LA SIMMETRIA. Prof Rosa Cassarino
|
|
|
- Saverio Spina
- 10 anni fa
- Visualizzazioni
Transcript
1 LA SIMMETRIA Lavoro svolto dagli alunni della I E in preparazione dell attività sperimentale, inserita nel progetto DIGI Scuola, che sarà effettuata nel prossimo anno scolastico. Prof Rosa Cassarino
2 ISOMETRIE In geometria, qualunque trasformazione che abbia la caratteristica di conservare le distanze si chiama isometria. Esempi di isometrie sono: la simmetria, la traslazione, la rotazione. La simmetria è la proprietà di un corpo o di una figura geometrica di essere disposta in modo regolare rispetto a un sistema assegnato, che può essere un punto: simmetria centrale, una retta: simmetria assiale, un piano: simmetria bilaterale.
3 LA SIMMETRIA CENTRALE Nelle rotazioni di 180 possiamo dire che rispetto al centro di rotazione, i punti corrispondenti si trovano allineati su semirette opposte e alla stessa distanza, sono cioè disposti simmetricamente. Per tale ragione, la rotazione di 180 viene definita simmetria centrale e il centro di rotazione è detto centro di simmetria.
4 In natura si parla di forme a simmetria raggiata quando le varie parti del corpo sono disposte intorno ad un asse centrale come i raggi di una ruota, intorno al mozzo. Simmetria centrale Se consideriamo una stella marina possiamo individuare un punto centrale da cui si dipartono cinque raggi di simmetria, corrispondenti ai bracci della stella, che ruotando di un determinato angolo ricostruiscono la stella stessa.
5 Simmetria assiale Nella geometria piana la simmetria assiale, detta anche ribaltamento, e' una particolare rotazione di 180 intorno ad una retta detta asse di simmetria. Due punti A e B si definiscono simmetrici rispetto alla retta r quando tale retta e' asse del segmento che li unisce, cioe' quando una retta r e' perpendicolare al segmento AB nel suo punto medio. Una figura e' simmetrica rispetto ad un asse quando ogni suo punto ammette un simmetrico nella figura rispetto a quell asse.
6 Esempi di figure geometriche che ammettono assi di simmetria: Il quadrato ha 4 assi di simmetria. Il pentagono ed il triangolo isoscele hanno solo un asse di simmetria. L'esagono ha 3 assi di simmetria. Il cerchio ha infiniti assi di simmetria: i diametri. Se una figura ha due assi di simmetria perpendicolari fra loro, essa è simmetrica anche rispetto al punto di intersezione dei due assi (centro di simmetria). Esempi : il quadrato e il rombo.
7 Simmetria assiale Osservando da una posizione opportuna un oggetto posto di fronte ad uno specchio, i nostri occhi rilevano la figura reale e la sua immagine riflessa. Parliamo allora di immagine speculare e diciamo che questa è la simmetrica di quella reale. Alcuni esempi di simmetria assiale sono rappresentati da oggetti della realtà quotidiana e possono essere tratti dalla natura e dall arte. Ne vediamo alcuni nelle figure seguenti: il caduceo è simmetrico rispetto ad una retta verticale. ogni carta da gioco presenta almeno un asse di simmetria
8 Simmetria assiale I cani tratti liberamente da un fregio dell arte persiana sono simmetrici. I fregi del portale sono simmetrici rispetto ad un asse verticale La facciata di una casa di stile vittoriano presenta un asse di simmetria verticale La piazza del Campidoglio a Roma presenta diversi assi di simmetria 8
9 Simmetria assiale In generale negli organismi viventi si parla di simmetria bilaterale e non di simmetria assiale, perché i corpi sono tridimensionali. In alcuni casi, però, si considera la simmetria assiale per semplicità, in quanto la terza dimensione non è rilevante.
10 Simmetria assiale La simmetria assiale è una corrispondenza biunivoca tra i punti del piano che avviene mediante una retta r. Nella simmetria assiale viene associato ad ogni punto A un punto A' tale che il segmento AA' sia perpendicolare alla retta r e il suo punto medio giaccia su r.
