DAL PROBLEMA ALL EQUAZIONE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DAL PROBLEMA ALL EQUAZIONE"

Transcript

1 DAL PROBLEMA ALL EQUAZIONE Ecco un problema semplice, ma, per risolverlo, ci si deve pensare: È dato un rettangolo diviso in due rettangoli A e B. Il perimetro del rettangolo A è il triplo del perimetro del rettangolo B. Quali sono le dimensioni del rettangolo B? A B 4 cm 0 cm Lo si risolve facilmente se si traduce l enunciato del problema in un equazione. Prima si sceglie l incognita: x è la dimensione sconosciuta del rettangolo B. Si può allora completare il disegno in questo modo: 0 - x x A B 4 cm 0 cm Poi si traducono le indicazioni date nel problema in un equazione: = Il perimetro del rettangolo A è il triplo del perimetro del rettangolo B. Si risolve l equazione: Le dimensioni del rettangolo sono Spesso l equazione è uno strumento efficace per risolvere problemi. 1

2 Esempio 1 Alice ha anni, mentre sua sorella Marta ne ha 1. Fra quanti anni l età di Marta sarà doppia di quella di Alice? Indichiamo con t il numero di anni che devono trascorrere. Età di Alice Età di Marta ora 1 fra t anni Ed ora possiamo tradurre la domanda del problema in equazione: = = t = Fra anni l età di Marta sarà doppia di quella di Alice, perché allora l età di Marta sarà di e l età di Alice sarà di Esempio In un trapezio rettangolo la base minore è di cm più corta di quella maggiore. La sua area è di,6 cm e la sua altezza è di 4 cm. Qual è la misura della base minore? b Chiamiamo b la misura della base minore. Completiamo il disegno con le informazioni del testo L area di un trapezio è data dalla formula Somma delle basi x altezza. In essa sostituiamo i dati del problema che abbiamo indicato nel disegno. Otteniamo così l equazione:

3 Risolviamola: La base minore misura Esempio Il perimetro di un triangolo è 60 cm. Determina la misura di ciascun lato sapendo che il secondo e il terzo lato sono rispettivamente il doppio e il triplo del primo. Chiamiamo x la misura del primo lato. Quindi la misura del secondo lato è x e quella del terzo lato è x. L equazione che traduce il problema è Risolviamola: I lati misurano rispettivamente cm, cm e cm. Però, osservando le misure dei lati ci si accorge che Quando si mette in equazione un problema è opportuno procedere in quattro fasi: 1. Si sceglie l incognita ;. si traduce l enunciato del problema in un equazione ;. si risolve l equazione ; 4. si controlla che la soluzione dell equazione sia soluzione del problema.

4 AD OGNI PROBLEMA LA SUA EQUAZIONE 1. Le piramidi di caselle sono costruite rispettando le seguenti regole: - ogni casella contiene un numero: - la somma dei numeri di due caselle adiacenti è uguale al numero nella casella che sta sopra di esse. Completa le seguenti piramidi. a) b) Il terreno rettangolare raffigurato è suddiviso in quattro parti rettangolari uguali. Se il perimetro del terreno è di 80 m, qual è la sua area?. Dove occorre mettere il punto P, sul segmento AB, affinché il poligono APEF abbia la stessa area del poligono BCDEP? Dove occorre mettere il punto P, sul segmento AB, affinché il poligono APEF abbia lo stesso perimetro del poligono BCDEP? Le misure indicate nel disegno sono in centimetri. Indica con x la misura di AP. F 8,9 10 D E 8 C A P B 4

5 4. Un ragazzo ha in tasca, CHF in monete da 1 CHF, 0 ct, 0 ct, 10 ct, ct. Se il numero di monete di ogni tipo è lo stesso, quante monete ha in tasca in totale?. ABCD è un rettangolo. Il rettangolo DEFG e il trapezio BCGF hanno la stessa area. A E D 6 cm Quanto è, in cm, l area di ABFE? F 8 cm G 4 cm B C 6. Due ragazzi, distanti m, partono contemporaneamente e camminano l uno verso l altro alle velocità rispettive di 1, m/s e m/s. 1, m/s m/s m i) Dopo quanto tempo si incontrano? ii) Che distanza ha percorso ognuno?. Sui due piatti di una bilancia si trovano sacchetti e 16 monete tutte uguali (vedi figura). I sacchetti contengono tutti la medesima quantità di monete, uguali a quelle che stanno fuori. I due piatti sono in equilibrio. Quante monete contiene ciascun sacchetto? ( il peso dei sacchetti è trascurabile)

