
ALUNNO: Fratto Claudio CLASSE: IV B Informatico ESERCITAZIONE N : 5 LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA DATI: VIn = 20mV
Strumenti di Misura. Strumento di Misura
Strumenti di Misura Le misure in fisica si ottengono attraverso gli strumenti di misura, dispositivi che possono essere sia molto semplici (come un righello) sia molto complessi come i rivelatori attualmente
Tensioni e corrente variabili
Tensioni e corrente variabili Spesso, nella pratica, le tensioni e le correnti all interno di un circuito risultano variabili rispetto al tempo. Se questa variabilità porta informazione, si parla spesso
Reti di Calcolatori a.a
Analogico e digitale 2 Corso di laurea in Informatica Reti di Calcolatori a.a. 2007-2008 Prof. Roberto De Prisco Capitolo 3 Dati e segnali Per essere trasmessi i dati devono essere trasformati in segnali
SENSORE PER LA MISURA DEL RUMORE (IL FONOMETRO)
SENSORE PER LA MISURA DEL RUMORE (IL FONOMETRO) Il fonometro è un dispositivo elettroacustico per la misura del livello di pressione sonora. La sua funzione principale p è quella di convertire un segnale
SEGNALI STAZIONARI: ANALISI SPETTRALE
SEGNALI STAZIONARI: ANALISI SPETTRALE Analisi spettrale: rappresentazione delle componenti in frequenza di un segnale (ampiezza vs. frequenza). Fornisce maggiori dettagli rispetto all analisi temporale
Linee di trasmissione
Linee di trasmissione Finora esperienza con circuiti a costanti concentrate. E un approssimazione, valida solo per lunghezze d onda dei segnali grandi rispetto alle dimensioni del circuito. Esempio Sinusoidale
PROGETTO DI UN FILTRO PASSA BASSO
orso di elettronica per telecomunicazioni - esercitazione POGETTO DI UN FILTO PASSA BASSO Docente del corso: prof. Giovanni Busatto Galletti iccardo Matr. 65 relazione elettronica per telecomunicazioni
Segnale Analogico. Forma d onda continua
Segnale Analogico Forma d onda continua Rumore Segnale Analogico + Rumore Il rumore si sovrappone al segnale e lo altera, impossibile separare il segnale dal rumore Segnale Digitale Ideale Segnale discreto,
Comunicazioni Elettriche Esercizi
Comunicazioni Elettriche Esercizi Alberto Perotti 9 giugno 008 Esercizio 1 Un processo casuale Gaussiano caratterizzato dai parametri (µ = 0, σ = 0.5) ha spettro nullo al di fuori dellintervallo f [1.5kHz,
Il rumore nei circuiti elettrici
Il rumore nei circuiti elettrici Il rumore elettrico e' qualsiasi segnale indesiderato presente in un circuito di comunicazione o di misura, che tende a confondere e mascherare il segnale desiderato. Rumore
MISURA DELLA PERCENTUALE DI MODULAZIONE IN UN TRASMETTITORE AM
MISURA DELLA PERCENTUALE DI MODULAZIONE IN UN TRASMETTITORE AM IØFDH RICCARDO GIONETTI [email protected] Introduzione Dopo la recente pubblicazione del trasmettitore AM su Radio Rivista (N 3 e 4, 2011)
Misure di tensione alternata 1
1/5 1 Introduzione 1 La seguente esercitazione di laboratorio riguarda l uso dei voltmetri nella modalità di misura di tensioni in alternata. Obiettivo dell esercitazione, oltre a raffinare la dimestichezza
ANALISI SPETTRALE NUMERICA (Aspetti di misura)
ANALISI SPETTRALE NUMERICA (Aspetti di misura) ARGOMENTI Problemi di misura con la FFT Aliasing Spectral leakage (dispersione spettrale) Funzioni finestra Uso e importanza Caratteristiche Ricadute positive
Generatore di forme d onda
Generatore di forme d onda Uso Il display indica il numero corrispondente alla forma d onda, rappresentato con una singola cifra esadecimale ( da o a F ). Il numero, e quindi la forma d onda, può essere
Ascoltare Fourier. Segnali audio. ω o. θ è l angolo di fase
Ascoltare Fourier Jean Baptiste Joseph Fourier 1768 Auxerre 1830 Parigi Matematico francese, partecipò alla rivoluzione francese e seguì Napoleone in Egitto come membro della spedizione scientifica. Studiò
Dispense del corso di Elettronica L Prof. Guido Masetti
Dispense del corso di Elettronica L Prof. Guido Masetti Teoria dei Segnali e Sistemi Sommario Architettura dei sistemi per l'elaborazione dell'informazione Informazione e segnali Teoria dei segnali Analisi
Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Modulazione A.A Alberto Perotti
Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Modulazione A.A. 8-9 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di sistema di comunicazione
Segnale e rumore nella strumentazione analitica
Segnale e rumore nella strumentazione analitica Dal punto di vista della circuiteria impiegata nella strumentazione non c è differenza fra segnale e rumore: entrambi rappresentano variazioni di voltaggio