11 Esempi di simmetria assiale Molte foglie e fiori in natura presentano un asse di simmetria. In figura una foglia di malva, il trifoglio, la felce e la delicata viola del pensiero.
12 Esempi di simmetria assiale Il viso umano, anche se non perfettamente, può essere considerato un esempio di simmetria assiale con asse verticale, come si osserva nella figura
13 Simmetria bilaterale In questa immagine si può facilmente individuare un piano o una linea che divide la figura in due metà uguali per forma e dimensione, ma non sovrapponibili: infatti tutto ciò che sta alla destra di questo asse o piano viene come rispecchiato in un elemento uguale che si trova a sinistra. Si tratta di una simmetria bilaterale secondo la quale e' costruita la massima parte degli organismi viventi che si muovono attivamente, anzi la direzione del movimento viene a coincidere in genere col piano di simmetria che passa per l'asse principale del corpo ed è detto piano mediano o sagittale.
14 ESEMPI DI SIMMETRIA BILATERALE Molluschi Bivalvi Hanno corpo simmetrico e le due valve sono per lo più ugualmente sviluppate e di forma rotondeggiante, ovale o allungata.
15 ESEMPI DI SIMMETRIA BILATERALE Molluschi Cefalopodi La conchiglia è simmetrica rispetto al piano mediano dell'animale, ma generalmente è interna all'organismo, ad eccezione del Nautilus in cui essa è esterna.
16 IL CORPO UMANO Anche il corpo umano presenta un piano di simmetria, ma tale simmetria bilaterale è piuttosto un'apparenza esterna che una realtà anatomica: infatti come nella maggior parte degli organismi, accanto a sistemi quasi perfettamente simmetrici, come: l'apparato scheletrico l'apparato muscolare il sistema nervoso
17 Simmetria nell arte:i tappeti persiani Del tappeto persiano (dell antica Persia che non corrisponde ai confini attuali) non si ha alcuna traccia riconducibile ad un periodo precedente al XVI secolo. Le caratteristiche dei primi esemplari sono similari a quelle delle produzioni anatoliche e caucasiche. Successivamente la corrente sciita, dando libero sfogo alla fantasia, arricchisce i tappeti con il medaglione centrale, vasi, decorazioni floreali, arabeschi, foglie e steli arrotondati. Nelle produzione le geometrie e i tratti si uniscono in modo armonico, assieme alle combinazioni dei colori dai toni tenui. Il tappeto con medaglione centrale è il più rappresentativo dei tappeti persiani
18 Simmetria nell arte:i tappeti persiani Se noi dividiamo il tappeto in due parti uguali possiamo notare che la parte di destra riflessa forma la figura di partenza.
19 Simmetria nell arte islamica Che cosa hanno in comune le madrasse dell'uzbekistan e di Bagdad, la moschea di Isfahan in Iran e i palazzi di Agra in India o di Herat in Afghanistan? L'impareggiabile maestria delle decorazioni, un complesso sistema di ceramiche ornamentali capaci di creare affascinanti arabeschi geometrici, che si replicano disegnando simmetrie azzardate. Una sorta di "marchio di fabbrica" dell' architettura islamica, che si ritrova costante dall'asia centrale al Medio Oriente fin dal Medioevo. Il mistero che sta dietro gli intricati disegni ornamentali delle "tassellature" islamiche è quello che gli scienziati chiamano una geometria "quasi cristallina", uno schema che replica la precisa struttura di un cristallo senza mantenerne l'esatta simmetria. E' una configurazione estremamente complicata da realizzare, che sottintende conoscenze matematiche molto avanzate.
20 Simmetria nell arte islamica Uno studio scientifico americano: nelle decorazioni geometriche si trovano strutture complesse che rivelano sofisticate conoscenze ignote all'occidente fino agli anni '70
21 Specchi e simmetria Con un semplice specchio piano abbiamo fatto il seguente gioco: Abbiamo inserito sotto lo specchio dei disegni fatti solo a "metà". Quello che abbiamo ottenuto è una figura "intera" composta da una parte il disegno reale e dall'altra la sua immagine riflessa: Osserviamo che, nello specchio, si conservano le forme delle figure e le loro misure, ma cambia l'orientazione. Per saperne di più La figura allo specchio si chiama "immagine riflessa" rispetto ad un asse di simmetria (che in questo caso è lo specchio) del disegno. Questa trasformazione si chiama simmetria assiale.