6 ESERCIZI SULLE EQUAZIONI Risolvere le seguenti equazioni nell insieme dei numeri razionali. a) 1x 4 = 16 b) -x + = -10 c) (x + ) : = d) 0 + x = 10 e) x 0 = x f) x = x g) x + 1 = x - 4 h) 8x + 4 = 9x - m),x 4, =,4 x n) x = 0x Eseguire i seguenti calcoli: a) 1 b) 1 6 a c) 6 n d) 1 a x e) 4 f) Risolvere le seguenti equazioni nell insieme dei numeri razionali. x a) 1 x b) x x 1 x 1 c) x d) 6 4 e) x x 8 x f) g) 9 x x h) x x 8 9 6

7 PROBLEMI ED EQUAZIONI Risolvi i seguenti problemi mediante un equazione. Quelli di geometria devono essere tradotti prima in un disegno. 1. Qual è il numero tale che il suo doppio, diminuito di 9, è uguale al numero stesso, aumentato di? (1). Il peso di 6 mele è uguale a quello di 1 arance. Calcola il peso medio di un arancia sapendo che supera di g il peso medio di una mela. (180 g). Luigi ha 4 anni più di Silvio, che, a sua volta ha anni più di Carlo. Se complessivamente hanno 4 anni, qual è l età di ciascun ragazzo? (8, 11, 1) 4. L età di un figlio è gli /1 dell età del padre. Trovare le due età, sapendo che fra tre anni l età del padre sarà doppia di quella del figlio. (4, 1). I / dei veicoli posteggiati in una piazza sono automobili, i / dei rimanenti sono motociclette; infine ci sono 8 autobus. Quanti veicoli si trovano sulla piazza? (60) 6. In un triangolo isoscele gli angoli alla base hanno ampiezza doppia del terzo angolo. Determina le ampiezze dei tre angoli. (,, 6 ). Una donna greca, recatasi al tempio di Giove, pregava il dio di raddoppiarle il denaro che aveva con sé. Esaudita nella sua richiesta, gli offrì in ringraziamento 0 dracme. Col rimanente denaro andò al tempio di Apollo, fece la stessa domanda, fu esaudita ed offrì in ringraziamento 0 dracme. Dopo ciò, contando il suo denaro, lo trovò, con piacere, doppio di quello che aveva all inizio. Quanto denaro aveva inizialmente portato con sé? (0) 8. Un lato di un rettangolo è uguale ai /10 del suo perimetro e supera di cm 1 l altro lato. Calcolare l area del rettangolo. (864 cm ) 9. In un parallelepipedo retto uno spigolo di base è il doppio e l altro è il triplo dell altezza del solido. L area totale è di 00 cm. Trova il suo volume. (6000 cm ) 10. Un cilindro circolare retto ha l altezza uguale al diametro della base. Il suo volume è di 100 cm. Trova l area totale del solido. ( 11,81 cm ) 11. Dividi il numero 000 in tre parti in modo che la prima parte superi la seconda di 000 e la terza sia i /4 della seconda. (1000, 10000, 90000) 1. Nella tasca sinistra ho il triplo dei soldi che ho nella tasca destra. Tolgo 10 franchi dalla tasca sinistra e li metto in quella di destra. Adesso nella tasca destra ho 6 franchi in più rispetto ai soldi che ho nella tasca sinistra. Quanti soldi avevo all inizio in ognuna delle due tasche? ( CHF, 1 CHF)