Multiplazione dei segnali
Multiplazione dei segnali (*) 1 (*) Rif. Valdoni- Vatalaro: Telecomunicazioni, Cap. 6, pp. 231 e seguenti. 136 Generalità sui trattamenti multipli 2 Multiplazione dei segnali in banda base Riunire i segnali
CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI
CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Segnali in formato numerico Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono
Le sonde Pagina in. - figura
Le sonde Paga 04 LE ONDE L impedenza di gresso,, di un oscilloscopio è modellabile dal parallelo tra una resistenza e una capacità C, i cui valori tipici sono rispettivamente MΩ e 0 0pF. Il loro valore
Tutta la strumentazione per il tuo laboratorio
S t r u me n t a z i o n e Tutta la strumentazione per il tuo laboratorio Una vasta gamma di strumenti di misura per tutte le esigenze, dal laboratorio professionale all angolo dell hobbista Oscilloscopio-generatore
Modulazione a larghezza di impulso ( PWM )
Modulazione a larghezza di impulso ( PWM ) La tecnica denominata P.W.M. ( pulse width modulation ) consta essenzialmente nel trasmettere l informazione attraverso un segnale impulsivo mediante la larghezza
Interazione tra strumenti e sistemi in misura: effetto di carico
Corso di Laurea a distanza in INGEGNERIA ELETTRONICA Sede di Torino - A.A. 2005/2006 Modulo: Misure Elettroniche II (05EKCcm) Esercitazioni di Laboratorio Alessio Carullo 27 luglio 2006 Interazione tra
M149 - ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE. Indirizzo: ELETTRONICA E TELECOMUNICAZIONI CORSO DI ORDINAMENTO. Tema di: TELECOMUNICAZIONI
M19 - ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE Indirizzo: ELETTRONICA E TELECOMUNICAZIONI CORSO DI ORDINAMENTO Tema di: TELECOMUNICAZIONI Testo valevole per i corsi di ordinamento e per i corsi del
Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra
Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...
Analisi spettrale. Applicazioni. Specifiche di un analizzatore di spettro. analizzatori di spettro. Specifiche di un analizzatore di spettro (2)
Analisi spettrale Che cos è lo spettro di un segnale? Perché e come si misura? Sia x(t) un segnale nel dominio del tempo. La sua trasormata di Fourier vale: X ( ) = + x( t) e jπ t < < + Le misure nel dominio
Modulo di Tecnica del controllo ambientale
Modulo di Tecnica del controllo ambientale Misure acustiche Ing. Agostino Viola Università degli Studi di Cassino Facoltà di ingegneria DiMSAT - Dipartimento di Meccanica, Strutture, Ambiente e Territorio
ω 1 è la frequenza di taglio inferiore ω 2 = ω 1 = 0 ω 2 è la frequenza di taglio superiore Α(ω) Α(ω) ω ω 1 ω 2
. Studio della loro risposta ad un onda quadra 1 Filtri elettrici ideali: sono quadrupoli che trasmettono un segnale di ingresso in un certo intervallo di frequenze ovvero esiste una banda di pulsazioni
LA SCALA LOGARITMICA
Decibel e suono LA SCALA LOGARITMICA Una scala descrive il rapporto tra due grandezze. La scala logaritmica si differenzia dalla scala lineare per il fatto che la proporzionalità tra le due grandezze non
Analisi spettrale del rumore di fase
5 Analisi spettrale del rumore di fase In questo capitolo verranno illustrati i due metodi di analisi spettrale utilizzati per valutare la potenza del rumore da cui è affetta la portante sinusoidale. Come
Ricevitore RX FM8SF 869,50 MHz
Ricevitore RX FM8SF 869,50 MHz Ricevitore supereterodina FM miniaturizzato ad elevata sensibilità ed elevata selettività. Munito di filtro SAW per ottenere alta immunità ai disturbi. Utilizzato in abbinamento
Componenti in corrente continua
Ogni componente reale utilizzato in un circuito è la realizzazione approssimata di un elemento circuitale ideale. Nello studio dei sistemi in cc gli elementi più importanti sono : esistore Generatori campione
DWT-B01. Trasmettitore da cintura per microfono wireless digitale. Presentazione
DWT-B01 Trasmettitore da cintura per microfono wireless digitale Presentazione Sony presenta il nuovo sistema radiomicrofonico completamente digitale per prestazioni audio avanzate: la combinazione perfetta
Verificheremo che a seconda dei valori della resistenza in questione è possibile:
Misure di resistenze elettriche: esistono molti metodi di ura di resistenze la cui scelta è determinata dalla precisione richiesta nella ura, dall intervallo di valori in cui si presume cada la resistenza
Quanto bene conosciamo i Segnali Sismici?