22 Specchi e simmetria Un altro esempio che ci fa vedere che lo specchio, fa da asse di simmetria. Prendiamo un qualsiasi oggetto però tagliato a metà per esempio mezza mela e la poggiamo sullo specchio. Cosa notiamo? Che dall altra parte dello specchio c è l altra metà della mela, che adesso ci appare intera. Quale è la cosa sconfortante? Che posso mangiare solo la mezza mela che ho
23 Simmetria e giochi di specchi
f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.
Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che
Trasformazioni Geometriche 1 Roberto Petroni, 2011
1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni
geometriche. Parte Sesta Trasformazioni isometriche
Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,
TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1
TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica
GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω
GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,
3 GRAFICI DI FUNZIONI
3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom
Punti notevoli di un triangolo
Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia
SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA
SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete immaginare
Esempi di funzione. Scheda Tre
Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.
Corrispondenze e funzioni
Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei
LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE
LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE Anno Scolastico 20010/2011 Classe 1^C dell Istituto comprensivo G. Parini plesso Ghittoni di San Giorgio- Piacenza Docente della Classe : Paola Farroni
1. PRIME PROPRIETÀ 2
RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,
LA GRAFICA E LA GEOMETRIA OPERATIVA
LA GRAFICA E LA GEOMETRIA OPERATIVA La geometria operativa, contrariamente a quella descrittiva basata sulle regole per la rappresentazione delle forme geometriche, prende in considerazione lo spazio racchiuso
B. Vogliamo determinare l equazione della retta
Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura
La simmetria centrale
La simmetria centrale Una simmetria centrale di centro O è una isometria che associa al punto O se stesso e ad ogni altro punto P del piano il punto P in modo che O sia il punto medio del segmento PP.
Misure di base su una carta. Calcoli di distanze
Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle
f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da
Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede
La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:
Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo
GEOGEBRA I OGGETTI GEOMETRICI
GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare
All interno dei colori primari e secondari, abbiamo tre coppie di colori detti COMPLEMENTARI.
Teoria del colore La teoria dei colori Gli oggetti e gli ambienti che ci circondano sono in gran parte colorati. Ciò dipende dal fatto che la luce si diffonde attraverso onde di diversa lunghezza: ad ogni
Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta
Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004
ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e
GEOMETRIA DELLE MASSE
1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro
Proiezioni Grafica 3d
Proiezioni Grafica 3d Giancarlo RINALDO [email protected] Dipartimento di Matematica Università di Messina ProiezioniGrafica 3d p. 1 Introduzione Il processo di visualizzazione in 3D è intrinsecamente
COM È FATTA UNA MERIDIANA
COM È FATTA UNA MERIDIANA L orologio solare a cui noi comunemente diamo il nome di meridiana, in realtà dovrebbe essere chiamato quadrante; infatti è così che si definisce il piano su cui si disegnano
Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il
Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti
Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.