8 TRE ROMPICAPO DI SAM LOYD Quanti bicchieri servono per equilibrare la bottiglia? Nella seconda situazione c è un piattino a destra, nella terza situazione i piattini sono tre. Il mattone a sinistra è equilibrato a destra da tre quarti di mattone e da una massa di tre quarti di libbra. Qual è la massa del mattone intero? La signora O Toole è molto sensibile al risparmio, per questo vorrebbe pesare se stessa, il piccolo bambino ed il cane con una sola moneta. Sappiamo che ella pesa 100 libbre più del cane e del bambino assieme e che il cane pesa sessanta per cento in meno del bambino. La bilancia segna 10 libbre. Quanto pesa il bambino? I tre problemi sono tratti da Sam Loyd, Passatempi matematici, Sansoni

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c )

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c ) Sezione 9 Esercizi 9 9 Esercizi 9 Esercizi dei singoli paragrafi - Sistemi di secondo grado Risolvere i seguenti sistemi di secondo grado { x + y = x + y = { x y x = 0 x y = { x + y = 0 x = y { x xy =

Dettagli

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso.

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso. Proposta di esercitazione per le vacanze Geometria ed aritmetica Ricordo che a settembre verrà effettuata la verifica sul ripasso. 1) Un prisma retto, alto 7 cm, ha per base un triangolo isoscele;

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. . esercizi Chi non risolve esercizi non impara la matematica.. esercizi + = + = + = 0 = + = 8 + = 0 = 8 8 = + 9 = 0 = + = = + = 0 = = + = 0 = 0 8 0 = 9 = 0 + = + = = 8 = 0 = = = + = 8 = 0 9 = 0 = = + 8

Dettagli

Problemi di secondo grado con argomento geometrico (aree e perimetri)

Problemi di secondo grado con argomento geometrico (aree e perimetri) Problemi di secondo grado con argomento geometrico (aree e perimetri) Impostare con una o due incognite 1. Un rettangolo ha perimetro 10 cm ed è tale che l area gli raddoppia aumentando di 1 cm sia la

Dettagli

Prepararsi alla Prova di matematica

Prepararsi alla Prova di matematica Scuola Media E. Fermi Prepararsi alla Prova di matematica Prove d esame di matematica Prof. Vincenzo Loseto 2013/ 2014 PROVA NUMERO 1 QUESITO 1 In un triangolo rettangolo la somma di un cateto e dell ipotenusa

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

COMPITI DELLE VACANZE - CLASSE 2^A A.S. 2018/2019

COMPITI DELLE VACANZE - CLASSE 2^A A.S. 2018/2019 COMPITI DELLE VACANZE - CLASSE 2^A A.S. 2018/2019 ARITMETICA 1. Calcola la frazione generatrice dei seguenti numeri decimali: 7, 3=... 1,48=... 4, 3=... 4,8 =... 5,38=... 3,75 =... 3, 21=... 1, 4=... 2,92

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

IL Calcolo letterale (o algebrico). (teoria pag ;esercizi pag , es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle..

IL Calcolo letterale (o algebrico). (teoria pag ;esercizi pag , es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle.. IL Calcolo letterale (o algebrico). (teoria pag. 29 31;esercizi pag. 100 103, es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il

Dettagli

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo A cura del dipartimento di Matematica e Fisica Dell Istituto Anno 09-00 ESERCIZIARIO di MATEMATICA Numeri naturali o Operazioni

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

Conoscenze. 2. Segna il completamento esatto. a. L area della superficie laterale di un prisma si calcola utilizzando la seguente formula:

Conoscenze. 2. Segna il completamento esatto. a. L area della superficie laterale di un prisma si calcola utilizzando la seguente formula: Conoscenze 1. Completa. a. Un prisma è un... limitato da due...e... e da tanti...quanti sono i lati del... b. Un prisma è retto se... c. Un prisma è regolare se... d. L altezza di un prima è la... 2. Segna

Dettagli

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:...

