LA MATEMATICA DEI POLIEDRI REGOLARI
|
|
|
- Marianna Durante
- 9 anni fa
- Visualizzazioni
Transcript
1 LA MATEMATICA DEI POLIEDRI REGOLARI Essi simbolizzano il desiderio di Armonia e di ordine dell uomo, ma nello stesso tempo la loro perfezione desta in noi il senso della nostra impotenza. I poliedri regolari non sono invenzioni della mente umana, perché esistevano molto tempo prima che l uomo comparisse sulla scena. M.C.Escher Calcoliamo la superficie e il volume dei cinque poliedri regolari in funzione della lunghezza del loro spigolo l. Ognuno di questi poliedri è inscrivibile e circoscrivibile a delle sfere, aventi lo stesso centro, che è anche il centro (di simmetria) del poliedro stesso. Calcoliamo, sempre in funzione dello spigolo l del poliedro, i raggi r e R di tali sfere. Le fotografie presenti visualizzano lo sviluppo e la costruzione dei poliedri regolari, realizzate con del cartoncino colorato.
2 IL CUBO O ESAEDRO Il cubo è formato da sei quadrati congruenti, quindi, dato lo spigolo l, possiamo ricavare la superficie S e il volume V. La sfera inscritta è tangente a tutte le facce del cubo, per cui il suo diametro deve essere pari allo spigolo. Per cui: La sfera circoscritta deve passare per tutti i vertici del cubo, per cui il suo diametro sarà dato da una delle diagonali del cubo, ad esempio A C. ( ) per cui
3 IL TETRAEDRO Il tetraedro è formato da 4 triangoli equilateri congruenti, quindi, dato lo spigolo l possiamo calcolare la superficie S e il volume V. Sapendo che l area di un triangolo equilatero di lato l è dato da: Per trovare il volume, devo conoscere l altezza DH della piramide. Essendo il tetraedro una piramide regolare, il piede dell altezza cade nel centro della circonferenza inscritta nel triangolo equilatero di base; quindi il punto H, piede dell altezza VH è il baricentro del triangolo ABC. Così H, piede dell altezza AH del tetraedro rispetto la base BCD, è il baricentro di tale faccia. Il segmento AK, oltre che apotema ( altezza ) della faccia ABC è anche mediana e quindi è divisa da H in due parti di cui una doppia dell altra: e quindi: e. Ricavo l altezza: ( ) ( ) Ora, sostituendo alla formula generale per trovare il volume di una piramide i valori ottenuti, ricaviamo la formula del volume del tetraedro. Osserviamo che, per ragioni di simmetria,il centro della sfera inscritta e circoscritta al tetraedro è il punto O, d intersezione tra le altezze AK e AH della piramide stessa. La sfera inscritta, dovendo essere tangente alle varie facce, avrà raggio dato da OH=OH =r mentre quella circoscritta, dovendo passare per i vertici del tetraedro, avrà raggio dato da AO=OD=R
4 Il triangolo DHK è simile al triangolo DOH, per il I Criterio di Similitudine, avendo gli angoli congruenti (infatti perché DH e AH sono altezze de tetraedro, l angolo in comune, per cui anche il terzo angolo è congruente). Per cui posso scrivere una proporzione: DK : HK = DO : OH Essendo: DK =, HK =, DO = ottiene:, OH =, sostituendo si da cui si ottiene: e L OTTAEDRO L ottaedro è formato da 8 triangoli equilateri congruenti, quindi, dato lo spigolo l, posso ricavare la superficie S e il volume V. Per trovare il volume, considero il tetraedro come due piramidi a base quadrata avente la base in comune. Devo prima dunque trovare l altezza h 1 di una di tali piramidi (sempre usando il teorema delle tre perpendicolari) ( ) ( )
5 Da cui si può ricavare il volume Determiniamo ora il raggio della circonferenza inscritta e circoscritta all ottaedro; il loro centro comune è il punto O, piede dell altezza VO. La sfera circoscritta deve avere come diametro la distanza tra due qualunque vertici del tetraedro. Per cui il suo raggio R sarà dato da CO: Sia OG il raggio della sfera inscritta, essendo G il punto di tangenza con la faccia ABC. OG è la distanza di O dalla faccia ABC e quindi dalla sua apotema CH; posso calcolare OG come l altezza, relativa all ipotenusa CH del triangolo rettangolo COH. Chiamiamo ; nel triangolo rettangolo COH, per il Primo teorema sui triangoli rettangoli, si ha da cui si ottiene:
