Risoluzione algebrica dei problemi geometrici
|
|
|
- Liliana Angeli
- 9 anni fa
- Visualizzazioni
Transcript
1 Risoluzione algebrica dei problemi geometrici La risoluzione algebrica di un problema geometrico avviene in generale secondo i seguenti passi: 1 passo: Leggere attentamente il testo, cercando di capire bene come rappresentarlo attraverso una costruzione geometrica e scrivere i dati del problema. 2 passo: Accertarsi di conoscere tutte le proprietà delle figure geometriche coinvolte (se, ad esempio, il problema riguarda un parallelogramma, occorre conoscere tutte le sue proprietà) e tutte le espressioni metriche dei teoremi fondamentali. 3 passo: Tracciare una figura seguendo le indicazioni del testo del problema, segnando sulla figura stessa tutti gli elementi che per ipotesi sono congruenti e scrivendo le misure note accanto agli elementi cui si riferiscono (ad esempio la misura di un lato o di un angolo). La figura deve essere generica, per evitare errori nella risoluzione (se, ad esempio, il problema riguarda un triangolo qualsiasi, occorre evitare di rappresentare un triangolo isoscele). 4 passo: Scegliere un incognita (o più incognite) e indicarla sulla figura. 5 passo: Tradurre l enunciato del problema nel linguaggio algebrico, scrivendo un equazione (o un sistema di equazioni) che esprimano una relazione (o più relazioni) fra i dati del problema e l incognita (o le incognite). 6 passo: Risolvere l equazione (o il sistema di equazioni). 7 passo:discutere il problema per stabilire se le soluzioni trovate sono accettabili (ad esempio, se l incognita è un angolo di un triangolo qualunque, la sua misura deve essere minore di 180 ). Nei problemi più semplici l equazione risolvente è già espressa in forma algebrica (ad esempio trovare il punto P, in modo che AP+AC+CB=2a). Per risolvere questo tipo di problemi si devono determinare, in funzione dell incognita scelta, tutti gli elementi presenti nell equazione risolvente che non sono già noti. Per esprimere un elemento in funzione dell incognita si deve individuare la relazione che intercorre tra l incognita e l elemento. Tale relazione può essere algebrica (ad esempio, se l incognita è AC=x e AB è uguale al triplo di AC aumentato di 2 AB=3AC+2=3x+2) o può essere geometrica (ad esempio, se l incognita è AB=x e AC=2, inoltre, il triangolo ABC è rettangolo in A, si può applicare il teorema di Pitagora e dedurre che BC 2 =AB 2 +AC 2 =x 2 +4).
2 Esempio Dato il quadrato ABCD, prolungare la diagonale AC dalla parte di A di un segmento AP=a. Determinare il lato del quadrato in modo che sia verificata la relazione PC 2 +PB 2 +PD 2 = 51a 2. Risoluzione 1-4 passo: PC 2 +PB 2 +PD 2 = 51a 2 AP=a AB=x (equazione risolvente) 5 passo: Per risolvere il problema si devono determinare PC, PB e PD in funzione di x. PC=PA+AC=a+ 2 x (ricordando che la diagonale di un quadrato è uguale al lato per 2 ); Per determinare PB e PD, si può tracciare la diagonale DB. In tal modo, detto O il punto di incontro delle diagonali e ricordando che le diagonali di un quadrato sono uguali e si dimezzano scambievolmente, si ha che: 6 passo: DO=OB=AO=OC=x 2 2. I triangoli POD e POB sono uguali e rettangoli, dunque applicando il teorema di Pitagora si ha: PB 2 =PD 2 =OP 2 +OD 2 =(a+x 2 2 )2 +( x 2 2 )2 Sostituendo le espressioni di PC, PB e PD nell equazione risolvente si ha: PC 2 +PB 2 +PD 2 = 51a 2 (a+ 2 x) 2 +2(a+x 2 2 )2 +2(x 2 2 )2 =51a 2 (a+ 2 x) 2 +2(a+x 2 2 )2 +2(x 2 2 )2 =51a 2 a 2 +2x ax+2a 2 +x ax+x 2 =51a 2
