Conigli Trasmissione di segnali Semi di girasole Che cosa cè in comune?

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Conigli Trasmissione di segnali Semi di girasole Che cosa cè in comune?"

Transcript

1 Conigli Trasmissione di segnali Semi di girasole Che cosa cè in comune? 4 Marzo 1997

2 La riproduzione dei conigli La trasmissione di segnali su un canale discreto La disposizione dei semi di girasole Le foglie su una pianta I petali di un fiore L albero genealogico di un ape La sezione aurea Puzzles che aumentano di superficie 1

3 I Numeri di Fibonacci Leonardo da Pisa detto Fibonacci cioè figlio di Bonaccio 2

4 Nacque a Pisa attorno al 1170 Morì a Pisa attorno al 1250 Fu educato in Nord Africa da precettori mussulmani Ebbe modo di conoscere ed apprezzare il sistema di numerazione indo-arabica che introdusse per primo in Europa. Le sue opere maggiori sono Liber Abaci (1202) Practica Geometriae (1220) Liber Quadratorum (1225) 3

5 Nel Liber Abaci è contenuto il seguente problema: Quante coppie di conigli verranno prodotte in un anno a partire da un unica coppia, se ogni mese ciascuna coppia genera una nuova coppia che diventa produttiva a partire dal suo secondo mese di vita? 4

6 5

7 Si può facilmente constatare che il numero di conigli è dato da M C Se n è il numero dei mesi e c è in numero dei conigli c dipende da n Esprimiamo questo fatto scrivendo c n invece di c avremo che n c n

8 La successione c n fu chiamata successione di Fibonacci da François Édouard Anatole Lucas nato ad Amiens il 4 Aprile 1842 morto a Parigi il 3 Ottobre 1891 La successione di Fibonacci può essere identificata mediante le c 1 = 1 c 2 = 1 c n+1 = c n + c n 1 n 1 (1) 7

9 La successione di Fibonacci può essere espressa mediante la c n = 1 (( ) n ( ) n ) dove è il Rapporto Aureo e si indica solitamente con la lettera τ oppure con la lettera ϕ τ = Il Rapporto aureo permette di risolvere il problema di dividere un segmento in due parti di cui la maggiore è media proporzionale tra la minore ed l intero segmento 8

10 Trasmissione di segnali Supponiamo di voler trasmettere un segnale su un canale discreto usando due simboli di uguale durata S 1 S 2 d 1 = d 2 = t secondi per un tempo T Potremo trasmettere m = T t segnali cioè N(T ) = 2 m messaggi diversi. Pertanto la velocità di trasmissione si potrà calcolare mediante il rapporto m T = log 2 2 m T = log 2 N(T ) T 9

11 Se invece si volessero usare due segnali di diversa durata d 1 d 2 ad esempio d 1 = 1 d 2 = 2 potremmo, trasmettere i seguenti messaggi Unità di tempo Messaggi

12 E potremmo calcolare il numero di messaggi mediante le formule di ricorrenza N(1) = 1 N(2) = 3 N(T ) = N(T 1) + N(T 2) La velocità di trasmissione sarebbe log 2 N(T ) T che per T grande si stabilizza attorno al valore 0.69 o, più precisamente, attorno a

13 Semi di girasole Petali di fiori Disposizione delle foglie di una pianta I semi del girasole sono disposti secondo lo schema seguente. Si può vedere che è possibile identificare spirali orarie e spirali antiorarie disegnate dalla disposizione dei semi. 12

14 Si verifica che il numero di spirali orarie ed antiorarie che si possono osservare in un girasole sono coppie di numeri di Fibonacci successivi. 13

15 Normalmente si osservano 34 e 55 spirali ma anche 89 e 144 spirali Nel 1951 The Scientific Monthly pubblicò la notizia dell osservazione di un girasole con spirali. 144 e

16 Considerazioni simili si applicano al caso dei petali dei fiori; il numero di petali dei fiori di un gran numero di piante è uno dei numeri di Fibonacci. Sono molto comuni fiori che hanno petali. 3, 5, 8, 13, 21, 34, 89 15

