Corpi in caduta. d) Se il corpo impiega esattamente T secondi per cadere, quale deve essere l altezza iniziale? Risposta: in tal caso h 0 = gt 2 /2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corpi in caduta. d) Se il corpo impiega esattamente T secondi per cadere, quale deve essere l altezza iniziale? Risposta: in tal caso h 0 = gt 2 /2"

Transcript

1 Corpi in caduta La legge h(t)= -gt 2 /2 + h 0 descrive come varia la distanza dal suolo di un corpo pesante che nel vuoto cade da un altezza h 0 con una velocità iniziale nulla. a) Qual è il dominio della funzione h(t)? Risposta: poiché h(t) rappresenta una distanza, si deve imporre h(t) 0, dunque gt 2 /2 h 0 da cui t 2 2 h 0 /g, e quindi 0 t sqr(2 h 0 /g) b) Quanto tempo impiega il corpo a toccare terra? Risposta:il corpo tocca terra se h(t)=0, dunque per t = sqr(2 h 0 /g)

2 Corpi in caduta c) Il tempo che impiega il corpo per toccare terra è una funzione dell altezza da cui viene lasciato cadere? Risposta: Sì, è in funzione di h 0 d) Se il corpo impiega esattamente T secondi per cadere, quale deve essere l altezza iniziale? Risposta: in tal caso h 0 = gt 2 /2

3 Corpi in caduta La legge h(t)= -gt 2 /2 + v 0 t + h 0 descrive come varia la distanza dal suolo di un corpo pesante che nel vuoto cade da un altezza h 0 con una velocità iniziale v 0. (moto uniformemente accellerato) (g=9.8 ms -2 accellerazione di gravità) Se il corpo è lanciato verso l alto con velocità iniziale di 20m/sec da una altezza di 30 m, determina: A che altezza si troverà il corpo dopo un secondo? Risposta: h(t) = -9.8t 2 /2 + 20t + 30, dunque h(1)= = 45.1 m

4 Corpi in caduta Quale sarà la massima altezza raggiunta dal corpo? Risposta: Le coordinate del vertice della parabola grafico di h(t) sono circa (2, 50.4); poiché la parabola ha la concavità rivolta verso il basso, la quota 50.4 è la massima altezza che il corpo raggiunge. Dopo quanto tempo il corpo toccherà terra? Risposta:Si pone h(t) = -9.8t 2 /2 + 20t + 30 =0, risolvendo questa equazione di II grado, si sceglie la radice positiva, ottenendo t =(10 + sqrt(247))/ s

5 Corpi in caduta Siete affacciati alla finestra nell istante in cui, da un piano superiore, viene lanciato un vaso di gerani verso il basso con velocità di 1m/s Supponendo che il punto da cui comincia a cadere il vaso sia 4 m al di sopra delle vostre spalle e che le vostre braccia siano lunghe un metro, quanto tempo avete a disposizione per afferrare il vaso, ipotizzando che potete prenderlo solo nell intervallo di tempo in cui si trova tra un metro al di sopra e un metro al di sotto delle spalle?

6 Corpi in caduta Risposta: La distanza tra le spalle e il vaso cambia con la legge d(t)= -gt 2 /2 + v 0 t + h 0 che, in questo caso, è d(t)= -4.9t 2 - t + 4, dove d è positiva se il vaso è più in alto delle spalle, negativa se è più in basso. Gli istanti di tempo in cui è possibile afferrare il vaso sono quelli per cui sono soddisfatte le disequazioni -1 d(t) 1 La prima disequazione -4.9t 2 - t + 4-1, è equivalente a 4.9t 2 + t - 5 0, che ha soluzioni (-1-sqr(1 +98))/9.8 < t <(-1 + sqr(1+98))/9.8. Poiché t deve essere positivo la soluzione è 0<t <(-1 +3sqr(11))/9.8

7 Corpi in caduta L altra disequazione -4.9t 2 - t è equivalente a 4.9t 2 + t -3 0, che ha soluzioni t<-(1+sqr(1+58.8))/9.8 e t>(-1 + sqr(1+58.8))/9.8. Poiché t deve essere positivo, solo t>(-1 + sqr(1+58.8))/9.8 va bene. Tenendo conto di entrambe le disequazioni, si ha che l intervallo di tempo in cui possiamo afferrare il vaso è [(-1 + sqr(1+58.8))/9.8, (-1 +3sqr(11))/9.8 ] [0.69, 0.91] Il tempo a disposizione è quindi circa 2.2 decimi di secondo

8 Indice di massa corporea IMC è un indice biometrico usato per determinare se un individuo ha peso vicino alla norma Indichiamo con p il peso in kg di un individuo e con h la sua altezza misurata in m, si ha IMC =p/h 2 L Organizzazione Mondiale della Sanità considera obesi gli individui con IMC>30, sottopeso gli individui con IMC <18.5 e gravemente magri quelli con IMC<16.