3 2± 50 4x ax-48a 2 =0 x ax-12a 2 =0 x= 2 x= 3 2 a e x=2 2 a a= 2± a 7 passo: La soluzione x= 3 2 non è accettabile, perché la misura di un segmento non può essere negativa. Dunque il problema ammette come unica soluzione AB=2 2 a. Nei problemi più complessi l equazione risolvente è da determinare. Per individuare l equazione risolvente è sufficiente individuare una relazione tra gli elementi coinvolti nel problema, dopo averli espressi in funzione dell incognita (ad esempio, il triangolo ABC è rettangolo in A, inoltre AC=4x, BC=3x e AB=2x+1. Per il teorema di Pitagora si ha (5x+1) 2 = (4x) 2 +(3x) 2, che rappresenta l equazione risolvente). Oppure si può cercare di esprimere la stessa quantità in due modi diversi, in funzione dell incognita (ad esempio, applicando il teorema di Pitagora al triangolo ABC si ottiene che AC=4x+1, invece applicando il primo teorema di Euclide si ottiene AC=6x-3, dunque l equazione risolvente è 4x+1=6x-3). Esempio Un trapezio isoscele ABCD, di cui AB è la base maggiore, è circoscrivibile a un cerchio. Il trapezio ABCD è inscritto in una semicirconferenza di diametro AB=2r. Determinare la base minore CD =2x, il lato BC e il raggio del cerchio inscritto nel trapezio. Risoluzione 1-4 passo: AB=2r (per simmetria AH=HB=r) CD =2x (per simmetria DL=LC=x) BC=? OH=? 5 passo: Per risolvere il problema innanzitutto si devono determinare BC e OH in funzione di x. Ricordando che i segmenti di tangente condotti da un punto esterno a una circonferenza sono congruenti si ha che: AH=AN=r=KB=BM ND=DL=x=LC=CM
4 Pertanto: BC=BM+CM=r+x Osservando la figura, è evidente che CK=LH e OH= 1 2 LH. Poiché il triangolo CKB è rettangolo in K, per il teorema di Pitagora si ha: CK 2 =CB 2 -KB 2 Dal momento che: KB=HB-HK=r-x (perché HK=LC=x) si ha che: CK 2 =CB 2 -KB 2 = (r+x) 2 -(r-x) 2 =4rx CK=2 rx OH= rx A questo punto tutti gli elementi della figura sono stati espressi in funzione di x, quindi occorre determinare l equazione risolvente. Tracciata la diagonale AC, si ha che il triangolo ACB è rettangolo, in quanto inscritto in una semicirconferenza. Di esso sono noti, in funzione di x, il cateto CB, l ipotenusa AB e l altezza CK. A tale triangolo si possono dunque applicare il primo e il secondo teorema di Euclide. Se si sceglie di applicare il primo teorema di Euclide si ha: CB 2 =KB AB CB 2 =(r+x)2r Ma CB=BM+CM=r+x, dunque CB 2 =(r+x) 2 Eguagliando le due espressioni di CB 2 si ha: (r+x) 2 =(r-x)2r x 2 +4rx-r 2 =0 6 passo: x 2 +4rx-r 2 =0 x=-2r± 5 r Se si sceglie di applicare il secondo teorema di Euclide si ha: CK 2 =KB AK Sostituendo a CK, KB e AK le loro espressioni in funzione di x si ha: 4rx=(r-x)(r+x) x 2 +4rx-r 2 =0 x=-2r 5 ± r Ovviamente le soluzioni trovate con i due teoremi sono uguali! 7 passo: La soluzione x=-2r- 5 r non è accettabile, perché la misura di un segmento non può essere negativa. Dunque x=(-2+ 5 )r e il problema ammette come unica soluzione: 2 CD=2x=2(-2+ 5 )r, BC=(-1+ 5 )r, OH= r ( ) 2+ 5 = r 2+ 5.