17 Nelle piante le foglie sono disposte lungo il fusto secondo una spirale. Possiamo contare il numero di giri T che bisogna fare attorno al fusto di una pianta per trovare due foglie sovrapposte ed il numero di foglie N che si incontrano lungo il cammino. I numeri N e T sono numeri della successione di Fibonacci. 16

18 ad esempio N T

19 L albero genealogico di un ape Ogni ape maschio viene generato per partenogenesi da uova non fecondate. Ogni ape femmina viene generata da un uovo fecondato. Perciò l albero genealogico di un ape, sia maschio, sia femmina è un po particolare. 18

20 Si vede che gli avi di un ape maschio sono Generazione numero di avi Si vede che tale numero è dato dalla successione di Fibonacci. 19

21 Qualche proprietà della successione di Fibonacci La successione di Fibonacci è caratterizzata dalla relazione di ricorrenza c n+1 = c n + c n 1 Dividendo per c n si ricava c n+1 c n = 1 + c n 1 c n Posto R n+1 = c n+1 c n R n = c n c n 1 si ha R n+1 = R n 20

22 Per n abbastanza grande R n τ e τ = τ da cui τ 2 = τ + 1 τ 2 τ 1 = 0 e τ = τ = 1 ± 5 2 = > 1 21

23 La Sezione Aurea Problema: Dividere il segmento AB in due parti AT e T B delle quali una sia media proporzionale tra l altra ed il segmento intero. A T B Deve essere AB T B = T B AT AT + T B T B = T B AT AT T B + 1 = T B AT 22

24 Se chiamiamo τ = T B AT avremo τ = τ da cui e τ = 1 ± 5 2 = τ = =

25 Se ora consideriamo la successione R n = c n 1 dei rapporti tra due numeri di Fibonacci successivi, possiamo osservare che il suo andamento è del tipo c n e si vede che tende a τ. Più precisamente R 2n τ R 2n+1 τ R 2n+1 < τ < R 2n 24

26 Altre proprietà della successione di Fibonacci. n k=1 c k = c 1 + c 2 + c c n = c n+2 1 n k=1 c 2k 1 = c 2n n k=1 c 2 k = c nc n+1 c n 1 c n+1 c 2 n = ( 1) n 25

27 L ultima uguaglianza c n 1 c n+1 c 2 n = ( 1) n consente di costruire un puzzle che si puó scomporre e ricomporre perdendo o guadagnando una unità di area come mostra la seguente figura 26

28 La scomparsa o la ricomparsa di una unità di area dipende dal fatto che la scomposizione è possibile in quanto le dimensioni dei lati sono date da tre numeri di Fibonacci successivi. 27

29 La sezione aurea compare spesso nelle opere d arte. Gli architetti e gli artisti greci facevano largo uso di rettangoli con il lati in proporzione aurea. La pianta del Partenone è un esempio di questa tendenza. 28

30 29

31 Anche le statue erano scolpite tenendo presente il rapporto aureo Il corpo veniva diviso utilizzando proporzioni auree. 30

32 É anche interessante ricordare che la spirale logaritmica ha evidenti connessioni con la sezione aurea. La spirale logaritmica compare molto spesso in natura. La conchiglia di una specie di nautilo, le zanne degli elefanti, le spirali secondo cui sono disposti i semi di girasole sono logaritmiche. 31

33 32

34 Anche i solidi Platonici hanno a che fare con la sezione aurea Ad esempio il dodecaedro e l icosaedro sono identificati da una terna di rettangoli mutuamente ortogonali di proporzioni auree. 33

I numeri di Fibonacci e la Sezione Aurea

I numeri di Fibonacci e la Sezione Aurea I numeri di Fibonacci e la Sezione Aurea http://web.inge.unige.it/sma/sv/fib16.pdf Ottavio Caligaris 12 Maggio 2016 1 / 64 Fibonacci Leonardo da Pisa detto Fibonacci cioè figlio di Bonaccio 12 Maggio 2016

Dettagli

Leonardo Fibonacci Lo Sviluppo della Serie,somma di Numeri La Spirale logaritmica La Sezione Aurea in Natura Bibliografia