6 L ICOSAEDRO L icosaedro è formato da 20 triangoli equilateri, quindi dato lo spigolo l possiamo calcolare la superficie S e il volume V. Per determinare il suo volume, oltre che i raggi delle sfere inscritte e circoscritte, andiamo ad analizzare il legame di questo poliedro con la sezione aurea, prendendo spunto dalla tecnica che il matematico Luca Pacioli ideò per costruirlo. Vogliamo verificare che se si considerano tre rettangoli aurei con i lati congruenti, disposti su 3 piani che si intersecano ortogonalmente, e uniamo i vertici di tali rettangoli, si ottiene un icosaedro. F S O E T Bisogna dimostrare che il triangolo ABC è equilatero, sapendo che i suoi vertici sono quelli di due triangoli aurei. Se BC=AF e CE=AT sono lati dei rettangoli aurei e poniamo, sarà ; sia inoltre M il punto medio di BC, per cui Essendo i due rettangoli aurei tra loro perpendicolari in D, il triangolo AMD è rettangolo in D. Quindi per il Teorema di Pitagora: AM 2 = MD 2 +AD 2 ( ) ( ) ( ) (ricordando che ) ( ) ( ) ( ) ( ) Per il Teorema delle tre perpendicolari AM è perpendicolare a BC, per cui:
7 quindi ABC ha i tre spigoli congruenti: : è un triangolo equilatero. Quello che abbiamo dimostrato per ABC vale per ognuno dei venti triangoli che si possono costruire con i vertici dei rettangoli aurei, per cui il solido costruito in tal modo è un icosaedro. Vogliamo determinare il raggio r della sfera inscritta nell icosaedro e il raggio R di quella circoscritta. Sia O è il punto di intersezione dei tre rettangoli aurei; per ragioni di simmetria esso sarà il centro del poliedro e delle due sfere suddette. Sia OS la distanza di O dalla faccia ABC. Il triangolo AMD è simile al triangolo OSM poiché: { E quindi: sostituendo ( ) A S M O D Invece il raggio R della sfera circoscritta all icosaedro S è la metà della diagonale di uno dei rettangoli aurei: ( ) ( ) ( ) Per calcolare il volume, pensiamo l icosaedro come somma di venti piramide a base triangolare (le facce dell icosaedro), la cui altezza è il raggio della sfera inscritta. ossia α ( ) ( ) che evidenzia un ulteriore legame dell icosaedro con la sezione aurea
8 IL DODECAEDRO Anche il dodecaedro è un poliedro le cui caratteristiche sono strettamente legate alla sezione aurea. Innanzitutto le sue facce sono pentagoni, il cui lato è sezione aurea del raggio della circonferenza in cui può essere inscritto il poligono. Essendo il dodecaedro un solido formato da dodici pentagoni regolari, si avrà che la sua superficie sarà data da: Per calcolare l area di un pentagono di lato l, osserviamo che esso è formato da cinque triangoli isosceli ciascuno con l angolo al centro, dal momento che, per cui la sua area si può calcolare con riferimento alla figura qui riportata: Utilizzando il secondo teorema sui triangoli rettangoli esprimiamo l altezza OH in funzione del lato CD=l. Quindi, poiché, risulta: Ma e, quindi: La superficie del dodecaedro sarà data da: Vogliamo determinare l ampiezza, che indicheremo con, di un angolo driedro del dodecaedro. Ricordiamo che si chiama angolo diedro, o semplicemente diedro, ciascuna delle due parti di spazio delimitate da due semipiani aventi la stessa origine, compresi i semipiani. Ad ogni spigolo di un poliedro resta perciò associato un driedro, detto driedro del poliedro, individuato dalle due facce che contengono quello spigolo. Tagliando un driedro con un piano perpendicolare al suo bordo (in questo caso allo spigolo del dodecaedro), si