5 Problemi 1. Nel triangolo ABC, isoscele sulla base AB, sia AH l altezza relativa al lato CB. Determinare CH e HB sapendo che AB e il lato AC sono rispettivamente lunghi 6a e 5a. Determinare, inoltre, sul prolungamento di AH, dalla parte di H, un punto P in modo che sia verificata la relazione PB² = 2/5 PA². (CH = 7/5 a; HB = 18/5 a; PH = 6/5 a, 26/5 a) 2. E data una semicirconferenza di centro O e diametro AB = 2r. Determinare sul segmento AB un punto P in modo che, detto C il punto di incontro della perpendicolare, condotta da P ad AB, con la semicirconferenza, sia verificata la seguente relazione: 2AC 2 + 5CP 2 +CB 2 = 8r 2. (AP=2r,2/5r) 3. L area di un triangolo equilatero è di 64 3 cm 2. Si prolunghi ogni lato, nello stesso senso, di un segmento uguale alla quarta parte del lato stesso. Si congiungano gli estremi di tali segmenti e, dopo aver dimostrato che il triangolo così ottenuto è ancora equilatero, determinarne perimetro e area. (2p=12 31 cm; Area=124 3 cm 2 ) 4. Nel trapezio rettangolo ABCD la proiezione HB del lato obliquo CB sulla base maggiore AB misura a ed è congruente all altezza. Determinare la misura della base minore sapendo che è verificata la relazione (CA 2 +AB 2 )/CD 2 =37/8. (CD=4/3a) 5. Determinare sui lati AB, BC, CD e DA del quadrato ABCD, di area 25a 2, i punti M, N, P, Q in modo che i segmenti AM, BN, CP, DQ siano rispettivamente proporzionali a 1, 2, 3, 4 e l area del quadrilatero MNPQ sia 12a 2. (AM=a, 13/12a) 6. Dividere un segmento a in due parti tali che la differenza dei loro quadrati sia d 2. ((a 2 +d 2 )/2a, (a 2 -d 2 )/2a) 7. In un rettangolo ABCD si ha AB=5a e AD=2a. Determinare un punto R su AD e un punto S su AB in modo che sia DR= 1 2 RS=1 4 SB. (DR=a( )/13) 8. Determinare i cateti AC e BC di un triangolo rettangolo ABC, sapendo che un cateto differisce dall altro di ( 3+ 1) a e che la differenza tra il doppio del
6 quadrato dell ipotenusa e il quadrato della somma dei cateti è equivalente all area del triangolo. (( 3 1) + a, 2( 3 1) + a) 9. Due corde parallele di una circonferenza misurano rispettivamente 126 cm e 112 cm, e stanno da una stessa parte rispetto al centro. Sapendo che la loro distanza è di 17 cm calcolare le misure delle loro distanze dal centro e la misura del raggio della circonferenza. (33 cm, 16 cm, 65 cm) 10. Calcolare la misura del lato del quadrato inscritto in un triangolo avente la base di 80 cm e l altezza di 45 cm (28,8 cm) 11. La base di un triangolo isoscele è i 3/2 dell altezza e il perimetro misura 64 dm. Dal centro della circonferenza inscritta nel triangolo si conduca la parallela alla base. Calcolare l area dei due poligoni in cui il triangolo dato risulta diviso dalla parallela. (75 dm 2, 117 dm 2 ) 12. Nella circonferenza di centro O e raggio r e data la corda AB, lato del quadrato inscritto. Si conduca per B la retta t perpendicolare ad AB e sia H la proiezione ortogonale di O su t. Preso un punto P su t nel semipiano, di origine AB, non contenente il centro O, si determini la lunghezza di PB in modo che il quadrato costruito sul segmento AP sia equivalente a 8/9 del quadrato costruito sul segmento PH. ( r 2,7r 2 ) 13. Sui lati dell angolo MON di 120 sono dati i segmenti OA = a su OM e OB = 2a su ON. Si prenda sulla bisettrice dell angolo MON un punto P e si determini la sua distanza da O in modo che sia verificata la relazione PO²+PA²=7/4 PB². (PO = 2a) 14. Sia data una circonferenza di raggio r e sia t una retta a essa tangente. A quale distanza dalla retta t si deve tracciare una corda PQ della circonferenza, parallela alla retta t stessa, affinché, dette R ed S le proiezioni ortogonali di P e Q su t, il rettangolo PQSR abbia perimetro 6r? (r, 9/5r) 15. Calcola il perimetro e l area di un triangolo rettangolo ABC, sapendo che la somma delle proiezioni (BH+CH) dei cateti sull ipotenusa BC è di 25 cm e che la differenza delle proiezioni (BH-CH) dei cateti sull ipotenusa è di 7 cm. (60 cm, 150 cm 2 )