9 Indice di massa corporea Per un individuo di altezza 1.70 m, per quali valori di p è da ritenersi obeso? Per quali valori di p è da ritenersi gravemente magro Risposta:obeso se p/(1.7) 2 > 30, dunque p>86.7 kg Gravemente magro se p/(1.7) 2 < 16, da cui p< kg Per un individuo che pesa 90 kg, per quali valori della sua altezza sarà ritenuto obeso? Risposta: 90/h 2 >30, da cui 0<h<1.73 m

10 Indice di massa corporea Per un individuo che pesa 40 kg, per quali valori della sua altezza sarà da ritenersi gravemente magro? Risposta: h >1.58 Disegna il grafico di IMC in funzione di p, noto h ( unzione lineare di p) Disegna il grafico di IMC in funzione di h, noto p ( unzione tipo f(x)=k/x 2 ) Disegna il grafico di h in funzione di p, noto IMC (funzione radice quadrata ) Disegna il grafico di h in funzione di IMC, noto p

11 Alberi che crescono (Comp.12/4/07 Prof.Abate) Misuri l'altezza di un albero in funzione del tempo.quando hai iniziato l'esperimento (t = 0), l'altezza dell'albero era di 1.00 m. Dopo una settimana (t = 1) l'altezza dell'albero era di 1.04 m. Dopo due settimana (t = 2), di 1.10 m. Supponendo che l'altezza dipenda in modo quadratico dal tempo, trova la funzione che esprime la crescita dell'albero. Risposta: Ponendo l altezza dell albero h(t) =at 2 + bt +c, i dati assegnati impongono le condizioni c=1 a+b+1=1.04 4a + 2b +1=1.10, da cui a=0.01, b= 0.03

12 Alberi che crescono Dunque la funzione che esprime la crescita dell albero è h(t) =0.01t t +1 La funzione che hai trovato può rappresentare la crescita dell'albero anche per tempi precedenti all'inizio della tua misurazione? A partire da quando? Perchè? Risposta: Si osserva che 0.01t t +1 0 per ogni t; il vertice della parabola, grafico di h(t), ha coordinate (-1.5, ), la parabola ha la comcavità rivolta verso l alto. Poiché il fenomeno descritto riguarda la crescita dell albero, la funzione h(t) deve essere crescente, quindi la funzione ha senso anche per t negativi purchè t -1.5.

13 Umidità nell aria. Studiando la percentuale di umidità nell'aria in funzione dei millimetri di pioggia nella stagione dei monsoni, giungi alla conclusione che la percentuale U di umidità dipende dai millimetri di pioggia secondo la funzione U(x) = (x 2-1)/(x 2 + 1) Studia la funzione U (anche per millimetri negativi, utile nei deserti). (Comp 6/6/07 Prof. Abate) SOLUZIONE: La funzione è definita su R, si osserva che è pari, quindi il grafico ha come asse di simmetria l asse delle ordinate. Inoltre lim x ± U(x)=100, si ha U(0) =0

14 Umidità dell aria

Funzioni. Scrivi l espressione esplicita di una funzione quadratica passante per i punti (-1,0), (1,0) e con lim per x uguale a +

Funzioni. Scrivi l espressione esplicita di una funzione quadratica passante per i punti (-1,0), (1,0) e con lim per x uguale a + Funzioni. Trova l espressione esplicita di una funzione lineare f:r R tale che f(0)=2 ed f(1)=0 Sol:f(x)=mx+q, q=2, m=-2 La funzione è strettamente decrescente? Sol:Sì, è strettamente decrescente essendo

Dettagli

Funzioni lineari. Esercizi: Trova l espressione esplicita di una funzione lineare f:r R tale che la sua inversa sia f -1 (y)= 3y-4