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:... IL Calcolo letterale ( o algebrico ). 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il doppio di un numero qualsiasi:. c) Il triplo di un

Dettagli

Geometria figure piane Raccolta di esercizi

Geometria figure piane Raccolta di esercizi Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha

Dettagli

C.P.I.A. CENTRO PROVINCIALE PER

C.P.I.A. CENTRO PROVINCIALE PER C.P.I.A. CENTRO PROVINCIALE PER L ISTRUZIONE DEGLI ADULTI SEDE DI CATANZARO - Via T. Campanella n 9 DISPENSE DI GEOMETRIA PERCORSO DI ISTRUZIONE DI PRIMO LIVELLO PRIMO PERIODO DIDATTICO A.S. 2017/2018

Dettagli

Problemi sui teoremi di Euclide e Pitagora

Problemi sui teoremi di Euclide e Pitagora Appunti di Matematica GEOMETRIA EUCLIDEA Problemi sui teoremi di Euclide e Pitagora Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo

Dettagli

Conoscenze. 2. Segna il completamento esatto. a. L area della superficie laterale di un prisma si calcola utilizzando la seguente formula:

Conoscenze. 2. Segna il completamento esatto. a. L area della superficie laterale di un prisma si calcola utilizzando la seguente formula: Conoscenze 1. Completa. a. Un prisma è un...poliedro... limitato da due...poligoni congruenti...e...paralleli... e da tanti...parallelogrammi...quanti sono i lati del...poligono di base... b. Un prisma

Dettagli

Sistema di due equazioni di primo grado in due incognite

Sistema di due equazioni di primo grado in due incognite Sistema di due equazioni di primo grado in due incognite Problema Un trapezio rettangolo di area cm ha altezza di 8 cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della base maggiore

Dettagli

Applicazioni dei teoremi di Pitagora ed Euclide

Applicazioni dei teoremi di Pitagora ed Euclide Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =

Dettagli

Come risolvere i quesiti dell INVALSI - primo

Come risolvere i quesiti dell INVALSI - primo Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo

Dettagli

ESERCIZI PER LE VACANZE

ESERCIZI PER LE VACANZE ESERCIZI PER LE VACANZE Tutti gli esercizi devono essere svolti sul quaderno. 1. Trova il quoziente di ciascuna frazione senza usare la calcolatrice (ricorda che puoi ridurre le frazioni ai minimi termini

Dettagli

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando

Dettagli

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Geometria Equivalenza e misura delle aree Trapezio. Esercizi risolti. - 1 Raccolta di problemi di equivalenza e misura delle aree sul trapezio completi di soluzioni Area Measurement - Area of a Trapezoid

Dettagli

ESAME DI STATO CONCLUSIVO DEL I CICLO DI ISTRUZIONE

ESAME DI STATO CONCLUSIVO DEL I CICLO DI ISTRUZIONE ESAME DI STATO CONCLUSIVO DEL I CICLO DI ISTRUZIONE PROVA SCRITTA DI MATEMATICA n.1 QUESITO N 1 Un fermacarte di vetro (d = 2,5 g/cm 3 ) ha la forma di un prisma retto a base quadrangolare regolare. Sapendo

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

Consolidamento conoscenze. 1. Scrivi l enunciato del teorema di Pitagora. In ogni.

Consolidamento conoscenze. 1. Scrivi l enunciato del teorema di Pitagora. In ogni. onsolidamento conoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni.. Siano c, e i rispettivamente i cateti e l ipotenusa di un triangolo rettangolo, quale delle seguenti scritture esprime

Dettagli

AREE DEI POLIGONI. b = A h

AREE DEI POLIGONI. b = A h AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.

Dettagli

COMPITI DI MATEMATICA PER LE VACANZE

COMPITI DI MATEMATICA PER LE VACANZE IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di

1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 150 pagine. Quante pagine restano da leggere? 3) Luca

Dettagli

Testi d Esame sulla Geometria Euclidea

Testi d Esame sulla Geometria Euclidea Testi d Esame sulla Geometria Euclidea Nota: ove richiesta la sostituzione dei parametri a e b, utilizzeremo i valori a = e b = 0 (0 < b 9 nel caso in cui il valore 0 comprometta la risolubilità dell esercizio).

