Simmetrie nei poliedri
|
|
|
- Liliana Damiani
- 9 anni fa
- Visualizzazioni
Transcript
1 Simmetrie nei poliedri Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere nel mondo reale le figure. geometriche note e descriverle con la terminologia specifica. Analizzare con strumenti intuitivi sezioni piane e sviluppi piani di poliedri. Realizzare costruzioni geometriche elementari utilizzando strumenti diversi (riga e compasso, software di geometria, ). Individuare e riconoscere proprietà di figure del piano e dello spazio. Contesto Figure del piano e dello spazio. Conoscenze Nuclei coinvolti Collegamenti esterni Spazio e figure Storia dell arte Disegno Numeri e algoritmi Storia Scienze Poliedri: visualizzazioni spaziali tramite modelli e loro sviluppo piano. Simmetrie nei poliedri regolari. Relazioni e funzioni Argomentare, congetturare e dimostrare Misurare Risolvere e porsi problemi Laboratorio di matematica L attività si colloca alla fine del primo biennio, quando gli studenti hanno già chiare le proprietà di simmetria delle figure nel piano. Il contesto è quello delle figure del piano e dello spazio. Infatti, dalle simmetrie dei poligoni nel piano si passa ad affrontare le proprietà di simmetria delle figure nello spazio. Si indaga su come estendere, in forma intuitiva, ai poliedri le proprietà di simmetria dei poligoni fino ad arrivare ai concetti di piano di simmetria, di centro di simmetria, di asse di simmetria, di asse di rotazione. L obiettivo è quello di far vedere come nello spazio non si possono trasferire automaticamente le proprietà studiate nel piano. Uno dei punti fondamentali dell attività consiste nel giungere a una descrizione corretta e condivisa di poliedro. Attraverso questo lavoro gli studenti affinano le loro capacità di visione nello spazio tridimensionale in modo non separato da quanto è stato già visto nel piano. Descrizione dell attività Prima fase Costruzione di modelli fisici di solidi (cartoncino, cannucce, ), che possono avere o non avere proprietà di simmetria. Gli studenti sono invitati a costruire, con strumenti diversi, alcuni dei poliedri più semplici (prisma retta a base, piramide, cubo, ottaedro, tetraedro, ) che poi verranno analizzati dal punto di vista delle simmetrie. Si può anche procedere, nei casi più semplici, alla visualizzazione di poliedri tramite riflessioni su specchi o combinazioni di specchi (caleidoscopio tridimensionale). Si chiede ora agli studenti di individuare, fra tutte le configurazioni (connesse) che si possono ottenere affiancando 6 quadrati, lato contro lato, quelle che rappresentano possibili sviluppi di cubo.
2 Si chiede ad esempio di esaminare la figura 1 e di scegliere quelle che possono rappresentare lo sviluppo piano di un cubo. Figura 1 Si passa, quindi: - alla discussione su cosa si debba intendere per sviluppi diversi ; - alla discussione sui pregi di questo o di quell altro sviluppo; - a colorare con lo stesso colore, a partire dal disegno di uno sviluppo piano del cubo, le coppie di spigoli che nella ricostruzione vanno a coincidere. Seconda fase Riconoscimento di simmetrie in oggetti tridimensionali. Si svolge una discussione sulle osservazioni fatte in classe e ci si avvicina gradualmente, facendole emergere da osservazioni concrete, alle definizioni di piano di simmetria, centro di simmetria, asse di rotazione, asse di simmetria (ci si può avvalere di modelli fisici, software di geometria o di figure tridimensionali prelevate dalla rete, ) a partire da casi semplici: cubo, tetraedro, ottaedro, Terza fase Determinazione di assi, piani e centri di simmetria. In questa fase sarà richiesto di determinare tutti gli assi di simmetria del cubo; la stessa domanda si può fare per i piani di simmetria e per il centro di simmetria, scoprendo legami tra i vari movimenti che trasformano in sé il poliedro; nello stesso modo si indaga su altri semplici poliedri: ottaedro, tetraedro, (Figura 2, 3, 4, 5, 6, 7 e 8).