Leonardo Fibonacci Lo Sviluppo della Serie,somma di Numeri La Spirale logaritmica La Sezione Aurea in Natura Bibliografia La Successione di Fibonacci Leonardo Fibonacci Lo Sviluppo della Serie,somma di Numeri La Spirale logaritmica La Sezione Aurea in Natura Bibliografia Leonardo Fibonacci Leonardo Fibonacci, figlio di Guglielmo

Dettagli

Successione di Fibonacci (Fibonacci numbers)

Successione di Fibonacci (Fibonacci numbers) Successione di Fibonacci (Fibonacci numbers) Opera di Mario Merz ( il volo dei numeri ), Mole antonelliana, Torino, 1998. Si dice successione di Fibonacci la successione 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

Dettagli

La successione di Fibonacci

La successione di Fibonacci La successione di Fibonacci Figura 1 Sulla Mole Antonelliana si accende la successione di Fibonacci ( ideazione dell architetto Mario Merz ) La relazione ricorsiva F n = F n-1 + F n-, n 3, unitamente alle

Dettagli

La sezione aurea nelle sue molteplici

La sezione aurea nelle sue molteplici La sezione aurea nelle sue molteplici applicazioni Nella geometria piana il rapporto aureo trova molteplici applicazioni. Se prendiamo un segmento AB =, la sua parte aurea AD vale circa 0,68 (Figura ).

Dettagli

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000 Quesiti della seconda prova scritta per Matematica Problema 1. (i) Dire quante e quali sono le coppie ordinate (x, y) di numeri naturali che sono soluzioni del sistema { MCD(x, y) = 10 xy = 30000 Qui MCD(x,

Dettagli

L'anno scorso abbiamo parlato della disposizione delle parti di una pianta: i flosculi nei capolini delle Composite...

L'anno scorso abbiamo parlato della disposizione delle parti di una pianta: i flosculi nei capolini delle Composite... Numeri e piante due mondi a confronto L'anno scorso abbiamo parlato della disposizione delle parti di una pianta: i flosculi nei capolini delle Composite... Echinacea purpurea Le spirali orarie sono 55

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

Rapporti e proporzioni

Rapporti e proporzioni Rapporti e proporzioni Si dice RAPPORTO FRA DUE NUMERI, il secondo dei quali sia diverso da zero, il quoziente ottenuto dividendo il primo per il secondo. a b = a b a e b si dicono TERMINI del rapporto

Dettagli

I numeri di. Fibonacci

I numeri di. Fibonacci I numeri di Fibonacci Leonardo Pisano detto Il Fibonacci Scheda Storica Leonardo Pisano detto il Fibonacci fu un matematico italiano, nato a Pisa nel 1170 e ivi morto nel 1240 circa. Egli è considerato

Dettagli

2 - Le successioni per ricorrenza

2 - Le successioni per ricorrenza - Le successioni per ricorrenza Le successioni per ricorrenza sono un po come le serie numeriche delle successioni di numeri reali abbastanza particolari. A differenza delle successioni standard, come

Dettagli

LA NATURA DÀ I NUMERI

LA NATURA DÀ I NUMERI LA NATURA DÀ I NUMERI IL video presenta la conclusione di un percorso effettuato dagli alunni della classe 1 B sulla relazione tra numeri e natura. Prof.ssa Marinella Bonaccorsi CLASSE 1 B Nel 1223 a Pisa,

Dettagli

MATEMATICA E BELLEZZA. Fibonacci e il numero aureo. Mostra al Castel del Monte

MATEMATICA E BELLEZZA. Fibonacci e il numero aureo. Mostra al Castel del Monte MATEMATICA E BELLEZZA. Fibonacci e il numero aureo Mostra al Castel del Monte Leonardo "Pisano" Fibonacci Fibonacci (Leonardo), detto Leonardo Pisano, matematico italiano (Pisa 1175 circa - 1240 circa).