Dettagli

! Fratte riconducibili a secondo grado (risolvi dopo aver individuato le condizioni di esistenza)

! Fratte riconducibili a secondo grado (risolvi dopo aver individuato le condizioni di esistenza) LICEO CLASSICO STATALE Vittorio Emanuele II di Jesi ANNO SCOLASTICO 2011/2012 LAVORO ESTIVO Materia di insegnamento Indirizzo Classe Matematica Liceo socio psico pedagogico Terza, sez. E / F Equazioni

Dettagli

sapendo che la sua area di base è 9 π cm 2 e l altezza del solido è 10 cm.

sapendo che la sua area di base è 9 π cm 2 e l altezza del solido è 10 cm. GA00001 Determinare la superficie laterale di un cilindro a) 60 π cm 2. b) 42 π cm 2. c) 90 π cm 2. d) 81 π cm 2. a sapendo che la sua area di base è 9 π cm 2 e l altezza del solido è 10 cm. GA00002 In

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

SIMULAZIONE TEST INVALSI

SIMULAZIONE TEST INVALSI SIMULAZIONE TEST INVALSI AREE POLIGONI Disegna nel piano quadrettato un rettangolo che abbia la stessa area del rettangolo ABCD, ma perimetro maggiore. Osserva il rettangolo. Sul lato DC segna il punto

Dettagli

Le equazioni di primo grado

Le equazioni di primo grado Appunti di Matematica Le equazioni di primo grado Definiamo prima di tutto cosa è una identità. Definizione : un identità è un uguaglianza, dove compaiono espressioni letterali, verificata per qualunque

Dettagli

GEOMETRIA EUCLIDEA I teoremi di Euclide e Pitagora

GEOMETRIA EUCLIDEA I teoremi di Euclide e Pitagora GEOMETRIA EUCLIDEA I teoremi di Euclide e Pitagora Vediamo tre importanti teoremi che riguardano i triangoli rettangoli e che si dimostrano utilizzando l equivalenza delle superfici piane. Primo teorema

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. . esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +

Dettagli

PROBLEMI DI GEOMETRIA SUL CERCHIO

PROBLEMI DI GEOMETRIA SUL CERCHIO PROBLEMI DI GEOMETRIA SUL CERCHIO 1. In un cerchio che ha l'area di 625? cm², due corde AB e CD sono situate da parti opposte rispetto al centro O e le loro distanze dal centro misurano rispettivamente

Dettagli

LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza.

LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza. LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una... che si

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

3D Geometria solida. PIRAMIDE. Eserciziario ragionato con soluzioni. - 1

3D Geometria solida. PIRAMIDE. Eserciziario ragionato con soluzioni. - 1 3D Geometria solida. PIRAMIDE. Eserciziario ragionato con soluzioni. - 1 Problemi di geometra solida sulla piramide. Completi di soluzione guidata. Collection of problems on the cone. With solution. 1.

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 017 da parte degli studenti

Dettagli

Anno 4 Superficie e volume dei solidi

Anno 4 Superficie e volume dei solidi Anno 4 Superficie e volume dei solidi Introduzione In questa lezione parleremo del volume e della superficie dei solidi, imparando a trattare con semplicità il loro calcolo tramite le formule Al termine

Dettagli

B7. Problemi di primo grado

B7. Problemi di primo grado B7. Problemi di primo grado B7.1 Problemi a una incognita Per la risoluzione di problemi è possibile usare le equazioni di primo grado. Il procedimento può essere solo indicativo; è fondamentale fare molta

Dettagli

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui

Dettagli

RIPASSO DI MATEMATICA FRAZIONI

RIPASSO DI MATEMATICA FRAZIONI SOMMA a) Trovo m.c.m.tra i denominatori b) il risultato diventa il nuovo denominatore RIPASSO DI MATEMATICA FRAZIONI a) eseguo la divisione tra il nuovo denominatore con il denominatore b) moltiplico il

Dettagli

I teoremi di Euclide e Pitagora

I teoremi di Euclide e Pitagora GEOMETRIA EUCLIDEA Vediamo tre importanti teoremi che riguardano i triangoli rettangoli e che si dimostrano utilizzando l equivalenza delle superfici piane. 44 Primo teorema di Euclide In un triangolo

Dettagli

Consolidamento Conoscenze

Consolidamento Conoscenze onsolidamento onoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti..

Dettagli

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2) circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi?