Problemi di geometria
1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm
Problemi di geometria
1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto
Applicazioni dell algebra alla geometria
Risoluzione guidata Problema. Il triangolo isoscele ABC ha l angolo al vertice Ĉ che misura 120 e la base AB lunga 24 cm. Da un punto P sul lato AC si tracci la parallela al lato CB che incontra AB in
Problemi sui teoremi di Euclide
Capitolo 1 Problemi sui teoremi di Euclide 1.1 Problemi svolti 1. Calcolare il perimetro e l area di un triangolo rettangolo sapendo che la misura di un cateto, supera di 4 cm. quella della sua proiezione
Problemi di geometria
criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente
246 PROBLEMI GEOMETRICI DI 2 GRADO - ESEMPI SVOLTI In un triangolo isoscele la somma di base e altezza è 10 cm, e l area è di 12 cm
46 PROBLEMI GEOMETRICI DI GRADO - ESEMPI SVOLTI In un triangolo isoscele la somma di base e altezza è 10 cm, e l area è di 1 cm. Trovare il perimetro. Disegno Dati e richieste del problema CA CB CH AB
Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema
Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla
PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA
PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA 1. Calcolare la misura x di un cateto di un triangolo rettangolo, sapendo che essa supera di 4 cm. quella della sua proiezione sull'ipotenusa,
Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.
SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,
Elementi di Geometria euclidea
Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa
Problemi di geometria
1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola
Testi verifiche 3 C 3 I a. s. 2008/2009
Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente
Problemi di geometria
1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli
C8. Teoremi di Euclide e di Pitagora - Esercizi
C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:
Equivalenza, misura di grandezze e aree
MATEMATICAperTUTTI Equivalenza, misura di grandezze e aree 1 ESERCIZIO GUIDATO L equivalenza dei poligoni. Sappiamo che per stabilire se due figure sono equivalenti si può vedere se sono equiscomponibili,
Consolidamento Conoscenze
onsolidamento onoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti..
Test sui teoremi di Euclide e di Pitagora
Test sui teoremi di Euclide e di Pitagora I test proposti in questa dispensa riguardano il teorema di Pitagora e i due teoremi di Euclide, con le applicazioni alle varie figure geometriche. Vengono presentate
Problemi sulla circonferenza verso l esame di stato
Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza
LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE
LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini
soluzione in 7 step Es n 208
soluzione in 7 soluzione in 7 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm 3 : 4,8 5 4,8 : HB 4,8 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04
2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.
CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il
Verifiche di matematica classe 3 C 2012/2013
Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico
Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.
IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui
C9. Teorema di Talete e similitudine - Esercizi
C9. Teorema di Talete e similitudine - Esercizi ESERCIZI SU TEOREMA DI TALETE, TEOREMA DELLA BISETTRICE Si consideri la seguente figura e si risponda alle domande che seguono. 1) Se AB=2, BC=4 e EF=3 trovare
Problemi di geometria
equivalenza fra parallelogrammi 1 2 3 4 Dimostra che, fra tutti i rettangoli equivalenti, il quadrato è quello che ha perimetro minimo. Dimostra che ogni quadrato è equivalente alla metà del quadrato costruito
e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2
7. ESERCIZI SULLA DISTANZA FRA DUE PUNTI ) Calcola le distanze fra le seguenti coppie di punti: a) A;B6 ( ) ( ) A( 8 ); B( 7 5) c) A ( ;B ) ( 7) d) A( ); B e) A ( ;B6 ) ( ) f) A4;B ( ) ( ) g) A ; B 6 h)
CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari
GEOMETRIA I POLIGONI INSCRITTI E CIRCOSCRITTI PREREQUISITI l l l l conoscere le proprietaá delle quattro operazioni e operare con esse conoscere gli enti fondamentali della geometria e le loro proprietaá
Costruzioni inerenti i triangoli
Costruzioni inerenti i triangoli D ora in poi indicheremo con a, b e c i tre lati del triangolo di vertici A, B e C, in modo che a sia opposto al vertice A, b al vertice B e c al vertice C Costruzione
PROBLEMI DI SECONDO GRADO: ESEMPI
PROBLEMI DI SECONDO GRADO: ESEMPI Problema 1 Sommando al triplo di un numero intero il quadrato del suo consecutivo si ottiene il numero 9. Qual è il numero? Il campo di accettabilità delle soluzioni è,
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.
AREE DEI POLIGONI. b = A h
AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.
Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica
Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO
I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra
In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo
In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato
Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).
ppunti di geometria.s. 013-014 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo
Don Bosco, A.S. 2013/14 Compiti per le vacanze - 2A
Don Bosco, A.S. 0/ Compiti per le vacanze - A. Risolvi le seguenti espressioni: [( ) ( ) ] [( ) 5 ] + : ( ) ( ) ( ( ) 5 ) 9 ( 5 ) ( 5 ) ( 7 5 ). Scomponi i seguenti polinomi: a b ax+bx+ay+6by c) x +x d)
Problemi sui Triangoli Rettangoli
1 5 6 7 8 9 La diagonale AC di un rettangolo ABCD forma con un lato un angolo avente coseno 5. Determinare l area del rettangolo sapendo che il suo perimetro misura 8 l cccc 8 l cccc Calcolare area e perimetro
SOLUZIONI DEI QUESITI PROPOSTI
SOLUZIONI DEI QUESITI PROPOSTI Manca di mentalità matematica tanto chi non sa riconoscere rapidamente ciò che è evidente, quanto chi si attarda nei calcoli con una precisione superiore alla necessità QUESITO
Geometria figure piane Raccolta di esercizi
Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha
Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni
Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono
01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5
GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di
ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI
ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI LE RELAZIONI FRA GLI ELEMENTI DI UN TRIANGOLO 1) La somma degli angoli interni di un triangolo è 180 γ Consideriamo il triangolo ABC. Tracciamo la parallela
Equivalenza delle figure piane
Capitolo Equivalenza Poligoni equivalenti - erifica per la classe seconda Teoremi di Pitagora ed Euclide COGNOME............................... NOME............................. Classe....................................
I PARALLELOGRAMMI E I TRAPEZI
I PARALLELOGRAMMI E I TRAPEZI 1. Il parallelogramma ESERCIZI 1 A Disegna un parallelogramma ABCD, la diagonale BD e i segmenti AK e CH, perpendicolari a BD. Dimostra che il quadrilatero AHCK è un parallelogramma.
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60
I TRIANGOLI ESERCIZI. compreso tra.. e...
I TRIANGOLI ESERCIZI 1. Considerazioni generali sui triangoli Osserva la figura e poi completa le frasi a lato. 1 A Il punto. è il vertice opposto al lato AC, mentre il punto C è il vertice. al lato AB.
1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8
1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 cm 8 cm 10 cm 10 2) I quadrati della figura hanno lunghezza 1 cm., qual è l area del rettangolo inclinato?