Dettagli

LA SPIRALE LOGARITMICA

LA SPIRALE LOGARITMICA LA SPIRALE LOGARITMICA La natura ama le spirali logaritmiche: dai girasoli alle conchiglie, dai vortici agli uragani alle immense spirali galattiche, sembra che la natura abbia scelto questa armoniosa

Dettagli

La successione numerica di Fibonacci

La successione numerica di Fibonacci MATEMATICA E REALTA La successione numerica di Fibonacci il sistema di numerazione e sviluppo della natura Fibonacci (1170-1240) Nato a Pisa Visse la sua giovinezza in Algeria dove imparò le cifre indo-arabiche,

Dettagli

Numero aureo in natura Crescere conservando la forma

Numero aureo in natura Crescere conservando la forma Numero aureo in natura Crescere conservando la forma - Consideriamo un rettangolo. Come può crescere senza perdere la forma? Il senso comune ci suggerisce che dovrà crescere in modo uniforme, ovvero nella

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

LICEO CLASSICO LORENZO COSTA UN GIOIELLO DEL MARE: IL NAUTILUS. Classe IV C anno scolastico 12/13 Materia: matematica Docente: Emanuela Corsaro

LICEO CLASSICO LORENZO COSTA UN GIOIELLO DEL MARE: IL NAUTILUS. Classe IV C anno scolastico 12/13 Materia: matematica Docente: Emanuela Corsaro LICEO CLASSICO LORENZO COSTA UN GIOIELLO DEL MARE: IL NAUTILUS Classe IV C anno scolastico 12/13 Materia: matematica Docente: Emanuela Corsaro INTRODUZIONE Nell ambito della realizzazione dell Unità di

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

Prodo3o realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scien0fico

Prodo3o realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scien0fico Prodo3o realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scien0fico LA SEZIONE AUREA IN CLASSE I numeri e la geometria CLASSI 3 - Scuola

Dettagli

Il Rinascimento: approfondimenti sul rapporto aureo

Il Rinascimento: approfondimenti sul rapporto aureo Il Rinascimento: approfondimenti sul rapporto aureo Lo studio degli antichi da parte dei nuovi artisti rinascimentali si sviluppa e si approfondisce notevolmente. Essi infatti sono particolarmente affascinati

Dettagli

La magia dell arte di Alberto Nigi

La magia dell arte di Alberto Nigi La magia dell arte di Alberto Nigi Massa, giovedì 17 giugno 2004 L OGGETTO Messaggi esoterici nella fontana Il trionfo di Afrodite, realizzata dallo scultore Vito Tongiani e posta in Via Mercato a Massa

Dettagli

Anno 2. Circonferenza e retta: definizioni e proprietà

Anno 2. Circonferenza e retta: definizioni e proprietà Anno 2 Circonferenza e retta: definizioni e proprietà 1 Introduzione I Sumeri furono tra i primi popoli ad occuparsi di matematica, e in particolare di problemi relativi alla. La è una figura geometrica

Dettagli

Rapporti e proporzioni

Rapporti e proporzioni Rapporti e proporzioni Si dice RAPPORTO FRA DUE NUMERI, il secondo dei quali sia diverso da zero, il quoziente ottenuto dividendo il primo per il secondo. a e b si dicono TERMINI del rapporto e il primo

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

a b a : b Il concetto di rapporto

a b a : b Il concetto di rapporto 1 Il concetto di rapporto DEFINIZIONE. Il rapporto fra due valori numerici a e b è costituito dal loro quoziente; a e b sono i termini del rapporto, il primo termine si chiama antecedente, il secondo si

Dettagli

Integrale indefinito

Integrale indefinito Integrale indefinito 1 Primitive di funzioni Definizione 1.1 Se f: [a, b] R è una funzione, una sua primitiva è una funzione derivabile g: [a, b] R tale che g () = f(). Ovviamente la primitiva di una funzione,

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 I conigli di Fibonacci Ricerca Binaria L isola dei conigli

Dettagli

Teoria dell informazione

Teoria dell informazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria dell informazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

Numeri di Fibonacci, Autovalori ed Autovettori.

Numeri di Fibonacci, Autovalori ed Autovettori. Numeri di Fibonacci, Autovalori ed Autovettori. I numeri sulla Mole Antonelliana. Ecco i numeri sulla Mole:,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 6, 987, dove ogni nuovo numero rappresenta la somma dei due

Dettagli

Esercizi sul Principio d Induzione

Esercizi sul Principio d Induzione AM110 - ESERCITAZIONI I - II - 4 OTTOBRE 01 Esercizi sul Principio d Induzione Esercizio svolto 1. Dimostrare che per ogni n 1, il numero α(n) := n 3 + 5n è divisibile per 6. Soluzione. Dimostriamolo usando

Dettagli

ɸ= 1,61803398874989484820458683436..