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi? Alunno/a Pag. Esercitazione Alunno/a in preparazione alla PROVA d ESAME Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera. Quale tra le seguenti proposizioni è FALSA? A. La somma di due numeri dispari

Dettagli

I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO

I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

LA GEOMETRIA DELLO SPAZIO

LA GEOMETRIA DELLO SPAZIO LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei

Dettagli

Esercitazione in preparazione alla Prova Invalsi di Matematica

Esercitazione in preparazione alla Prova Invalsi di Matematica VERSO LA PROVA nazionale scuola secondaria di primo grado Esercitazione in preparazione alla Prova Invalsi di Matematica 1 marzo 013 ISTRUZIONI Questa prova di matematica contiene domande a risposta multipla

Dettagli

L AREA DELLE FIGURE PIANE

L AREA DELLE FIGURE PIANE L AREA DELLE FIGURE PIANE Segna il completamento corretto. 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie, cioè hanno la stessa

Dettagli

CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari

CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari GEOMETRIA I POLIGONI INSCRITTI E CIRCOSCRITTI PREREQUISITI l l l l conoscere le proprietaá delle quattro operazioni e operare con esse conoscere gli enti fondamentali della geometria e le loro proprietaá

Dettagli

Problemi di geometria

Problemi di geometria 1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto

Dettagli

Costruzioni geometriche. ( Teoria pag , esercizi 141 )

Costruzioni geometriche. ( Teoria pag , esercizi 141 ) Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classi I C I G

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classi I C I G Esercizi Estivi di Matematica a.s. 0/04 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classi I C I G ALUNNO CLASSE Ulteriore ripasso e recupero anche nei siti www.vallauricarpi.it

Dettagli

Matematica anno scolastico 2010/2011 II A COMPITI DELLE VACANZE

Matematica anno scolastico 2010/2011 II A COMPITI DELLE VACANZE Pagina di Matematica anno scolastico 00/0 II A COMPITI DELLE VACANZE - ARITMETICA -.Risolvi le seguenti espressioni sul foglio a protocollo. 0 0.. 0. 0. 0... 0. 0 0.... . 0. 0. Estrai le seguenti radici

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi?

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi? Alunno/a Pag. Esercitazione Alunno/a in preparazione alla PROVA d ESAME Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera. Quale tra le seguenti proposizioni è FALSA? A. La somma di due numeri dispari

Dettagli

3) Risolvi almeno due fra le seguenti espressioni dopo avere ricavato le frazioni generatrici dei numeri decimali finiti e periodici.

3) Risolvi almeno due fra le seguenti espressioni dopo avere ricavato le frazioni generatrici dei numeri decimali finiti e periodici. IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

ESAME di STATO Sessione suppletiva. Disegni a cura del prof. Cristiano DOMENICHELLI. Testi della prof. ssa Tiziana LA TORELLA

ESAME di STATO Sessione suppletiva. Disegni a cura del prof. Cristiano DOMENICHELLI. Testi della prof. ssa Tiziana LA TORELLA ESAME di STATO 2004 Sessione suppletiva Disegni a cura del prof. Cristiano DOMENICHELLI Testi della prof. ssa Tiziana LA TORELLA LICEO SCIENTIFICO GALILEO FERRARIS ESAME DI STATO DI LICEO SCIENTIFICO CORSO

Dettagli

Test d'ingresso di matematica per le classi prime. Liceo delle Scienze applicate. e Liceo Sportivo

Test d'ingresso di matematica per le classi prime. Liceo delle Scienze applicate. e Liceo Sportivo Test d'ingresso di matematica per le classi prime Liceo delle Scienze applicate e Liceo Sportivo SEZIONE: NUMERI. Quanti sono i numeri naturali N che soddisfano la condizione N 0? 0 9 infiniti E.nessuno

Dettagli

PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA

PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA 1. Calcolare la misura x di un cateto di un triangolo rettangolo, sapendo che essa supera di 4 cm. quella della sua proiezione sull'ipotenusa,

Dettagli

rettangolo attorno ad un suo cateto.

rettangolo attorno ad un suo cateto. IL CONO BM4 Teoria, pag. 51 55 ; Esercizi pag. 127 132 ; es. 47 0. Il cono circolare retto è il solido generato dalla rotazione completa (cioè di 30 ) di un triangolo V rettangolo attorno ad un suo cateto.

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima. Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe I H ALUNNO CLASSE Ulteriore ripasso e recupero anche nei siti www.vallauricarpi.it (dip. matematica recupero).