Funzioni lineari. Esercizi: Trova l espressione esplicita di una funzione lineare f:r R tale che la sua inversa sia f -1 (y)= 3y-4 Funzioni lineari Trova l espressione esplicita di una funzione lineare f:r R tale che f(0)=2 ed f(1)=0 Sol:f(x)=mx+q, q=2, m=-2 La funzione è strettamente decrescente? Sol:Sì, è strettamente decrescente

Dettagli

Esercizio (tratto dal Problema 1.6 del Mazzoldi)

Esercizio (tratto dal Problema 1.6 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.6 del Mazzoldi) Una particella si muove lungo l asse x nel verso positivo con accelerazione costante a 1 = 3.1 m/s 2. All istante t = 0 la particella si trova nell origine

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 1 Unità di misura Cinematica Posizione e sistema di riferimento....... 3 La velocità e il moto rettilineo uniforme..... 4 La velocità istantanea... 5 L accelerazione 6 Grafici temporali.

Dettagli

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z)

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) 05-11-2015 Una pallina da tennis viene lanciata con velocità V0 = 40 m/s ed angolo rispetto all orizzontale = /3. Il campo da tennis è lungo 30 m e

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 29 novembre 2010. d) la velocità con cui giunge a terra.

Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 29 novembre 2010. d) la velocità con cui giunge a terra. Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 9 novembre 010 Esercizi sul moto di caduta libera Esercizio 1. Una pallina da tennis viene lasciata cadere dal punto più alto

Dettagli

Moto del proiettile. a cura di Beatrice Clair

Moto del proiettile. a cura di Beatrice Clair Moto del proiettile a cura di Beatrice Clair Studiando il moto del proiettile è possibile prevedere l andamento di un lancio o di una caduta di un oggetto, sfruttando alcune leggi della fisica. La Balistica

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

1 di 5 12/02/ :23

1 di 5 12/02/ :23 Verifica: tibo5794_me08_test1 nome: classe: data: Esercizio 1. La traiettoria di un proiettile lanciato con velocità orizzontale da una certa altezza è: un segmento di retta obliqua percorso con accelerazione

Dettagli

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3 Serway, Jewett Principi di Fisica IV Ed. Capitolo 3 Moti in due dimensioni Caso bidimensionale: tutte le grandezze viste fino ad ora (posizione, velocità, accelerazione devono essere trattate come vettori).

Dettagli

Cinematica nello Spazio

Cinematica nello Spazio Cinematica nello Spazio Abbiamo introdotto, nelle precedenti lezioni, le grandezze fisiche: 1) Spostamento; 2) Velocità; 3) Accelerazione; 4) Tempo. Abbiamo ricavato le equazioni per i moti: a) uniforme;

Dettagli

IIS Moro Dipartimento di matematica e fisica

IIS Moro Dipartimento di matematica e fisica IIS Moro Dipartimento di matematica e fisica Obiettivi minimi per le classi seconde - Fisica CONTENUTI SECONDO ANNO MODULO LE FORZE E IL MOTO Conoscenze Significato e unità di misura della velocità Legge

Dettagli

Moto Rettilineo Uniformemente Accelerato

Moto Rettilineo Uniformemente Accelerato Moto Rettilineo Uniformemente Accelerato E il moto rettilineo con accelerazione costante. Per definizione: a(t) a Velocità e legge oraria sono: v(t)at+v 0 s(t)½at +v 0 t+s 0 (v 0 è la velocità iniziale

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

FUNZIONI QUADRATICHE

FUNZIONI QUADRATICHE f: R R si dice funzione quadratica se è del tipo f(x) =ax 2 +bx+c, dove a,b,c sono costanti Il grafico di una funzione quadratica è una curva detta parabola Abbiamo incontrato funzioni di questo tipo quando

Dettagli

Le caratteristiche del moto. Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo.