ɸ= 1,61803398874989484820458683436.. Sezione Aurea o Numero Aureo o Rapporto Aureo E un numero decimale infinito non periodico, indicato con la lettera greca ɸ (si legge fi ), che arrotondato al centesimo è 1,62. ɸ= 1,61803398874989484820458683436..

Dettagli

Martedì 17 Gennaio B. D.T. MM della L. HOCHMA

Martedì 17 Gennaio B. D.T. MM della L. HOCHMA Il phi Martedì 17 Gennaio 6006 B. D.T. MM della L. HOCHMA Come nasce la sequenza numerica detta di FIBONACCI A questa sequenza fu dato il nome del suo scopritore del 1200, Leonardo Pisano, detto Fibonacci

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

La Sezione Aurea. Tesina di Chiara Maggioni. Anno scolastico /06/2015 Il fascino di 1

La Sezione Aurea. Tesina di Chiara Maggioni. Anno scolastico /06/2015 Il fascino di 1 La Sezione Aurea Tesina di Chiara Maggioni Anno scolastico 2004-2005 0/06/205 Il fascino di Prima parte Indice Cenni alle ipotesi che la sezione aurea fosse nota e applicata nelle società babilonese e

Dettagli

Generalizzazione della serie di Fibonacci e il paradosso dei relativi quadrati

Generalizzazione della serie di Fibonacci e il paradosso dei relativi quadrati Generalizzazione della serie di Fibonacci e il paradosso dei relativi quadrati Gruppo Eratostene Abstract In this paper we generalize the Fibonacci serie (based on couple 1; 1) to all infinite couple n;

Dettagli

Scritto da Maria Rispoli Sabato 08 Gennaio :44 - Ultimo aggiornamento Domenica 13 Marzo :24

Scritto da Maria Rispoli Sabato 08 Gennaio :44 - Ultimo aggiornamento Domenica 13 Marzo :24 I numeri di Fibonacci sono una sequenza matematica, i cui elementi e i cui rapporti si riscontrano in una straordinaria varietà di fenomeni naturali e artistici. Alla sequenza: 1, 1, 2, 3, 5, 8, 13, 21,

Dettagli

Programmazione II Università di Roma "La Sapienza" Appunti a cura della Prof.ssa FACHINI. Ricorsione per il "problem solving" Il problema del cambio.

Programmazione II Università di Roma La Sapienza Appunti a cura della Prof.ssa FACHINI. Ricorsione per il problem solving Il problema del cambio. Programmazione II Università di Roma "La Sapienza" Appunti a cura della Prof.ssa FACHINI Ricorsione per il "problem solving" Il problema del cambio. Consideriamo il problema di determinare in quanti modi

Dettagli

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Derivazione Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Geometria delle similitudini

Geometria delle similitudini Istituzioni di matematiche 2 Diego Noja (diego.noja@unimib.it) 31 marzo 2009 Geometria delle similitudini CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 1 CDL Scienze della Formazione

Dettagli

Le cupole geodetiche

Le cupole geodetiche Le cupole geodetiche Una cupola geodetica é una struttura semisferica composta da aste che si intersecano in triangoli. Dal punto di vista matematico possiamo definire cupola geodetica un tipo di triangolazione

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

I numeri sulla Mole Antonelliana.

I numeri sulla Mole Antonelliana. Ārgomenti svolti: Serie di numeri di Fibonacci. Potenza n-esima di matrici. Autovalori ed autovettori. Formula di Binet. LeLing: Fibonacci, Autovalori e Autovettori. Ēsercizi consigliati: Geoling 6. I

Dettagli

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali Anno 2 Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali 1 Introduzione In questa lezione tratteremo i poligoni inscritti e circoscritti a una circonferenza, descrivendone

Dettagli

Discipline e competenze Insieme Scienze

Discipline e competenze Insieme Scienze Discipline e competenze Insieme Scienze Per assistenza è possibile contattare lo staff Pearson scrivendo al seguente indirizzo e-mail: formazione.online@pearson.it oppure chiamando il numero : 0332.802251