9 determina su tale piano un angolo, che è detto sezione normale del driedro. Piochè le sezioni normali di uno stesso driedro sono congruenti, l ampiezza dell angolo driedro sarà data dalla sua sezione normale. Congiungendo tre vertici di un dodecaedro DST, si ottiene una piramide che ha il vertice V in uno dei vertici del dodecaedro e che ha per base il triangolo DST equilatero di lato (infatti i lati di DST sono le diagonali dei tre pentagoni che concorrono nello stesso vertice V e sappiamo che il lato l del pentagono è sezione aurea della sua diagonale); gli spigoli delle facce laterali di tale piramide, essendo tre spigoli del dodecaedro, misurano. Consideriamo lo spigolo VD di tale piramide e l angolo driedro ad esso associato, individuato dalle due facce che lo contengono, VDS e VDT. Tagliamo l angolo driedro con un piano perpendicolare a VD che incontra in B e A rispettivamente gli spigoli di base SD e TD. La sezione normale del driedro, di cui cerchiamo l ampiezza, è data dall angolo V S T H La piramide DSTV è retta e quindi il piede dell altezza VH cade nel baricentro del triangolo equilatero di base. Possiamo calcolare l altezza VH, applicando il Teorema di Pitagora al triangolo VHT, dove e ( ) (proprietà delle mediane di un triangolo equilatero): Consideriamo il triangolo TVD, isoscele di base e lati ; se indichiamo con e applichiamo il teorema dei seni a tale triangolo si ha: ( ) Consideriamo il triangolo ACD; essendo ACB la sezione normale del driedro, CA è perpendicolare allo spigolo CD; per cui si ha:
10 Indichiamo con E il piede della perpendicolare al piano TDS condotta da C; E appartiene alla bisettrice DH del triangolo equilatero di base e quindi ; per cui nel triangolo rettangolo AED si ha: Facendo il rapporto tra le due relazioni trovate si ha: Consideriamo ora il triangolo rettangolo CEA; risulta Possiamo ora determinare il Il volume del dodecaedro può essere calcolato come la somma del volume di 12 piramidi, che hanno per base una delle facce pentagonali del solido e per altezza il raggio della sfera inscritta nel solido stesso. In figura è rappresentata una di queste piramidi. O O In figura è rappresentata una di queste piramidi. Sia O il centro sfera inscritta e circoscritta, OO il raggio sfera inscritta e OB il raggio sfera circoscritta. Consideriamo il triangolo rettangolo O AB, avente come cateto l apotema O A del pentagono; dato che l ampiezza di un angolo interno del pentagono regolare è di 108, l angolo e l angolo, risulta: Ricordiamo che l angolo, per cui nel triangolo OAO :
11 Per trovare il raggio BO della circonferenza circoscritta, applichiamo Pitagora al triangolo O OB : essendo ( ) ( ) ( ) ( ) ( ) ( ) Possiamo ora calcolare il volume del dodecaedro somma del volume di 12 piramidi a base pentagonale aventi altezza pari il raggio della sfera inscritta. ( ) ( ) Il legame del dodecaedro con la sezione aurea si evidenzia anche con il fatto che:
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri.
I solidi Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi che hanno superfici curve vengono chiamati solidi rotondi.
DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.
DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
Anno 4 Superficie e volume dei solidi
Anno 4 Superficie e volume dei solidi Introduzione In questa lezione parleremo del volume e della superficie dei solidi, imparando a trattare con semplicità il loro calcolo tramite le formule Al termine
LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI
LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la
GEOMETRIA SOLIDA PIRAMIDE. Prof.ssa M. Rosa Casparriello
GEOMETRIA SOLIDA PIRAMIDE Prof.ssa M. Rosa Casparriello Scuola media di Cervinara 2007/2008 DEFINIZIONE La piramide è un poliedro limitato da un poligono qualsiasi e da tanti triangoli quanti sono i lati
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO GEOMETRIA NELLO SPAZIO Gli enti fondamentali sono punto, retta, piano, e spazio. Con le lettere maiuscole (A,B,C,...)
ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI
ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI LE RELAZIONI FRA GLI ELEMENTI DI UN TRIANGOLO 1) La somma degli angoli interni di un triangolo è 180 γ Consideriamo il triangolo ABC. Tracciamo la parallela
Problemi di geometria
1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm
I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.