3 Figura 2 Figura 3 Figura 5 Figura 6 Figura 7 Figura 8 Quarta fase Descrizione dei poliedri regolari. In questa fase, dalle osservazioni precedenti si arriva alla descrizione dei poliedri regolari, in modo che la definizione venga costruita attraverso un percorso di tipo intuitivo e osservativo. Non è il caso, in questo momento, di dare una definizione formale di poliedro, con il rischio di un apprendimento puramente meccanico. Si possono anche esaminare le relazioni tra il cubo e l ottaedro che ha i vertici nel centro delle facce del cubo e scoprire che le simmetrie trovate per il cubo sono le stesse dell ottaedro. In questo modo, si ha il vantaggio di poter estendere le proprietà di simmetria di un poliedro a quello del poliedro duale. Analoghe considerazioni si possono fare, come possibile approfondimento, per il dodecaedro e l icosaedro. Si può fare anche notare che il tetraedro ha come duale se stesso. Possibili sviluppi 1. Conteggio del numero dei vertici, degli spigoli e delle facce di vari poliedri (in presenza o in assenza di un modello fisico). Come approfondimento ulteriore si può proporre un attività per arrivare, in forma intuitiva, alla formula di Eulero (o di Cartesio-Eulero).
4 Tetraedro Cubo Ottaedro Dodecaedro Icosaedro Figura 9 Si può chiedere inizialmente di completare la seguente tabella mediante l osservazione di modelli fisici di poliedri regolari. Poliedro Tetraedro Ottaedro Dodecaedro Icosaedro Cubo (esaedro ) Numero delle facce: F Numero degli spigoli: S Numero dei vertici: V Dopo aver completato la tabella, cercare una relazione tra F, V, S per questi solidi. 2. Si può anche arrivare, in modo intuitivo, a rispondere alla seguente domanda: perché esistono solo cinque tipi di poliedri regolari? Inizialmente si prende in considerazione il vertice di un poliedro e si fa osservare che in ogni vertice convergono almeno tre facce; si può chiedere agli studenti qual è la somma degli angoli che convergono nello stesso vertice. Una volta osservato che tale somma è sempre minore di un angolo giro si possono esaminare le varie situazioni possibili. Un approfondimento storico da proporre: i solidi platonici. 3. Individuazione dei tipi di figure geometriche che si possono ottenere sezionando un cubo mediante un piano. 4. Quali, tra i poliedri regolari, consentono un riempimento dello spazio? (Si deve ipotizzare di riempire completamente, senza lasciare buchi, tutto lo spazio, usando un solo tipo di poliedro ). Discutere la domanda e scrivere tutto quello che si è pensato. 5. Quali poligoni regolari si possono ottenere sezionando un cubo con un piano? 6. Quali poliedri ammettono un centro di simmetria? 7. Considerare un cubo di spigolo l. Individuare il minimo cammino sulla superficie cubica per andare dal vertice A al vertice opposto E (vedi figura 12). 8. Quante sono le direzioni e quante le giaciture individuate rispettivamente dagli spigoli e dalle facce di un ottaedro. (Per rispondere conviene pensare i sei vertici dell ottaedro come i centri delle facce di un cubo, come in figura 10). Figura 10
5 1. Qui a fianco è disegnato un cubo in assonometria. Il cubo ha uno spigolo di 8 cm. Lo si taglia in due prismi retti, sezionandolo secondo il piano DBFH. Disegnare, con le dimensioni reali, la faccia DBFH comune a questi due prismi. Elementi di prove di verifica Figura Costruire un tetraedro ABCD in cartoncino oppure usando cannucce da bibita. Immaginando di congiungere in tutti i modi i centri delle facce, descrivere il poliedro che si ottiene. 3. Si seziona il cubo disegnato in Figura 12 con il piano passante per i vertici B, C, D. a) Di che tipo è il triangolo BCD? Perché? b) Che tipo di poliedro è quello individuato dai vertici B, C, D, E? Perché? c) Se I e J sono i punti medi dei segmenti BC e BD allora la retta IJ è parallela alla retta CD? Perché? d) Di che tipo è il triangolo AIB? Perché? Figura Si considera un cubo ABCDEFGH. Il punto I è il punto di intersezione dei segmenti [FC] e [GB]. Il punto J è il punto di intersezione dei segmenti [HF] e [EG]. Rispondere alle seguenti domande. - Il triangolo EGB è rettangolo in G? V F - Il triangolo IAJ è isoscele? V F - Il triangolo AEJ è rettangolo in E? V F - Il triangolo AEJ è isoscele? V F Figura Disegnare uno sviluppo piano di uno dei solidi che si ottengono sezionando un cubo con un piano diagonale (Un piano diagonale è un piano che passa per le diagonali parallele di due facce opposte o, se si preferisce, per due spigoli paralleli non appartenenti alla stessa faccia).