Le caratteristiche del moto. Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo. Il moto dei corpi Le caratteristiche del moto Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo. Le caratteristiche del moto Immagina di stare seduto

Dettagli

IL MOTO DEI PROIETTILI

IL MOTO DEI PROIETTILI IL MOTO PARABOLICO PROF. DANIELE COPPOLA Indice 1 IL MOTO DEI PROIETTILI ------------------------------------------------------------------------------------------------ 3 2 MOTO DI UN PROIETTILE SPARATO

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = +

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = + FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO Si chiama funzione lineare (o funzione affine) una funzione del tipo = + dove m e q sono numeri reali fissati. Il grafico di tale funzione è una retta, di cui

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1 RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,

Dettagli

Funzioni di secondo grado

Funzioni di secondo grado Definizione della funzione di secondo grado 1 Funzioni di secondo grado 1 Definizione della funzione di secondo grado f: R R, = a +b +c dove a, b, c ǫ R e a definisce una funzione di secondo grado. A seconda

Dettagli

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 3

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 3 MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 3 1-Il giorno 7 gennaio Francesca riscontrò un aumento di peso del 10% rispetto al suo peso prima delle vacanze

Dettagli

Domande ed esercizi sul moto rettilineo uniformemente accelerato

Domande ed esercizi sul moto rettilineo uniformemente accelerato 1. Come si definisce la grandezza fisica accelerazione e qual è l unità di misura nel SI? 2. Come si definisce l accelerazione istantanea? 3. Come si definisce il moto rettilineo uniformemente accelerato?

Dettagli

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento L accelerazione Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio Questo simbolo significa che l esperimento si può realizzare anche

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

ESERCIZI di FISICA. 1) Se 100 persone hanno giocato un sistema alla lotteria, vincendo in totale 10 M, quanti ha vinto ciascuno?

ESERCIZI di FISICA. 1) Se 100 persone hanno giocato un sistema alla lotteria, vincendo in totale 10 M, quanti ha vinto ciascuno? ESERCIZI di FISICA 1) Se 100 persone hanno giocato un sistema alla lotteria, vincendo in totale 10 M, quanti ha vinto ciascuno? a. 10 4 b. 10 5 c. 10 6 d. 10 7 2) A quanti km corrispondono 0.1 Gm? a. 10

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

Prove di esame a.a

Prove di esame a.a Prove di esame a.a. 2008-09 Perugia, 26 gennaio 2009 Svolgere i seguenti esercizi motivando tutte le risposte. 1. Indice di massa corporea. L indice di massa corporea (IMC) è un indice biometrico usato

Dettagli

1. Traiettorie Determiniamo le equazioni delle due rette su cui si muove ciascuna nave. ( )

1. Traiettorie Determiniamo le equazioni delle due rette su cui si muove ciascuna nave. ( ) PROBLEMA Sei il responsabile del controllo della navigazione della nave indicata in figura con il punto P. Nel sistema di riferimento cartesiano Oxy le posizioni della nave P, misurate negli istanti t

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza?

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza? ESERCIZI SUL MOTO Un'automobile compie un viaggio di 100 km in tre tappe: 20 km a 60 km/h, 40 km a 80 km/h e 40 km a 30 km/h. Calcolare il tempo impiegato nel viaggio e la velocità media dell'automobile.

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

4. I principi della meccanica

4. I principi della meccanica 1 Leggi del moto 4. I principi della meccanica Come si è visto la cinematica studia il moto dal punto di vista descrittivo, ma non si sofferma sulle cause di esso. Ciò è compito della dinamica. Alla base

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu

Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu Animalium, forse il primo trattato di Biomeccanica. Questo

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

VELOCITÀ MOTO RETTILINEO UNIFORME MOTO UNIFORMEMENTE ACCELERATO

VELOCITÀ MOTO RETTILINEO UNIFORME MOTO UNIFORMEMENTE ACCELERATO 1 VELOCITÀ 1. (Da Veterinaria 2010) In auto percorriamo un primo tratto in leggera discesa di 100 km alla velocità costante di 100 km/h, e un secondo tratto in salita di 100 km alla velocità costante di

Dettagli

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA 1) Descrivi, per quanto possibile, il moto rappresentato in ciascuno dei seguenti grafici: s a v t t t S(m) 2) Il moto di un punto è rappresentato

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Dinamica Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Cinematica Moto rettilineo uniforme s=s 0 +v(t-t 0 ) Moto uniformemente accelerato v=v 0 +a(t-t

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI

PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI www.matefilia.it PRIMA SIMULAZIONE - 0 DICEMBRE 05 - QUESITI Q Lanciando una coppia di dadi cinque volte qual è la probabilità che si ottenga un punteggio totale maggiore di sette almeno due volte? Calcoliamo

Dettagli

Una funzione può essere:

Una funzione può essere: Date due grandezze variabili, variabile indipendente e y variabile dipendente, si dice che y è funzione di se esiste una legge o proprietà di qualsiasi natura che fa corrispondere a ogni valore di uno