1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro
ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI
ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI Ho affermato che le matematiche sono molto utili per abituare la mente a un raziocinio esatto e ordinato; con ciò non è che io creda necessario che tutti gli
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:
Applicazioni dei teoremi di Pitagora ed Euclide
Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
4.1 I triedri Def triedro vertice spigoli facce triedro
1 FIGURE NELLO SPAZIO Rette, piani, semispazi, di cui abbiamo visto le prime proprietà, delimitano le figure solide che si sviluppano nello spazio. Introduciamo gradualmente le figure solide e le loro
Problemi sui teoremi di Euclide e Pitagora
Appunti di Matematica GEOMETRIA EUCLIDEA Problemi sui teoremi di Euclide e Pitagora Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli
Il cerchio e la circonferenza
Il cerchio e la circonferenza DEFINIZIONI Circonferenza: linea curva chiusa i cui punti sono equidistanti da un punto O detto centro della circonferenza. Raggio: un qualsiasi segmento che unisce il centro
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto
Esercizi sulle rette nello spazio
1 Esercizi sulle rette nello spazio 1) Sono dati quattro punti non complanari, tre di essi possono essere allineati? 2) Sono dati quattro punti non complanari, quanti piani generano? 3) Quante coppie di
La piramide. BM 3 teoria pag ; esercizi 52 71, pag
La piramide. BM teoria pag. 4-49; esercizi 52 71, pag.120-127 Ricorda: I poliedri: sono solidi ottenuti accostando dei poligoni in modo da racchiudere parti di spazio limitate, essi si dividono in prismi
1 I solidi a superficie curva
1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una
APPUNTI DI GEOMETRIA SOLIDA
APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti
Flatlandia 7-21 Aprile 2008
FLATlandia Flatlandia 7-21 Aprile 2008 Il testo del problema: Disegnare su un cartoncino il triangolo rettangolo isoscele ABC, con l ipotenusa AB che misura 10 (cm). Disegnare quindi il triangolo equilatero
1 Il teorema di Pitagora
1 Il teorema di Pitagora TEOREMA. In un triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui cateti. Area 1 - Capitolo - PAG. 94 1 1 Il teorema
Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo
Trigonometria Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo I triangoli rettangoli Premessa: ricordiamo le definizioni di seno e coseno di un angolo
Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b)
Riferimenti bibliografici: Poliedri regolari - Forme Maria Dedò Ed. Zanichelli - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: (a) e (c) non (b) Definizione: Un poliedro
In un triangolo qualsiasi, la semiretta che, uscendo dal vertice di un angolo, lo divide in due parti uguali prende il nome di: a) mediana
66 08 09 10 11 1 13 14 In un triangolo qualsiasi, la semiretta che, uscendo dal vertice di un angolo, lo divide in due parti uguali prende il nome di: a) mediana b) bisettrice c) asse d) ortogonale Un
C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)
circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio
Circonferenza e cerchio
Circonferenza e cerchio Definizione Una circonferenza di centro O e raggio r è l insieme dei punti del piano che hanno da O distanza uguale a r. I segmenti che congiungono il centro O con i punti della
Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio
Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio ELEMENTI DI GEOMETRI PIN. MISURE RIGURDNTI TRINGOLI, PRLLELOGRMMI, POLIGONI REGOLRI, CERCHIO La geometria piana si occupa delle
Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica
Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche
GEOMETRIA EUCLIDEA I teoremi di Euclide e Pitagora
GEOMETRIA EUCLIDEA I teoremi di Euclide e Pitagora Vediamo tre importanti teoremi che riguardano i triangoli rettangoli e che si dimostrano utilizzando l equivalenza delle superfici piane. Primo teorema
LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.
LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza
Rette e piani nello spazio
Geometria Euclidea Solida 1 Rette e piani nello spazio Sappiamo già che il punto, la retta ed il piano sono enti geometrici primitivi e, come tali, non sono definibili. Definizione : Dicesi spazio l insieme
CIRCONFERENZA E CERCHIO
CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È
Le sezioni piane del cubo
Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del
www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1
www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di grado 1 Verifica di matematica, classe II liceo scientifico Equazioni di secondo grado, equazioni frazionarie,
I TRIANGOLI AB < AC + BC
I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie
PROBLEMI SVOLTI SULLA PIRAMIDE
PROBLEMI SVOLTI SULLA PIRAMIDE Premetto che non ho messo il trattino nell indicazione dei segmenti, ad esempio VK (sopra ci vuole il trattino perché indica una misura) e il triangolino per indicare i triangoli,
Soluzione esercizi Gara Matematica 2009
Soluzione esercizi Gara Matematica 009 ( a cura di Stefano Amato, Emanuele Leoncini e Alessandro Martinelli) Esercizio 1 In una scacchiera di 100 100 quadretti, Carlo colora un quadretto di rosso, poi
Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.
SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 010 - SESSIONE SUPPLETIVA QUESITO 1 In cima ad una roccia a picco sulla riva di un fiume è stata costruita una torretta d osservazione alta 11 metri. Le ampiezze degli angoli
Problemi di geometria
1 2 5 6 7 8 9 10 11 12 1 1 In un triangolo rettangolo l ipotenusa misura 60 cm e la proiezione del cateto maggiore sull ipotenusa misura 55,29 cm. Calcola la misura dei due cateti. [57,6 cm; 16,8 cm] In
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
Problemi di geometria
1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;
Equivalenza, misura di grandezze e aree
MATEMATICAperTUTTI Equivalenza, misura di grandezze e aree 1 ESERCIZIO GUIDATO L equivalenza dei poligoni. Sappiamo che per stabilire se due figure sono equivalenti si può vedere se sono equiscomponibili,
PROBLEMA DI FEBBRAIO Congiungendo i centri delle facce (con uno spigolo in comune) di un cubo si ottengono gli spigoli di un poliedro.
FLATlandia PROBLEMA DI FEBBRAIO 006 Congiungendo i centri delle facce (con uno spigolo in comune) di un cubo si ottengono gli spigoli di un poliedro. 1) Di quale poliedro si tratta? E regolare? ) Determinare
LA GEOMETRIA DELLO SPAZIO
LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei
01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5
GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di
2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.
CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI Realizzato da: Ballatore Alessia, D Aquila Michele, Di Guardo Chiara, Formosa Sara, Santuccio Anastasia. Classe: III A LA CIRCONFERENZA E IL CERCHIO
Problemi di geometria
1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto
1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza
Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche
GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli
Problemi di geometria
1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola
Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni
Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono
Esempio 1 In una circonferenza sono date due corde AB e CD, che si incontrano in P.
TEOREMI DELLE CORDE, DELLE SECANTI E DELLA TANGENTE Esempio 1 In una circonferenza sono date due corde AB e CD, che si incontrano in P. Sapendo che PA 6 cm, PB cm, PC cm, determina la lunghezza di PD.
Costruzioni inerenti i triangoli
Costruzioni inerenti i triangoli D ora in poi indicheremo con a, b e c i tre lati del triangolo di vertici A, B e C, in modo che a sia opposto al vertice A, b al vertice B e c al vertice C Costruzione
Formule goniometriche
Appunti di Matematica Formule goniometriche Come possiamo calcolare ( + β )? E chiaro che non può risultare ( β ) + β + : se infatti fosse così e per esempio β avremo + + +! Dobbiamo ricavare delle relazioni
Risoluzione algebrica dei problemi geometrici
Risoluzione algebrica dei problemi geometrici La risoluzione algebrica di un problema geometrico avviene in generale secondo i seguenti passi: 1 passo: Leggere attentamente il testo, cercando di capire
DIDATTICA DELLA GEOMETRIA Lezione n 3
DIDATTICA DELLA GEOMETRIA Lezione n 3 PERCORSI NELLA GEOMETRIA SOLIDA LA RELAZIONE DI EULERO f+v=s+2 Possiamo fare un po di algebra con la Geometria solida! Quanti vertici ha un prisma a base triangolare?
1) Sono dati quattro punti non complanari, tre di essi possono essere allineati?
1 Nuovi assiomi 1) Sono dati quattro punti non complanari, tre di essi possono essere allineati? ) Sono dati quattro punti non complanari a tre a tre non allineati, quanti piani generano? ) Quante coppie
Problemi sui teoremi di Euclide
Capitolo 1 Problemi sui teoremi di Euclide 1.1 Problemi svolti 1. Calcolare il perimetro e l area di un triangolo rettangolo sapendo che la misura di un cateto, supera di 4 cm. quella della sua proiezione
1/6. Esercizi su Circonferenza/retta e circonferenza/circonferenza. Dimostrazioni. Ipotesi. Tesi. Dimostrazione. Ipotesi. Tesi.