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO Definizione di circonferenza La circonferenza è una linea chiusa i cui punti sono tutti equidistanti da un punto fisso detto CENTRO Definizione di cerchio Si definisce CERCHIO la

Dettagli

CAP.2:IPOLIGONIINSCRITTIECIRCOSCRITTI

CAP.2:IPOLIGONIINSCRITTIECIRCOSCRITTI GEOMETRIA 1 - AREA 4 CAP.2:IPOLIGONIINSCRITTIECIRCOSCRITTI LE CARATTERISTICHE DELLA CIRCONFERENZA E DEL CERCHIO richiami della teoria n Un poligono inscritto in una circonferenza ha tutti i suoi vertici

Dettagli

ARITMETICA. Esegui le seguenti espressioni. Esegui le seguenti espressioni applicando, se possibile, le proprietà delle potenze

ARITMETICA. Esegui le seguenti espressioni. Esegui le seguenti espressioni applicando, se possibile, le proprietà delle potenze ARITMETICA Esegui le seguenti espressioni. 1. 2. 3. 4. 5. 6. 7. Esegui le seguenti espressioni applicando, se possibile, le proprietà delle potenze. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. [(7 4

Dettagli

LE DISEQUAZIONI LINEARI LA RETTA. L equazione di una retta passante per l origine

LE DISEQUAZIONI LINEARI LA RETTA. L equazione di una retta passante per l origine LE DISEQUAZIONI LINEARI LA RETTA L equazione di una retta passante per l origine Scrivi l equazione della retta passante per l origine e per il punto A. Verifica se il punto B appartiene alla retta trovata.

Dettagli

BUONA ESTATE!!!!! Compiti di Matematica per le vacanze

BUONA ESTATE!!!!! Compiti di Matematica per le vacanze IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

Circonferenze e cerchi

Circonferenze e cerchi Alunno/a... Geometria Classe... Sez.... Data... Circonferenze e cerchi 1 Definisci la circonferenza: 2 Definisci il settore circolare: 3 Definisci la figura che nel disegno è colorata in grigio: 4 Osserva

Dettagli

ESERCIZI PER L INGRESSO ALLA CLASSE PRIMA LICEO LINGUISTICO-ARTISTICO-TECNICO ECONOMICO MATEMATICA

ESERCIZI PER L INGRESSO ALLA CLASSE PRIMA LICEO LINGUISTICO-ARTISTICO-TECNICO ECONOMICO MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca ISTITUTO ISTRUZIONE SUPERIORE ANGELO OMODEO Strada Pavese 4 Mortara - PV - ITALY Tel. 0384/98318 91587 Fax 0384/91586 E-MAIL:[email protected]

Dettagli

COMPITI PER LE VACANZE ESTIVE

COMPITI PER LE VACANZE ESTIVE ISTITUTO SALESIANO «Beata Vergine di San Luca» via Jacopo della Quercia, 1-40128 BOLOGNA tel. 051/41.51.711 www.salesianibologna.net [email protected] Il Preside Futura Classe: 3^C (a.s.

Dettagli

Soluzione esercizi Gara Matematica 2009

Soluzione esercizi Gara Matematica 2009 Soluzione esercizi Gara Matematica 009 ( a cura di Stefano Amato, Emanuele Leoncini e Alessandro Martinelli) Esercizio 1 In una scacchiera di 100 100 quadretti, Carlo colora un quadretto di rosso, poi

Dettagli

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo A cura del dipartimento di Matematica e Fisica Dell Istituto Anno 01-01 ESERCIZIARIO di MATEMATICA ITAS TRENTIN Lonigo INDICE

Dettagli

si usa in geometria per definire due figure uguali per forma ma non per dimensioni.

si usa in geometria per definire due figure uguali per forma ma non per dimensioni. FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

ANGOLO AL CENTRO ANGOLO ALLA CIRCONFERENZA

ANGOLO AL CENTRO ANGOLO ALLA CIRCONFERENZA CIRCONFERENZA 1. Nella circonferenza di centro 0 il diametro è di 26 cm. le due corde AB e CD sono parallele e congruenti e misurano ciascuna 24 cm. Calcola il perimetro dei quadrilatero ABCD.[68 cm] 2.

Dettagli