6 6. Quanti e quali sono i piani di simmetria di un cubo? 7. Quanti e quali sono i piani di simmetria di un ottaedro? 8. Disegnare uno sviluppo piano della piramide ABCD ottenuta a partire da un cubo, come illustrato in figura 14. Figura Nella figura 14, si disegni il centro di simmetria O del cubo e la piramide simmetrica di ABCD rispetto a O.
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da
PROBLEMA DI FEBBRAIO Congiungendo i centri delle facce (con uno spigolo in comune) di un cubo si ottengono gli spigoli di un poliedro.
FLATlandia PROBLEMA DI FEBBRAIO 006 Congiungendo i centri delle facce (con uno spigolo in comune) di un cubo si ottengono gli spigoli di un poliedro. 1) Di quale poliedro si tratta? E regolare? ) Determinare
Tassellazioni del piano
Tassellazioni del piano Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere proprietà di figure del piano e dello spazio. Individuare proprietà invarianti per isometrie nel piano.
I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.
1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro
DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.
DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro
Simmetrie nei Poliedri Regolari
Simmetrie nei Poliedri Regolari Francesca Benanti Dipartimento di Matematica ed Informatica Università degli Studi di Palermo, Via Archirafi 34, 90123 Palermo Tel: 09123891105 Email: [email protected]
Tutte le parabole sono simili?
Tutte le parabole sono simili? Livello scolare: biennio Abilità interessate Individuare proprietà invarianti per similitudini. Analizzare e risolvere semplici problemi mediante l'applicazione delle similitudini.
Triangoli equilateri e parabole
Triangoli equilateri e parabole Livello scolare: 2 biennio Abilità interessate Realizzare semplici costruzioni di luoghi geometrici. Risolvere semplici problemi riguardanti rette, circonferenze, parabole.
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri.
I solidi Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi che hanno superfici curve vengono chiamati solidi rotondi.
I quadrilateri Punti notevoli di un triangolo
I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
Le simmetrie dei poliedri regolari
Le simmetrie dei poliedri regolari Le isometrie del piano e dello spazio sono state classificate da due illustri matematici. Per quanto riguarda il piano, il teorema di Chasles, del 8, afferma che nel
I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H
I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H Cosa è un poliedro? Definizioni: Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due
Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2.
PAS 2014 GEOMETRIA Programma di massima: Elementi di logica elementare. La geometria degli Elementi di Euclide. De nizioni, assiomi e postulati. La geometria del triangolo. Criteri di uguaglianza. Teorema
Equivalenza nello spazio
Equivalenza nello spazio Livello scolare: 2 biennio Abilità interessate Calcolare aree e volumi di solidi. Conoscenze Nuclei coinvolti Collegamenti esterni Equivalenza nello Spazio e figure Disegno spazio.
FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE:
FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: IL CUBO IL PARALLELEPIPEDO LA PIRAMIDE HANNO LA SUPERFICIE COSTITUITA DA POLIGONI (QUADRATO, RETTANGOLO, TRIANGOLO) E PRENDONO
Laboratorio di informatica
Laboratorio di informatica GEOMETRIA DELLO SPAZIO Introduzione a Geogebra 3D La versione 5 di Geogebra prevede anche la possibilità di lavorare in ambiente 3D. Basta aprire Visualizza - Grafici 3D: sullo
Costruzioni geometriche. (Teoria pag , esercizi )
Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza
Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel
Indice. Parte prima Metodi. XI Gli autori
XI Gli autori XIII Prefazione Parte prima Metodi 5 Capitolo 1 Elementi di geometria proiettiva 5 1.1 Gli enti geometrici 6 1.2 Convenzioni 7 1.3 L operazione di proiezione 9 1.4 L ampliamento proiettivo
Le sezioni piane del cubo
Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del
Due esempi di simmetria
Due esempi di simmetria Giugno 2002 1 Le simmetrie del triangolo equilatero 1.1 Il triangolo equilatero è una figura dotata di simmetria. Cosa significa questa affermazione? In cosa consiste la sua simmetria?
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI
LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso
g. Ferrari M. Cerini D. giallongo Piattaforma informatica geometria 3 trevisini EDITORE
g. Ferrari M. Cerini D. giallongo Piattaforma Ma Pia a tematica informatica geometria 3 trevisini EDITORE unità 14 2 UNITÀ14 LE MISURE DI CIRCONFERENZA, CERCHIO E LORO PARTI 1. Relazione tra circonferenza
I criteri di similitudine introdotti a partire dalle trasformazioni
I criteri di similitudine introdotti a partire dalle trasformazioni Cinzia Cerroni, Rosa Conforto, Leo Maggio Introduzione La scelta metodologica di introdurre i criteri di similitudine a partire dalle
Uno spazio per lo spazio.
Uno spazio per lo spazio. Il gruppo di matematica del Laboratorio Franco Conti ha lavorato quest anno nella direzione di ripensare l insegnamento della geometria dello spazio, unendo la riflessione teorica
SPAZIO E FIGURE: ROMPIAMO LE SCATOLE
SPAZIO E FIGURE: ROMPIAMO LE SCATOLE 1) Procurati una scatola vuota e bada che sia richiusa bene. Apri i lati necessari ad ottenere il suo sviluppo. Quanti lati è necessario aprire come minimo? 2) Lavora
Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b)
Riferimenti bibliografici: Poliedri regolari - Forme Maria Dedò Ed. Zanichelli - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: (a) e (c) non (b) Definizione: Un poliedro
Uno spazio per lo spazio.
Uno spazio per lo spazio. Il gruppo di matematica del Laboratorio Franco Conti ha lavorato quest anno nella direzione di ripensare l insegnamento della geometria dello spazio, unendo la riflessione teorica
Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune.
Le figure solide Nozioni generali Un piano nello spazio può essere individuato da: 1. tre punti A, B e C non allineati. 2. una retta r e un punto A non appartenente ad essa. 3. due rette r e s incidenti.
Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli?
Dal parallelogramma al rombo (fase 1 e 2) Fase 1 Disegna due circonferenze concentriche c e c di centro O; disegna su c un punto A e su c un punto B; traccia la retta r passante per i punti A e O, chiama
Poligoni con riga e compasso
Poligoni con riga e compasso Affrontiamo alcuni problemi di costruzione con riga e compasso, che ci aiuteranno a ricordare le principali relazioni tra le circonferenze e le rette, gli angoli inscritti,
GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche
GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell
LA GEOMETRIA DELLO SPAZIO
LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei
APPUNTI DI GEOMETRIA SOLIDA
APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti
Costruzioni geometriche. ( Teoria pag , esercizi 141 )
Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
La piramide. BM 3 teoria pag ; esercizi 52 71, pag
La piramide. BM teoria pag. 4-49; esercizi 52 71, pag.120-127 Ricorda: I poliedri: sono solidi ottenuti accostando dei poligoni in modo da racchiudere parti di spazio limitate, essi si dividono in prismi
Esame di Stato di Liceo Scientifico Corso di Ordinamento
Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 006 Sessione Ordinaria 006 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto Finale 4 Problema
Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.
1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.