Dettagli

Per la terza classe della scuola secondaria di I grado. Numeri e rettangoli

Per la terza classe della scuola secondaria di I grado. Numeri e rettangoli Per la terza classe della scuola secondaria di I grado Numeri e rettangoli Qui sotto vedete due rettangoli, disegnati sulla carta a quadretti: il primo ha un lato di 39 quadretti e l altro di 27; il secondo

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

Proprietà di un triangolo

Proprietà di un triangolo Poligono con tre lati e tre angoli. Proprietà di un triangolo In un triangolo : I lati e i vertici sono consecutivi fra loro; La somma degli angoli interni è 180 ; La somma degli angoli esterni è 360 Ciascun

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa Esempi di operazioni con monomi

Potenziamento formativo, Infermieristica, M. Ruspa Esempi di operazioni con monomi Esempi di operazioni con monomi Esempi di operazioni con polinomi POTENZE DI 10 Che cosa vuol dire 10 n? Che cosa vuol dire 10 -n? POTENZE DI 10 Che cosa vuol dire 10 n? 10000..00000 n zeri Che cosa vuol

Dettagli

Si dice che q è il quoziente e r è il resto della divisione di a per b. Inotre, si ha: c = qa. Quindi b ± c = pa ± qa = (p ± q)a e pertanto a (b ± c).

Si dice che q è il quoziente e r è il resto della divisione di a per b. Inotre, si ha: c = qa. Quindi b ± c = pa ± qa = (p ± q)a e pertanto a (b ± c). I numeri interi Teorema 1 (divisione in Z) Siano a, b Z, b 0 Allora esistono e sono unici q, r Z tali che (1) a = bq + r () 0 r < b Si dice che q è il quoziente e r è il resto della divisione di a per

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Generazione di una mesh rettangolare

Generazione di una mesh rettangolare Generazione di una mesh rettangolare asse y Lunghezza F2 (x0,y0) Lunghezza F1 asse x Sia dato un dominio rettangolare di base F1 e altezza F2, costruito a partire dal punto indicato come (X0, Y 0). 1 Vogliamo

Dettagli

MECCANISMI PER LA TRASMISSIONE DEL MOTO

MECCANISMI PER LA TRASMISSIONE DEL MOTO Le MACCHINE UTENSILI sono macchine che, usando una fonte di energia, compiono un lavoro, che consiste solitamente nell'asportazione di materiale. Per tramettere il moto dal punto in cui viene generato,

Dettagli

Esercizi sulle equazioni logaritmiche

Esercizi sulle equazioni logaritmiche Esercizi sulle equazioni logaritmiche Per definizione il logaritmo in base a di un numero positivo x, con a > 0 e a 1, è l esponente che occorre dare alla base a per ottenere il numero x. In simboli log

Dettagli

SERIE DI FIBONACCI E GALASSIE A SPIRALE

SERIE DI FIBONACCI E GALASSIE A SPIRALE DI FIBONACCI E GALASSIE A SPIRALE Giuseppe D Angelo INTRODUZIONE Non si esagera più di tanto se si afferma che la realtà del mondo fisico altro non è se non la materializzazione di regole ed evidenze matematiche.

Dettagli

I numeri sulla Mole Antonelliana.

I numeri sulla Mole Antonelliana. I numeri sulla Mole Antonelliana. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. I voli dei numeri Ecco i numeri sulla Mole:,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 6,

Dettagli

Forme differenziali lineari e loro integrazione

Forme differenziali lineari e loro integrazione Forme differenziali lineari e loro integrazione Integrazione di una forma differenziale in due variabili Siano L(, ) e ( ) consideriamo l espressione M, due funzioni definite e continue in un insieme connesso

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione informale di algoritmo Insieme di istruzioni, definite

Dettagli

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare

Dettagli

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando

Dettagli

fase 2 fase 1 icosaedro All origine degli assi i tre rettangoli aurei fase 3 icosaedro troncato

fase 2 fase 1 icosaedro All origine degli assi i tre rettangoli aurei fase 3 icosaedro troncato Quest anno scolastico 2008/2009 al nostro CFP, durante le lezioni di DISEGNO TECNICO ci siamo dedicati alle sezioni auree e alle tavole per la costruzione di un pallone da calcio, in versione puff di forma