Dettagli

Liceo Scientifico L. da Vinci A.S. 2004/2005. Progetto di Fisica. Studio del moto dei proiettili

Liceo Scientifico L. da Vinci A.S. 2004/2005. Progetto di Fisica. Studio del moto dei proiettili Liceo Scientifico L. da Vinci A.S. 2004/2005 Progetto di Fisica Studio del moto dei proiettili Studente Luigi Pedone 5H A.s. 2004/2005 1 La gittata Nell'opera Due nuove scienze di Galileo, si asserisce

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

3. Traccia il grafico della funzione scelta in un piano cartesiano avente in ascisse il tempo t espresso in ore e in

3. Traccia il grafico della funzione scelta in un piano cartesiano avente in ascisse il tempo t espresso in ore e in PROBLEMA. 1 Americhe Stai seguendo un corso, nell'ambito dell'orientamento universitario, per la preparazione agli studi di Medicina. Il docente introduce la lezione dicendo che un medico ben preparato

Dettagli

Esercizi sulla conversione tra unità di misura

Esercizi sulla conversione tra unità di misura Esercizi sulla conversione tra unità di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

la velocità degli uccelli è di circa (264:60= 4.4) m/s)

la velocità degli uccelli è di circa (264:60= 4.4) m/s) QUESTIONARIO 1. Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 260 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si allontana da lei in linea retta,

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Revisione del 16/03/16 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon MOTI ACCELERATI Richiami di teoria Moto uniformemente vario (accelerato) a = equazioni del moto:

Dettagli

ESERCITAZIONE: CALCOLO APPROSSIMATO ED ERRORI

ESERCITAZIONE: CALCOLO APPROSSIMATO ED ERRORI ESERCITAZIONE: CALCOLO APPROSSIMATO ED ERRORI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 Se 2 x 2.5 e 5 y 6, fra quali limiti sono compresi i numeri x + y, y x, x y e y/x? 7 x

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

PROBLEMA 1: Una collisione tra meteoriti

PROBLEMA 1: Una collisione tra meteoriti Correzione della simulazione di seconda prova di matematica del 25 febbraio 2015 PROBLEMA 1: Una collisione tra meteoriti 1] La curva geometrica rappresentata dal grafico nel piano t-v è una parabola con

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

APPLICAZIONI DEL CONCETTO DI DERIVATA

APPLICAZIONI DEL CONCETTO DI DERIVATA ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA APPLICAZIONI DEL CONCETTO DI DERIVATA A. A. 2014-2015 L. Doretti 1 A. Significato geometrico di derivata 1. Dato il grafico di f, utilizzare il

Dettagli

Studia il seguente fascio di parabole: 3= 1. Determiniamo la forma canonica: 2. Determiniamo le coordinate dei vertici al variare del parametro a :

Studia il seguente fascio di parabole: 3= 1. Determiniamo la forma canonica: 2. Determiniamo le coordinate dei vertici al variare del parametro a : Fascio di parabole Esercizi Esercizio 362.341 Studia il seguente fascio di parabole: 3= = +3 2. Determiniamo le coordinate dei vertici al variare del parametro a : = = =0 = 0 +3=3 Il vertice non dipende

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

Matematica Capitolo 1. Funzioni. Ivan Zivko

Matematica Capitolo 1. Funzioni. Ivan Zivko Matematica Capitolo 1 Funzioni Ivan Zivko Introduzione Una unzione è un qualcosa che mette in relazione un valore in entrata ( input ) con un altro in uscita ( output ). Input FUNZIONE Output Matematica

Dettagli

Lavoro. Energia. Mauro Saita Versione provvisoria, febbraio Lavoro è forza per spostamento

Lavoro. Energia. Mauro Saita   Versione provvisoria, febbraio Lavoro è forza per spostamento Lavoro. Energia. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2015. Indice 1 Lavoro è forza per spostamento 1 1.1 Lavoro compiuto da una forza variabile. Caso bidimensionale..........

Dettagli

1. Studia la funzione che rappresenta la superficie del parallelepipedo in funzione del lato b della base quadrata e rappresentala graficamente;

1. Studia la funzione che rappresenta la superficie del parallelepipedo in funzione del lato b della base quadrata e rappresentala graficamente; PROBLEMA 2: Il ghiaccio Il tuo liceo, nell'ambito dell'alternanza scuola lavoro, ha organizzato per gli studenti del quinto anno un attività presso lo stabilimento ICE ON DEMAND sito nella tua regione.