LE TRASFORMAZIONI GEOMETRICHE
LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il
CURRICOLO DI MATEMATICA SCUOLA SECONDARIA DI PRIMO GRADO
CURRICOLO DI MATEMATICA SCUOLA SECONDARIA DI PRIMO GRADO Nuclei tematici Il numero Traguardi per lo sviluppo della competenza - Muoversi con sicurezza nel calcolo anche con i numeri razionali e stimare
C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)
circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio
DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a
DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a COMPETENZE 1. Operare con i numeri nel calcolo scritto e mentale CONOSCENZE CONTENUTI A. I numeri da 0 a 20 B. I numeri da 20 a 100
SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore)
SCUOLA SECONDARIA DI SECONDO GRADO Obiettivi di apprendimento Contenuti Attività Metodo Strumenti Durata (in ore) Valutazione degli obiettivi di apprendimento Valutazione della competenza Conoscere i poligoni
ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI
ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI Ho affermato che le matematiche sono molto utili per abituare la mente a un raziocinio esatto e ordinato; con ciò non è che io creda necessario che tutti gli
117. Lo studio dei poliedri col software libero Cartesio di Rosa Marincola 1
117. Lo studio dei poliedri col software libero Cartesio di Rosa Marincola 1 Sunto Cartesio è un software libero che, permettendo la costruzione e la manipolazione di poliedri, favorisce l esplorazione
C6. Quadrilateri - Esercizi
C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono
Attività laboratoriali per i nuovi curricoli di matematica
Attività laboratoriali per i nuovi curricoli di matematica Ricerca Azione a.s. 2010/2011 U.S.P. Bergamo - Centro MatNet Università di Bergamo SIMMETRIE NEI POLIGONI Docenti che hanno collaborato all elaborazione
Conoscenze. 2. Segna il completamento esatto. a. L area della superficie laterale di un prisma si calcola utilizzando la seguente formula:
Conoscenze 1. Completa. a. Un prisma è un... limitato da due...e... e da tanti...quanti sono i lati del... b. Un prisma è retto se... c. Un prisma è regolare se... d. L altezza di un prima è la... 2. Segna
Argomento interdisciplinare
Pag. 20 Nomenclatura geometrica (colonna n 4) Da pag. 154 a pag. 164 Sviluppo solidi Argomento interdisciplinare Tecnologia-Matematica 1 Sono corpi TRIDIMENSIONALI, aventi cioè tre dimensioni: 1. Lunghezza
Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado
Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale è il più grande
U. A. 1 GLI INSIEMI CONOSCENZE
U. A. 1 GLI INSIEMI Acquisire il significato dei termini,dei simboli e caratteristiche dell'insieme delle parti, dell'insieme differenza e complementare della partizione di un insieme e del prodotto cartesiano.
CURRICOLO DI MATEMATICA CLASSE PRIMA
CURRICOLO DI MATEMATICA CLASSE PRIMA INDICATORI OBIETTIVI SPECIFICI CONTENUTI NUMERI Eseguire le quattro operazioni con i numeri interi. Elevare a potenza numeri naturali e interi. Comprendere il significato
Un approccio costruttivo alle trasformazioni geometriche del piano
Un approccio costruttivo alle trasformazioni geometriche del piano Le cosiddette trasformazioni geometriche elementari del piano sono corrispondenze bigettive, del piano su se stesso, caratterizzate dalla
Area geometrica: lo spazio e le figure
Area geometrica: lo spazio e le figure Traguardi di competenza: Conosce i principali elementi geometrici, li confronta e li analizza; Individua le strategie appropriate per risolvere problemi; Possiede
December 16, solidi_generalità e prisma_sito scuola.notebook. da studiare solo sul file. La geometria solida. nov
da studiare solo sul file La geometria solida nov 20 8.33 1 I SOLIDI SI SUDDIVIDONO IN DUE GRANDI CATEGORIE POLIEDRI SOLIDI ROTONDI nov 20 8.40 2 POLIEDRI Cos'è un poligono? E' una parte di spazio delimitata
1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione
1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse
Le proprietà dei poligoni regolari. La similitudine tra figure piane. Il contenuto delle schede della sezione C e della scheda D1.