LA CIRCONFERENZA E IL CERCHIO
GEOMETRIA LA CIRCONERENZA E IL CERCHIO PREREQUISITI l conoscere le proprietaá delle quattro operazioni e operare con esse l conoscere gli enti fondamentali della geometria e le loro proprietaá l possedere
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
C7. Circonferenza e cerchio - Esercizi
C7. Circonferenza e cerchio - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dare la definizione di luogo geometrico. 2) Indicare almeno due luoghi geometrici. 3) Dare la definizione di asse di un segmento come
C6. Quadrilateri - Esercizi
C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli
I TEOREMI DI EUCLIDE
I TEOREMI DI EUCLIDE 1 Teorema di Euclide Dato il triangolo rettangolo ABC: consideriamo i triangoli ABC e ABH simili I due triangoli sono simili perché se consideriamo gli angoli: - l'angolo A è comune
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
Teoremi di geometria piana
la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P
GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non
Problemi sui Triangoli Qualsiasi
teorema della corda 1 In una circonferenza di raggio, un angolo alla circonferenza di ampiezza 60 insiste su una corda AB. Calcola la lunghezza di AB. [ ] In una circonferenza di diametro 6, una corda
a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti:
1. Sia ABC un triangolo equilatero di area S. Siano L, M, N, i punti medi dei lati AB, BC, CA, e E, F, D, i punti medi dei lati LM, MN, NL.. L area del triangolo DEF è uguale a: a) S/ 4; b) S/ 8; c) S/12;
I TRIANGOLI AB < AC + BC
I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie
I quadrati sono 5. Esercizio pagina 198 numero 119 Calcola la misura del perimetro dell'area del trapezio in figura
Considera il piano cartesiano. Quanti sono i quadrati aventi un vertice in (-1;-1) e tali che uno degli assi coordinati sia asse di simmetria del quadrato stesso? I quadrati sono 5 Esercizio pagina 198
Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA.
Area dei poligoni AREA DEI POLIGONI 1 Def: si dice area di una superficie piana la parte delimitata di piano che essa occupa. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Proprietà:
COMPITI DI MATEMATICA PER LE VACANZE
IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO
In un triangolo qualsiasi, la semiretta che, uscendo dal vertice di un angolo, lo divide in due parti uguali prende il nome di: a) mediana
66 08 09 10 11 1 13 14 In un triangolo qualsiasi, la semiretta che, uscendo dal vertice di un angolo, lo divide in due parti uguali prende il nome di: a) mediana b) bisettrice c) asse d) ortogonale Un
SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento
258 PROBLEMI CON LE SIMILITUDINI - ESEMPI SVOLTI
258 PROBLEMI CON LE SIMILITUDINI - ESEMPI SVOLTI a) In un triangolo rettangolo ABC i due cateti AB e AC misurano rispettivamente 2 cm e 2 cm. Sull ipotenusa BC si prende un segmento CP = 15 cm e per P
D4. Circonferenza - Esercizi
D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),
Raccolta di problemi di geometra piana sul cerchio e sulla circonferenza Circle and Circumference Problems
Cerchio e circonferenza. Eserciziario ragionato con soluzioni. - 1 Raccolta di problemi di geometra piana sul cerchio e sulla circonferenza Circle and Circumference Problems 1. I dischi cd-rom, inventati
Costruzioni geometriche. (Teoria pag , esercizi )
Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
ESERCIZI DI GEOMETRIA ANALITICA
ESERCIZI DI GEOMETRIA ANALITICA 0.1. EQUAZIONE DELLA CIRCONFERENZA 0.1. EQUAZIONE DELLA CIRCONFERENZA Exercise 0.1.1. Si scriva l'equazione della circonferenza che passa per i punti O 0; 0) e A 7; 0)
3 :
COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero
B7. Problemi di primo grado
B7. Problemi di primo grado B7.1 Problemi a una incognita Per la risoluzione di problemi è possibile usare le equazioni di primo grado. Il procedimento può essere solo indicativo; è fondamentale fare molta
TEST SULLE COMPETENZE Classe Seconda
TEST SULLE COMPETENZE Classe Seconda 1 Una sola tra le seguenti proposizioni è FALSA Quale? A Se due punti A e B hanno la stessa ascissa, il coefficiente angolare della retta che li contiene non è definito
Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo
Trigonometria Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo I triangoli rettangoli Premessa: ricordiamo le definizioni di seno e coseno di un angolo
ANGOLO AL CENTRO ANGOLO ALLA CIRCONFERENZA
CIRCONFERENZA 1. Nella circonferenza di centro 0 il diametro è di 26 cm. le due corde AB e CD sono parallele e congruenti e misurano ciascuna 24 cm. Calcola il perimetro dei quadrilatero ABCD.[68 cm] 2.