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2 1 Problema 1 Un blocchetto di massa m 1 = 5 kg si muove su un piano orizzontale privo di attrito ed urta elasticamente un blocchetto di massa m 2 = 2 kg, inizialmente fermo. Dopo l urto, il blocchetto

Dettagli

Esercitazione VI - Leggi della dinamica III

Esercitazione VI - Leggi della dinamica III Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

Quesiti dell Indirizzo Tecnologico

Quesiti dell Indirizzo Tecnologico Quesiti dell Indirizzo Tecnologico 1) Sapendo che la massa di Marte é 1/10 della massa della Terra e che il suo raggio é ½ di quello della Terra l accelerazione di gravità su Marte è: a) 1/10 di quella

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

Esercizi per il recupero

Esercizi per il recupero Istituto di Istruzione Tecnica e Scientifica Aldo Moro Lavoro estivo di fisica per la classe 2H Anno Scolastico 2014-2015 Ripassare il capitolo 14. Pr.( 7-8-9 ) pag.286 ; pr.( 18-23-24-25-26-27-28 ) pag.287

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

Lezione 4 Energia potenziale e conservazione dell energia

Lezione 4 Energia potenziale e conservazione dell energia Lezione 4 Energia potenziale e conservazione dell energia 4. Energia potenziale e conservazione dell energia Energia potenziale di: Forza peso sulla superficie terrestre Serway, Cap 7 U = mgh di un corpo

Dettagli

l'attrito dinamico di ciascuno dei tre blocchi sia pari a.

l'attrito dinamico di ciascuno dei tre blocchi sia pari a. Esercizio 1 Tre blocchi di massa rispettivamente Kg, Kg e Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura). Sul blocco agisce una forza orizzontale pari a N. Si determini l'accelerazione

Dettagli

A grande richiesta, esercizi di matematica&.!

A grande richiesta, esercizi di matematica&.! A grande richiesta, esercizi di matematica&.! A partire dalla conoscenza del grafico di f(x) = 1/x, disegna il grafico delle seguenti funzioni g(x) =1/(x+1) ; g(x) =1/(2x -1); g(x) =2 + 1/x ; g(x) =2-1/x

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica Esercizi: Dinamica Appunti di lezione Indice Dinamica 3 Le quattro forze 4 Le tre

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Moti nel piano. Moto del proiettile o moto parabolico

Moti nel piano. Moto del proiettile o moto parabolico Moti nel piano Moto del proiettile o moto parabolico RICHIAMI DI MATEMATICA Equazione di una parabola a b c a>: concaità riolta erso l alto a

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 1

SESSIONE SUPPLETIVA PROBLEMA 1 www.matefilia.it SESSIONE SUPPLETIVA - 215 PROBLEMA 1 Sei stato incaricato di progettare una pista da ballo all esterno di un locale in costruzione in una zona balneare. Il progetto prevede, oltre alla

Dettagli

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Legge di Stevino La pressione in un liquido a densità costante cresce linearmente con la profondità Il principio di

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Magnete in caduta in un tubo metallico

Magnete in caduta in un tubo metallico Magnete in caduta in un tubo metallico Progetto Lauree Scientifiche 2009 Laboratorio di Fisica Dipartimento di Fisica Università di Genova in collaborazione con il Liceo Leonardo da Vinci Genova - 25 novembre

Dettagli

Verifica sommativa di Fisica Cognome...Nome... Data

Verifica sommativa di Fisica Cognome...Nome... Data ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede Associata Liceo "B.Russell" Verifica sommativa di Fisica Cognome........Nome..... Data Classe 4B Questionario a risposta multipla Prova di uscita di

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

PROBLEMA 15. ATTENZIONE: nelle figure gli angoli e i segmenti non sono in scala con i valori assegnati, ma ciò non pregiudica la soluzione.

PROBLEMA 15. ATTENZIONE: nelle figure gli angoli e i segmenti non sono in scala con i valori assegnati, ma ciò non pregiudica la soluzione. PROBLEMA 15 E dato il stema di piani inclinati della figura qui sotto dove α = 35,0, β = 40,0, AB =,00 m e BC = 1,50 m. Un corpo di massa m =,00 kg è posto in A e tra il corpo e il pia, lungo tutto il

Dettagli