I triangoli e i criteri di congruenza Diapositive riassemblate e rielaborate da prof. ntonio Manca da materiali offerti dalla rete. ontributi di: tlas editore, matematicamente, Prof.ssa. nnamaria Iuppa,
Esercizio Decorazioni
Nome Cognome Classe Data La riproduzione di questa pagina tramite fotocopie è autorizzata ai soli fini dell utilizzo nell attività didattica degli alunni delle classi che hanno adottato il testo. Esercizio
Geogebra. Numero lati: Numero angoli: Numero diagonali:
TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare
Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano
Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità
LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry
LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con
Elementi di Geometria. Lezione 03
Elementi di Geometria Lezione 03 I triangoli I triangoli sono i poligoni con tre lati e tre angoli. Nelle rappresentazioni grafiche (Figura 32) i vertici di un triangolo sono normalmente contrassegnati
Bartoccini Marco 3 A
Bartoccini Marco 3 A Le persone e le cose possono stare ferme oppure muoversi,e quando si muovono possono farlo a diverse velocità.il movimento si svolge nello spazio e nel tempo: esso infatti copre una
Dimostrare alla Scuola media: dal perché al rigore spontaneamente
(Maria Cantoni, gennaio 2013). Un lavoro che viene da lontano e che continua oggi. Dimostrare alla Scuola media: dal perché al rigore spontaneamente Costruzione dei triangoli in prima media. Prima dei
FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:
FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente
la restituzione prospettica da singolo fotogramma
la restituzione prospettica da singolo fotogramma arch. francesco guerini [email protected] politecnico di Milano, Facoltà di Architettura e Società Laboratorio di Rappresentazione 1 Prof. Andrea
2 FUNZIONI REALI DI VARIABILE REALE
2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento
MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).
MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica
DALLE CARTE ALLE SEZIONI GEOLOGICHE
DALLE CARTE ALLE SEZIONI GEOLOGICHE PROFILO TOPOGRAFICO Il profilo topografico, detto anche profilo altimetrico, è l intersezione di un piano verticale con la superficie topografica. Si tratta quindi di
APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)
GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una
LE FUNZIONI A DUE VARIABILI
Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre
I NUMERI DECIMALI. che cosa sono, come si rappresentano
I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all
Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni
Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N. 6 ARGOMENTO: Grafici di funzioni sottoposte a trasformazioni elementari.
Laboratorio di Rappresentazione e Modellazione dell Architettura
Laboratorio di Rappresentazione e Modellazione dell Architettura Seconda Università di Napoli Facoltà di Architettura Corso di Laurea in Architettura Laboratorio di Rappresentazione e Modellazione dell
Unità di apprendimento ad alta comprensibilità Matematica Elementare. La Simmetria. Canovi Giuliana Uldini Renata
Unità di apprendimento ad alta comprensibilità Matematica Elementare La Simmetria Canovi Giuliana Uldini Renata Indicazioni per l insegnante L unità didattica prevede l osservazione diretta della realtà
LEZIONI N 24 E 25 UNIONI SALDATE
LEZIONI N 24 E 25 UNIONI SALDATE Le saldature si realizzano prevalentemente con il metodo dell arco elettrico, utilizzando elettrodi rivestiti, che forniscono il materiale di apporto. Il collegamento è
IL CICLO (RITMO) VITALE DELLA MUFFA
IL CICLO (RITMO) VITALE DELLA MUFFA (Pezzo di formaggio ammuffito) Problema: cos è quest oggetto? Discussione dei bambini: osservazione, annusa mento e proposta di varie risposte, tra cui è formaggio con
Osservazioni sulla prima prova intermedia
Avviso Istituzioni di matematiche 2 Diego Noja ([email protected]) 28 aprile 2009 La seconda prova intermedia si svolgerà martedì 26 maggio 2008, dalle 16.30 alle 18.30 Cognomi dalla A alla L: aula
Parte Seconda. Geometria
Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei
Osservazioni sulla continuità per le funzioni reali di variabile reale
Corso di Matematica, I modulo, Università di Udine, Osservazioni sulla continuità Osservazioni sulla continuità per le funzioni reali di variabile reale Come è noto una funzione è continua in un punto
LIVELLO STUDENT S1. S2. S3. S4. S5. S6.
LIVELLO STUDENT S1. (5 punti ) La figura mostra due quadrati uguali che hanno in comune esattamente un vertice. È possibile precisare la misura dell'angolo ABC? S2. (7 punti ) Negli usuali fogli (rettangolari)
Scuola di Wrenn, Dipartimento di Matematica. Investigare cerchi. Questo pacchetto di fogli di lavoro vi fornisce alcune attività per aiutarvi
Scuola di Wrenn, Dipartimento di Matematica Investigare cerchi Questo pacchetto di fogli di lavoro vi fornisce alcune attività per aiutarvi a scoprire alcune proprietà di cerchi usando The Geometer s Sketchpad.