POLIGONI. A= bxh. 2p=2(b+h) RETTANGOLO. Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti
POLIGONI RETTANGOLO Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti Pertanto ogni parallelogramma che ha gli angoli congruenti e le diagonali congruenti è un
Repetitorium trigonometriae - per immagini
Repetitorium trigonometriae - per immagini Regole di base Ipotenusa Opposto Adiacente Tenendo a mente la seguente nomenclatura di un triangolo rettangolo si ha: sin = Opposto Ipotenusa cos = Adiacente
LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.
LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI TEST 1 In figura sono disegnati l angolo aob e il segmento PQ, perpendicolare al lato Oa e tale che PH sia congruente a HQ. Il luogo geometrico dei
Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD.
Esercizio 1a Disegna un piano cartesiano ortogonale ed in esso inserisci i punti che seguono, poi uniscili nell ordine dato: Secondo te che tipo di quadrilatero hai ottenuto? Perché? Quali sono le sue
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) ANNO SCOLASTICO MATEMATICA
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) ANNO SCOLASTICO 014-015 MATEMATICA II 1 LE DISEQUAZIONI LINEARI x x 5 7 x 4 x x x xx 5x x 4x impossibile 5x 1x x 1 x 6x x 1 x x x 5 0 1 x x 0
Ottavio Serra. Problemi.
Ottavio Serra Costruzioni e Problemi di geometria La geometria è l occhio della matematica Avvertenza. E bene, preliminarmente, avere (o acquisire) competenza sulle trasformazioni geometriche del piano,
QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE
QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a GEOMETRIA PIANA EQUAZIONI E DISEQUAZIONI a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1) Nel piano
La circonferenza e il cerchio
La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una
2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2010-2011 Prova di Matematica : T. Pitagora T. Euclide Disequazioni Alunno: Classe: 2 C 14.04.2011 prof. Mimmo Corrado 1. Risolvi le seguenti disequazioni:
Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa.
Costruzioni Costruzioni di rette, segmenti ed angoli Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzione. Consideriamo la retta r ed un punto
1 I solidi a superficie curva
1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una
Funzioni goniometriche di angoli notevoli
Funzioni goniometriche di angoli notevoli In questa dispensa calcoleremo il valore delle funzioni goniometriche per gli angoli notevoli di 30, 45 e 60. Dopo aver richiamato il concetto di sezione aurea
LE DISEQUAZIONI LINEARI
Risolvi le seguenti disequazioni LE DISEQUAZIONI LINEARI x + ( x 5) < 7 x + 4 ( x + ) [ ( x ) < x( x 5) ( x )( x + ) + 4x [ impossibile ] ( 5x 1)( x ) + ( x 1) > ( x) 6x + ( x ) ( 1 x) ( x )( x ) + + 5
Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema
Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che
PROBLEMI SVOLTI SULLA PIRAMIDE
PROBLEMI SVOLTI SULLA PIRAMIDE Premetto che non ho messo il trattino nell indicazione dei segmenti, ad esempio VK (sopra ci vuole il trattino perché indica una misura) e il triangolino per indicare i triangoli,
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche
GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell