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

sono i prototipi degli insiemi con 0, 1, 2, 3,... elementi.

sono i prototipi degli insiemi con 0, 1, 2, 3,... elementi. Matematica I, 25.09.2012 Insiemi 1. Il linguaggio degli insiemi e stato sviluppato durante la seconda meta dell 800, nell ambito dell indagine sui fondamenti della matematica. Da allora e stato usato sempre

Dettagli

1. CALCOLARE LA FRAZIONE DI UNA GRANDEZZA O DI UN NUMERO:

1. CALCOLARE LA FRAZIONE DI UNA GRANDEZZA O DI UN NUMERO: PROBLEMI FONDAMENTALI CON LE FRAZIONI/RAPPORTI Le frazioni hanno applicazioni in moltissimi problemi. I tipi di problemi più frequenti sono: 1. Calcolare la frazione di un numero 2. Calcolare un numero

Dettagli

LA DIVINA PROPORZIONE

LA DIVINA PROPORZIONE Zeno Martini (admin) LA DIVINA PROPORZIONE 19 February 2009 L' articolo è un invito alla piacevole (per me almeno) lettura di un bel libro di Mario Livio, astrofisico, su uno dei numeri più illustri della

Dettagli

Mat Compl 2015/16 - Esercizi - Settimana 05

Mat Compl 2015/16 - Esercizi - Settimana 05 Mat Compl 2015/16 - Esercizi - Settimana 05 Isometrie. 1. Dati un mezzo giro ρ O,π e una riflessione σ r con O / r, esprimere ρ O,π come prodotto di riflessioni in cui compaia una sola volta σ r. Soluzione.

Dettagli

Il rettangolo aureo Divisione di un segmento in media ad estrema ragione

Il rettangolo aureo Divisione di un segmento in media ad estrema ragione Il rettangolo aureo Divisione di un segmento in media ad estrema ragione La forma dei rettangoli e numero aureo - Molti oggetti rettangolari di uso quotidiano, come le tessere, hanno dimensioni simili

Dettagli

ESERCITAZIONI CHIMICA-FISICA I a.a. 2012/2013. Metodo differenziale. Problema

ESERCITAZIONI CHIMICA-FISICA I a.a. 2012/2013. Metodo differenziale. Problema ESERCITAZIONI CHIMICA-FISICA I a.a. 0/03 Metodo differenziale Problema Per la reazione: A + B P sono stati condotti tre esperimenti cinetici a diverse concentrazioni iniziali dei reagenti. I valori iniziali

Dettagli

COSTRUZIONE DI UN ALBERO GENEALOGICO PERSONALE

COSTRUZIONE DI UN ALBERO GENEALOGICO PERSONALE COSTRUZIONE DI UN ALBERO GENEALOGICO PERSONALE (Fino a quattro generazioni) INDIETRO NEL TEMPO Dalla MIA GENERAZIONE alla generazione dei miei GENITORI dei miei NONNI e, dei miei BISNONNI Dal dizionario

Dettagli

Progressioni numeriche Successione di Fibonacci e sezione aurea

Progressioni numeriche Successione di Fibonacci e sezione aurea Progressioni numeriche Successione di Fibonacci e sezione aurea Progetto Matematica e Statistica - Progetto Lauree Scientifiche Loredana Caso 1 Successioni numeriche 2 Una successione numerica è una sequenza

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Definizione informale di algoritmo Insieme di istruzioni, definite passo per passo, in modo da poter essere eseguite meccanicamente

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Cominciamo con qualche esempio. I) Rette parallele agli assi cartesiani Consideriamo la retta r in figura: i punti della retta hanno sempre ordinata uguale a 3. P ( ;3) Q

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

GEOMETRIA ANALITICA Prof. Erasmo Modica

GEOMETRIA ANALITICA Prof. Erasmo Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEZIONE DISTACCATA DI CEFALÙ CLASSE V C GEOMETRIA ANALITICA Prof. Erasmo Modica LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

Seconda gara matematica ( ) Soluzioni

Seconda gara matematica ( ) Soluzioni Seconda gara matematica (9..00) Soluzioni 1. Dato un parallelepipedo solido cioè senza buchi al suo interno formato da 180 cubetti e avente spigoli di lunghezza a, b, c, il numero N di cubetti visibili

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

Un ragazzo è stimolato ad apprendere se coinvolto emotivamente.

Un ragazzo è stimolato ad apprendere se coinvolto emotivamente. LA SEZIONE AUREA La geometria ha due grandi tesori: uno è il Teorema di Pitagora; l altro la divisione di un segmento in rapporti estremo medio. Il primo possiamo paragonarlo a un metro d oro; il secondo

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

INTERPOLAZIONE. Introduzione

INTERPOLAZIONE. Introduzione Introduzione INTERPOLAZIONE Quando ci si propone di indagare sperimentalmente la legge di un fenomeno, nel quale intervengono due grandezze x, y simultaneamente variabili, e una dipendente dall altra,

Dettagli

Appunti di Algebra Lineare. Distanze

Appunti di Algebra Lineare. Distanze Appunti di Algebra Lineare Distanze 1 Indice 1 Distanze nel piano 1.1 Distanza punto-punto................................... 1. Distanza punto-retta.................................... 3 1.3 Distanza

Dettagli

Risposte ai quesiti D E H D

Risposte ai quesiti D E H D Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia

Dettagli

Risoluzione dei triangoli rettangoli

Risoluzione dei triangoli rettangoli Risoluzione dei triangoli rettangoli In questa dispensa esamineremo il problema della risoluzione dei triangoli rettangoli. Riprendendo la definizione di seno e coseno, mostreremo come questi si possano

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO Definizione di circonferenza La circonferenza è una linea chiusa i cui punti sono tutti equidistanti da un punto fisso detto CENTRO Definizione di cerchio Si definisce CERCHIO la

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Informazioni sul corso + Un introduzione informale agli algoritmi Domenico Fabio Savo 1 Domenico Fabio Savo Email: savo@dis.uniroma1.it Web: http://www.dis.uniroma1.it/~savo

Dettagli

Strumenti matematici

Strumenti matematici Strumenti matematici I rapporti Un rapporto dà un informazione relativa a un unità. In una scuola ci sono 300 studenti e 60 computer. In media ci sono 300:60 = 333/60 = 5 studenti per ogni computer. Il

Dettagli

MATEMATICA CLASSE QUARTA

MATEMATICA CLASSE QUARTA MATEMATICA CLASSE QUARTA a) I NUMERI NATURALI E LE 4 OPERAZIONI U.D.A. : 1 I NUMERI NATURALI 1. Conoscere l evoluzione dei sistemi di numerazione nella storia dell uomo. 2. Conoscere e utilizzare la numerazione

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Algoritmi in C++ (seconda parte)

Algoritmi in C++ (seconda parte) Algoritmi in C++ (seconda parte) Introduzione Obiettivo: imparare a risolvere problemi analitici con semplici programmi in C++. Nella prima parte abbiamo imparato: generazione di sequenze di numeri casuali

Dettagli

Funzioni goniometriche di angoli notevoli

Funzioni goniometriche di angoli notevoli Funzioni goniometriche di angoli notevoli In questa dispensa calcoleremo il valore delle funzioni goniometriche per gli angoli notevoli di 30, 45 e 60. Dopo aver richiamato il concetto di sezione aurea

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice

Dettagli

Sistemi di equazioni di primo grado (sistemi lineari)

Sistemi di equazioni di primo grado (sistemi lineari) Sistemi di equazioni di primo grado (sistemi lineari) DEFINIZIONE Un sistema di equazioni è un insieme di due o più equazioni, tutte nelle stesse incognite, di cui cerchiamo soluzioni comuni. Esempi 1.

Dettagli

Francesco Cavalli, Quaderni SE Bellinzona, dicembre 1997

Francesco Cavalli, Quaderni SE Bellinzona, dicembre 1997 Francesco Cavalli, Quaderni SE Bellinzona, dicembre 1997 Gioco o problema? La distinzione è sovente sottile e anche fine a sé stessa. Il gioco matematico, è un problema di matematica che presenta caratteristiche

Dettagli