Dimostrazioni Risoluzione 1) Le circonferenze Γ e Γ' (e Γ'') sono tangenti P appartiene alla retta tangente comune t PA, PB (e PB*) sono tangenti PA = PB (= PB*) Non ha importanza se le due circonferenze
Proprietà di un triangolo
Poligono con tre lati e tre angoli. Proprietà di un triangolo In un triangolo : I lati e i vertici sono consecutivi fra loro; La somma degli angoli interni è 180 ; La somma degli angoli esterni è 360 Ciascun
C9. Teorema di Talete e similitudine - Esercizi
C9. Teorema di Talete e similitudine - Esercizi ESERCIZI SU TEOREMA DI TALETE, TEOREMA DELLA BISETTRICE Si consideri la seguente figura e si risponda alle domande che seguono. 1) Se AB=2, BC=4 e EF=3 trovare
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................
Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali
Anno 2 Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali 1 Introduzione In questa lezione tratteremo i poligoni inscritti e circoscritti a una circonferenza, descrivendone
6. Geometria dello spazio ambiente
Carmelo Di Stefano, Dal problema al modello matematico Volume 4 Capitolo 6 - Unità 6. Geometria dello spazio ambiente 6. Geometria dei poliedri Prerequisiti Nozioni di geometria del piano Rette e piani
Problemi di geometria
criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente
Poligoni inscritti e circoscritti ad una circonferenza
Poligoni inscritti e circoscritti ad una circonferenza Def: 1. Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della La circonferenza si dice circoscritta al poligono.
1 In un triangolo rettangolo l'ipotenusa è congruente a 13
1 In un triangolo rettangolo l'ipotenusa è congruente a 13 5 cateto sono commensurabili. di un cateto. Dimostrare che l'ipotenusa e l'altro Ipotesi: a ipotenusa, b,c cateti del triangolo rettangolo; a
Le cupole geodetiche
Le cupole geodetiche Una cupola geodetica é una struttura semisferica composta da aste che si intersecano in triangoli. Dal punto di vista matematico possiamo definire cupola geodetica un tipo di triangolazione
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
Scopri come utilizzare i nostri servizi:
Geometria CONCORSO AGENTI POLIZIA PENITENZIARIA 2015 Link utili Link utili Esercitati con il Simulatore Quiz Gratuito di Concorsando.it: http://www.concorsando.it/fb.php Scopri come utilizzare i nostri
Quesito 1 Si calcoli. 3 2 2 4 3 3 = 3 2 4 3 = 2 ln3 = 8 81 2,3. 1 = 2 3 2 3 = 2 3 1+1 2 1 = = =ln81. Soluzione 1
ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 0 PIANO NAZIONALE INFORMATICA Questionario Quesito Si calcoli 3 3 è 0 0 Applicando De L Hospital si ha: -,3 3 3 4 3 3 = infatti: 0 = 3 4 3 3 = 3 4
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2.
PAS 2014 GEOMETRIA Programma di massima: Elementi di logica elementare. La geometria degli Elementi di Euclide. De nizioni, assiomi e postulati. La geometria del triangolo. Criteri di uguaglianza. Teorema
Proporzioni tra grandezze
Definizione Due grandezze omogenee A e B (con B 0) e altre due grandezze omogenee C e D (con D 0) si dicono in proporzione quando il rapporto tra le prime due è uguale al rapporto tra la terza e la quarta
SOLUZIONI DEI QUESITI PROPOSTI
SOLUZIONI DEI QUESITI PROPOSTI Manca di mentalità matematica tanto chi non sa riconoscere rapidamente ciò che è evidente, quanto chi si attarda nei calcoli con una precisione superiore alla necessità QUESITO
Prontuario di geometria euclidea nello spazio. Per la scuola secondaria di I grado
Prontuario di geometria euclidea nello spazio Per la scuola secondaria di I grado N. B. Gli argomenti presentati sono una sintesi di quelli trattati in classe e non sostituiscono ma integrano il libro
La circonferenza e il cerchio
La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una
Prof. Roberto BIANCO Scuola Media Santa Domenica Talao (CS), a.s
Prof. Roberto BIANCO Scuola Media Santa Domenica Talao (CS), a.s. 008-09 In queste pagine si vuole dare un aiuto agli alunni di terza media che intendono approfondire le applicazioni algebriche alla geometria
I TRIANGOLI AB < AC + BC
I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie
Geometria solida 2. Veronica Gavagna
Geometria solida 2 Veronica Gavagna Lo sviluppo del parallelepipedo B Superficie laterale Area laterale e area totale Dato il parallelepipedo Area laterale A l = (a + b + a + b) c = P c b Area totale A