Angius Anna Carla Licheri Daniele Monaco Emanuele Podda Francesco Puddu Alessio Saba Carolina Tedde Gregorio
Angius Anna Carla Licheri Daniele Monaco Emanuele Podda Francesco Puddu Alessio Saba Carolina Tedde Gregorio Per superficie minima si intende quella superficie che minimizza la propria area. E difficile
Gli angoli. In questa dispensa vengono presentati i concetti fondamentali relativi agli angoli.
Gli angoli In questa dispensa vengono presentati i concetti fondamentali relativi agli angoli. Dopo le prime nozioni riguardanti angoli convessi e concavi, angolo piatto, angolo giro e angolo nullo, si
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio
ASSIOMI DELLA GEOMETRIA RAZIONALE
ASSIOMI DELLA GEOMETRIA RAZIONALE ASSIOMI DI APPARTENENZA A1 Per ogni coppia di punti A e B di un piano π esiste ed è unica la retta che li contiene. A2 Data nel piano π una retta r esistono almeno due
Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.
6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra
La guarnizione di Sierpinski, chiamata anche il Triangolo di Sierpinski
La guarnizione di Sierpinski, chiamata anche il Triangolo di Sierpinski Questa attività ha avuto inizio il passato anno scolastico in seconda classe. Ho proposto ai bambini di riprenderla per ultimarla.
LA RETTA. Retta per l'origine, rette orizzontali e verticali
Retta per l'origine, rette orizzontali e verticali LA RETTA Abbiamo visto che l'equazione generica di una retta è del tipo Y = mx + q, dove m ne rappresenta la pendenza e q il punto in cui la retta incrocia
A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA
ISTITUTO COMPRENSIVO STATALE di Scuola dell Infanzia, Scuola Primaria e Scuola Secondaria di 1 grado San Giovanni Teatino (CH) CURRICOLO A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA OBIETTIVI DI Sviluppa
Forze come grandezze vettoriali
Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due
UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08
UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza Corso di Disegno Tecnico Industriale per il Corso di Laurea triennale in Ingegneria Meccanica e in Ingegneria Meccatronica Tolleranze
Relazione attività in classe sul Teorema di Pitagora
Relazione attività in classe sul Teorema di Pitagora Lez. 2/04. Prima Lezione A.S. 2011/2012 Insegnante: Siamo nel VI secolo a.c. in Grecia. In questo periodo visse Pitagora che nacque a Samo e vi restò
LE TRASFORMAZIONI GEOMETRICHE NEL PIANO
LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e
PROIEZIONI ORTOGONALI
PROIEZIONI ORTOGONALI 104 Il metodo della doppia proiezione ortogonale Il metodo attualmente conosciuto come metodo delle proiezioni ortogonali (o proiezioni ortografiche) inizialmente nacque come metodo
FUNZIONE REALE DI UNA VARIABILE
FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A
1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora.
TEOREMA DI PITAGORA Contenuti 1. Particolari terne numeriche e teorema di PITAGORA. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora Competenze 1. Sapere il significato di terna pitagorica
Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente
Funzioni In matematica, una funzione f da X in Y consiste in: 1. un insieme X detto dominio di f 2. un insieme Y detto codominio di f 3. una legge che ad ogni elemento x in X associa uno ed un solo elemento
Fig. 2. Proiezioni ortogonali di un parallelepipedo su piani esterni alla figura
3. LE PROIEZIONI ORTOGONALI Le proiezioni ortogonali sono originate dallo scopo di proiettare su un piano (il foglio della rappresentazione) un oggetto posto nello spazio, che conservi le stesse caratteristiche
MODULO 3/4 - TRASFORMAZIONI GEOMETRICHE - (Supporto didattico)
MODULO 3/4 - TRASFORMAZIONI GEOMETRICHE - (Supporto didattico) 1. Alcuni obiettivi da far conseguire agli alunni entro la quinta classe della scuola primaria riguardano sostanzialmente un capitolo della
DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI
DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI Lezione 3: Proiezioni Ortogonali con il metodo europeo Francesca Campana Le proiezioni ortogonali Le proiezioni ortogonali descrivono bi-dimensionalmente un oggetto
bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo
Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.
la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.
1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero
FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)
1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:
CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE
CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l
Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in
Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato
Con carta e forbici alla scoperta del paese Geometria
Con carta e forbici alla scoperta del paese Geometria Anna Asti Enrica Ventura La parola non serve a nulla, il disegno non basta, è necessaria l azione perché il bambino giunga a combinare delle operazioni
a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π
PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente
0. Piano cartesiano 1
0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine
LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.
LA RETTA DESCRIZIONE GENERALE Nella GEOMETRIA ANALITICA si fa sempre un riferimento rispetto al piano cartesiano Oxy; questa riguarda lo studio della retta, delle trasformazioni lineari piane e delle coniche.
Appunti sul galleggiamento
Appunti sul galleggiamento Prof.sa Enrica Giordano Corso di Didattica della fisica 1B a.a. 2006/7 Ad uso esclusivo degli studenti frequentanti, non diffondere senza l autorizzazione della professoressa
RETTE, PIANI, SFERE, CIRCONFERENZE
RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,
Tecniche grafiche per il disegno a mano libera il segno espressivo
Tecniche grafiche per il disegno a mano libera il segno espressivo Tecnica a tratto o di solo contorno textures e trattamenti di campo chiaroscuro acquerello Alcuni suggerimenti utili.. Una corretta postura
Grandezze scalari e vettoriali
Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze
INdAM QUESITI A RISPOSTA MULTIPLA
INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova
Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:
Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano
Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.
DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti
Basi di matematica per il corso di micro
Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione
Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1
Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato
Specchio parabolico: MIRASCOPE. a cura di Pietro Pozzoli
Specchio parabolico: MIRASCOPE Proprietà coinvolte: Rifrazione dei raggi partenti dal fuoco lungo rette parallele all asse Focalizzazione dei raggi paralleli all asse sul fuoco PUNTO DI VISTA FISICO: Quali
Appunti sull orientamento con carta e bussola
Appunti sull orientamento con carta e bussola Indice Materiale necessario... 2 Orientiamo la carta topografica con l'aiuto della bussola... 2 Azimut... 2 La definizione di Azimut... 2 Come misurare l azimut...
1 Principali funzioni e loro domini
Principali funzioni e loro domini Tipo di funzione Rappresentazione Dominio Polinomio intero p() = a n + + a n R p() Polinomio fratto q() 6= q() 2n Radici pari p f() f() 2n+ Radici dispari p f() R Moduli
CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)
CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare
Trasformazioni nello spazio Grafica 3d
Trasformazioni nello spazio Grafica 3d Giancarlo RINALDO [email protected] Dipartimento di Matematica Università di Messina Trasformazioni nello spaziografica 3d p. 1 Introduzione In questa lezione
Introduzione al 3D con Autocad
2 Introduzione al 3D con Autocad Coso di CAD B condotto da Daniela Sidari a.a. 2012/2013 19.02.2013 Modellazione geometrica 3D wireframe superfici solidi Si distinguono tre tecniche principali di modellazione:
Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26
Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo
La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante
Riflettiamo sulla pista Guida per l insegnante Obiettivi educativi generali Compito di specificazione - possiede capacità progettuale - è in grado di organizzare il proprio tempo e di costruire piani per
NUMERINUMERI E FORME. PON DI MATEMATICA a.s. 2009/2010. Docenti tutor: Altamura Maria Valentino Domenica Esperto: Prof. Azzone Antonella.
NUMERINUMERI E FORME PON DI MATEMATICA a.s. 2009/2010 Classi IB-IC IC-IE-IFIF Docenti tutor: Altamura Maria Valentino Domenica Esperto: Prof. Azzone Antonella Il grande libro della natura è scritto in
a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1
LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza
Per lo svolgimento del corso risulta particolarmente utile considerare l insieme
1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R