Quanto bene conosciamo i Segnali Sismici? In generale, quello registrato non è esattamente il moto del suolo ma la risposta dell apparato strumentale a questo movimento In pratica, lo strumento provoca
I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT
NOME: Marco COGNOME: Salzillo TITOLO: AMPLIFICATORE OPERAZIONALE NON INVERTENTE OBBIETTIVO: REALIZZARE UN CIRCUITO OPERAZIONALE NON INVERTENTE CHE AMPLIFICA DI 11,7dB CIRCUITO TEORICO: CIRCUITO APPLICATIVO:
PROGRAMMA DISCIPLINARE SVOLTO
PROGRAMMA DISCIPLINARE SVOLTO DOCENTI : MASSERINI MARIO GIUSEPPE, LUIGI GIAVARINI (ITP) CLASSE: 4 IB DISCIPLINA: TELECOMUNICAZIONI 1) ELENCO UDA DEL CORRENTE ANNO SCOLASTICO CONCORDATE NELLE RIUNIONI DI
Conversione Analogico/Digitale
Conversione Analogico/Digitale La conversione Analogico/Digitale (A/D) e quella Digitale/Analogico (D/A) forniscono il legame tra il mondo delle grandezze fisiche (analogiche) e quello del calcolo e della
Banda passante e sviluppo in serie di Fourier
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: [email protected]
Acquisizione Dati. Introduzione
UNIVERSITÀ DEGLI STUDI DI CAGLIARI Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali Corso di Sperimentazione sulle Macchine Acquisizione Dati Introduzione Introduzione In campo scientifico
Generatore sinusoidale BF Generatori di funzione Generatori sinusoidali a RF
Generatori di segnale Generatore sinusoidale BF Generatori di funzione Generatori sinusoidali a RF Oscillatori a quarzo Generatori di segnale sintetizzati Generatori per sintesi indiretta 2 2006 Politecnico
Serie di Fourier. Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma:
Serie di Fourier Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma: x( t) = = 0, A cos ( 2πf t + ϕ ) Cioè: ogni segnale periodico di periodo T si può scrivere come somma
Dipendenza delle misure di segnali GSM dai parametri di impostazione dell analizzatore di spettro digitale
Dipendenza delle misure di segnali GSM dai parametri di impostazione dell analizzatore di spettro digitale Barellini A. 1,Bogi L. 2, Licitra G. 3, Silvi A.M. 2 1 ARPA Toscana Dip. Prov.le Pisa via V.Veneto,
Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase.
Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase. In questa versione, anzi, non è necessario impiegare il filtro risonante L 1 C 1, in quanto il trasferimento
Tecniche di Misura e metodi di valutazione dell esposizione ai CEM. 07 giugno 2013 Ordine degli Ingegneri Roma Jan Bulli Wilkinson
Tecniche di Misura e metodi di valutazione dell esposizione ai CEM 07 giugno 2013 Ordine degli Ingegneri Roma Jan Bulli Wilkinson STATI UNITI GERMANIA ITALIA Ricerca & Sviluppo- Produzione Prodotti RF