D3 Le piramidi Che cosa imparerai Che cosa devi sapere Imparerai a costruire vari tipi di piramidi e ne scoprirai un importante proprietà. Le proprietà dei poligoni regolari. La similitudine tra figure
Geometria solida 2. Veronica Gavagna
Geometria solida 2 Veronica Gavagna Lo sviluppo del parallelepipedo B Superficie laterale Area laterale e area totale Dato il parallelepipedo Area laterale A l = (a + b + a + b) c = P c b Area totale A
LA MATEMATICA DEI POLIEDRI REGOLARI
LA MATEMATICA DEI POLIEDRI REGOLARI Essi simbolizzano il desiderio di Armonia e di ordine dell uomo, ma nello stesso tempo la loro perfezione desta in noi il senso della nostra impotenza. I poliedri regolari
SCUOLA PRIMARIA MATEMATICA (Classe 1ª)
SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,
1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati
LABORATORIO DI GEOMETRIA COSTRUZIONI DI BASE DI POLIGONI 1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati Si costruisce un segmento AB, base del triangolo, ed un segmento CD, lato obliquo. Si
MATEMATICA. UNITA DI APPRENDIMENTO 1 Numeri. Obiettivi specifici di apprendimento
MATEMATICA UNITA DI 1 Numeri. Conoscenze: Rappresentazione dei numeri naturali in base dieci: il valore posizionale delle cifre. Confrontare e ordinare i numeri naturali anche utilizzando i simboli >,
Risposte ai quesiti D E H D
Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia
TAVOLE PER IL DISEGNO
TAVOLE PER IL DISEGNO Disegni geometrici tavv. Disegni a mano libera 1-2 Riproduzione di disegni in scala 3 Uso delle squadre 4 Inviluppi di linee 5-6 Uso del compasso 7 Costruzioni geometriche 8-11 Strutture
Quadrilateri. Il Parallelogramma
Il Parallelogramma 2. Fai clic su Ic3 e scegli Retta per due punti : disegna la retta a. 3. Fai clic su Ic2 e scegli Nuovo Punto : fai clic fuori dalla retta a 4. Fai clic su Ic4 e scegli Retta parallela
POTENZIAMENTO VISUO-SPAZIALE
POTENZIAMENTO VISUO-SPAZIALE Spunti ricavati dalla bozza (fornita da Marta) per potenziare le carenze visuo-spaziali di alunni di seconda media Docente Gisella Maculan Obiettivo : Con questa sezione si
SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento
4.3 PROBLEMI TIPO. 1. Determinare l asse di simmetria, data una figura e la sua simmetrica. (scheda 2)
4.3 PROBLEMI TIPO Le situazioni descritte rappresentano alcuni problemi standard che riguardano lo studio della simmetria assiale. Considerata la potenzialità del software Cabrì Geometre e la possibilità
I N F I N I T I T R I A N G O L I. (Tk) D I T A R T A G L I A. (possibili applicazioni in geometria (k + 2) - dimensionale)
I N F I N I T I T R I A N G O L I (Tk) D I T A R T A G L I A (possibili applicazioni in geometria (k + 2) - dimensionale) Gruppo B. Riemann * Francesco Di Noto, Michele Nardelli *Gruppo amatoriale per
Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD.
Esercizio 1a Disegna un piano cartesiano ortogonale ed in esso inserisci i punti che seguono, poi uniscili nell ordine dato: Secondo te che tipo di quadrilatero hai ottenuto? Perché? Quali sono le sue
COMPETENZA GEOMETRICA. Descrittori Classe I - Scuola Primaria.
COMPETENZA GEOMETRICA Macroindicatori di conoscenze/abilità Esplorazione, descrizione e rappresentazione dello spazio Descrittori dei traguardi per lo sviluppo della competenza geometrica Uscita scuola
Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico, scritto e mentale, anche con riferimento a contesti reali.
SCUOLA SECONDARIA DI 1 GRADO PIANI DI STUDIO MATEMATICA ANNO SCOLASTICO 2010/2011 Competenze Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico, scritto e mentale, anche con riferimento
VERIFICA DI GEOMETRIA A
VERIFICA DI GEOMETRIA A n1 classe IV F data nome e cognome Tre punti allineati A,B,C in modo che AB=2BC Disegna un fascio proprio di rette Due angoli consecutivi e complementari Un poligono convesso Disegna
Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.
Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema
Le cupole geodetiche
Le cupole geodetiche Una cupola geodetica é una struttura semisferica composta da aste che si intersecano in triangoli. Dal punto di vista matematico possiamo definire cupola geodetica un tipo di triangolazione
Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA.
Area dei poligoni AREA DEI POLIGONI 1 Def: si dice area di una superficie piana la parte delimitata di piano che essa occupa. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Proprietà:
Soluzione esercizi Gara Matematica 2009
Soluzione esercizi Gara Matematica 009 ( a cura di Stefano Amato, Emanuele Leoncini e Alessandro Martinelli) Esercizio 1 In una scacchiera di 100 100 quadretti, Carlo colora un quadretto di rosso, poi
Apprendere insieme. Antonio Blotti e Francesco Giovannetti
Apprendere insieme Antonio Blotti e Francesco Giovannetti L idea Il progetto del Nucleo di Ricerca Didattica di Trieste La Matematica dei ragazzi: scambi di esperienza tra coetanei mostra che le metodologie
Il problema di Marzo 2007
FLATlandia Il problema di Marzo 2007 1) Sia u una arbitraria unità di misura di lunghezza. Ritagliare da un cartoncino un semicerchio di diametro 20u e con esso formare un cono. Quali caratteristiche presenta
Una figura in due parti
Una figura in due parti Equiestensione per somma di parti congruenti: triangolo, trapezio Isoperimetria Trasformazioni: Rotazione Argomentazione Indicazioni e note da UMI 2001 - I numeri, - Lo spazio e
Percorso su poliedri e loro sviluppi
Percorso su poliedri e loro sviluppi Classe: III, IV e V primaria Argomento: geometria Autori: Guido Gottardi, Alberto Battaini Introduzione: cosa significa manipolare oggetti virtuali? Lavorare con solidi
Introduzione. Nome. per la geometria. per le frazioni
Introduzione Questo volume contiene una serie di esercizi per gli alunni della scuola elementare dalla classe terza in poi, che mirano a consolidare i concetti matematici di base di geometria e di algebra
CONCETTI DI GEOMETRIA
LA GEOMETRIA EUCLIDEA SI BASA SU TRE CONCETTI INTUITIVI: IL PUNTO, LA RETTA, IL PIANO IL PUNTO E' UN ENTE GEOMETRICO PRIVO DI DIMENSIONI. LA RETTA E' UN INSIEME DI PUNTI ALLINEATI. IL PIANO E' UN INSIEME
OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO
OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO OBIETTIVI DELLE INDICAZIONI PER IL CURRICOLO OBIETTIVI DI APPRENDIMENTO ANNUALI Classe prima- secondaria Classe seconda secondaria
PROGRAMMAZIONE DI MATEMATICA 2016/2017
PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero
Federica Ferretti
Federica Ferretti [email protected] NRD Nucleo di Ricerca in Didattica della Matematica RSDDM - Gruppo di Ricerca e Sperimentazione in Didattica e Divulgazione della Matematica www.dm.unibo.it/rsddm
Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari
Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro
Origami, riga e compasso, software geometrico
Livello scolare: 1 biennio Origami, riga e compasso, software geometrico Abilità interessate Realizzare costruzioni geometriche elementari utilizzando strumenti diversi. Individuare e riconoscere proprietà
Le immagini della matematica: esempi a quattro dimensioni
Le immagini della matematica: esempi a quattro dimensioni Summer School: La matematica incontra le altre Scienze San Pellegrino Terme, 08-09-2014 M. Dedò Da anni il Centro matematita riserva una particolare
Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA
Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA CERCHIO SIMMETRIA GEOMETRIA SOLIDA A cura di Maurizio Cesca PROGETTO STRANIERI SMS Maffucci-Pavoni -
Componenti della competenza. Competenza MATEMATICA PRIME. Calcolo scritto
Competenza Componenti della competenza Conoscenze Abilità Utilizzare con sicurezza le tecniche del calcolo aritmetico ed algebrico, scritto e mentale, anche con riferimento ai contesti reali Calcolo scritto
