Richiami di Tribologia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Richiami di Tribologia"

Transcript

1 MECCANICA DEGLI AZIONAMENTI Preentazione12: Teoria elementare della lubrificazione Richiami di Tribologia LEGGI DELL ATTRITO DI STRISCIAMENTO Il valore del coefficiente d attrito dipende quai ecluivamente dalla natura e dallo tato delle uperfici a contatto. Q F v = cot.

2 Q F v = cot. Le prime due leggi dell attrito di triciamento fra uperfici aciutte, detto anche attrito coulombiano (o attrito ecco ), affermano che: il coefficiente d attrito è indipendente dal carico. il coefficiente d attrito è indipendente dall area di contatto. Di validità un po meno generale è invece la terza legge, la quale afferma che: il coefficiente d attrito è indipendente dalla velocità di triciamento.

3 Le uperfici delimitanti i corpi olidi non ono mai perfettamente lice, ma ono caratterizzate da una certa rugoità. Nelle zone molto limitate in cui avviene effettivamente il contatto, nacono preioni molto elevate ivi la ollecitazione raggiunge il carico di nervamento del materiale il quale, localmente, i platicizza. In corripondenza delle areole di contatto, a caua dell'elevata preione e dell'alta temperatura dovuta al calore che i viluppa, i verificano delle microgiunzioni (delle vere e proprie aldature locali fra i due corpi). Per produrre il moto relativo, occorre rompere tali giunzioni: la reitenza che ee oppongono alla rottura è, appunto, una delle caue dell'attrito. il valore della reitenza d'attrito T i può valutare come: N p A i p T R t A c A c

4 Il coefficiente di attrito f i può allora valutare con l'epreione: N T p R t A c A i p A c f T N R p t La teoria epota giutifica in modo oddifacente le leggi dell attrito; infatti da ea riulta evidente che il valore del coefficiente d attrito è indipendente ia dal carico applicato, ia dall area di contatto. TEORIA PERFEZIONATA Se la forza che i due corpi i tramettono ha anche una componente tangenziale T lo tato di platicizzazione del materiale viene raggiunto con valori del carico normale più bai che in aenza della T. Ne egue che il coefficiente d'attrito riulta maggiore. f T Rt p p N p

5 Il perfezionamento della teoria dell adeione è applicabile eenzialmente all attrito fra uperfici metalliche perfettamente pulite e otto vuoto pinto, e rende ragione del motivo per cui, in tali condizioni, il coefficiente d'attrito può raggiungere valori molto elevati (fino a 1 2, e anche oltre). Il divero valore del coefficiente d'attrito otto vuoto pinto e in ambiente normale i può piegare tenendo conto che in queto econdo cao le uperfici dei corpi ono empre ricoperte da pellicole di differente natura:

6 La dipendenza del coefficiente d'attrito dalla velocità è in genere modeta. La dipendenza dalla temperatura può diventare talvolta molto importante, come nel cao dei freni; infatti, al di opra di una certa temperatura critica (circa 250 C per la ghia, fra i 300 e i 400 C per la maggior parte degli altri materiali da guarnizione), il valore del coefficiente d'attrito negli accoppiamenti impiegati in tali dipoitivi ubice forti abbaamenti, con coneguente bruca diminuzione dell'efficacia dell'azione frenante. Nelle applicazioni pratiche, tenendo conto della compleità del fenomeno e che la velocità di triciamento, la preione di contatto e la temperatura (purché queta reti al di otto di un valore critico che, per molti lubrificanti, è dell'ordine dei 50 C) influicono relativamente poco ul valore del coefficiente d'attrito, i uole di olito ammettere che il coefficiente d attrito ia cotante.

7 Si definice uura la perdita di materiale uperficiale che i verifica progreivamente ulle uperfici di corpi a contatto oggette a moto relativo. Il tao di uura i può eprimere come volume di materiale rimoo in corripondenza di uno potamento relativo unitario. Pur preentandoi inieme con l attrito, l uura non è correlata ad eo in modo emplice ed univoco: vi ono, infatti, coppie di uperfici che preentano bao coefficiente d attrito ed elevato tao di uura e vicevera. Si coniderano generalmente quattro principali tipi di uura: uura adeiva uura abraiva uura corroiva fatica uperficiale

8 Uura ADESIVA in corripondenza delle aperità a contatto ulle uperfici di due corpi premuti uno contro l'altro i formino delle microgiunzioni, che durante il moto relativo dei due corpi i pezzano i verifica l uura (che, per il meccanimo che la origina, i dice adeiva). È logico attenderi che il volume V di materiale aportato ia proporzionale all area effettiva di contatto Ac e allo potamento relativo dei due corpi. IPOTESI del REYE V N K A c p A c V K T f p V K N p K' L K attrito T f p

9 Uura ABRASIVA è dovuta all azione di olcatura eercitata in un materiale più tenero o dalle porgenze della rugoità uperficiale del corpo accoppiato più duro o da particelle dure interpote fra i due corpi a contatto. le particelle poono provenire dall'ambiente circotante o eere originate dall azione dell uura tea. Uura CORROSIVA Sulle uperfici metalliche i formano degli trati di compoti, dovuti all'azione chimica delle otanze preenti nell ambiente. Se quete pellicole uperficiali, a caua dello triciamento, vengono aportate, i riformano molto rapidamente. In ambiente corroivo, l azione meccanica e quella chimica poono ealtare reciprocamente i ripettivi effetti: gli trati uperficiali vengono continuamente rimoi e ubito i riformano: i inneca coi un meccanimo di uura che può talvolta eere molto rapida.

10 Uura per FATICA SUPERFICIALE Richiami di Tribologia nel contatto fra due corpi premuti uno contro l'altro e limitati da uperfici, con curvatura relativa divera da zero, la ollecitazione raggiunge il valore maimo non ulla uperficie dei corpi, ma ad una certa profondità (dell'ordine di mm). Se il carico viene ripetutamente applicato e tolto, nella zona dove la ollecitazione è maima può originari una feura, che può poi (anche dopo milioni o miliardi di cicli di applicazione del carico) propagari ed etenderi fino alla uperficie, con coneguente ditacco di una caglia di materiale. Queto tipo di uura (pitting), è tipico dei contatti di rotolamento otto forti preioni, quali poono verificari ad eempio nei cucinetti a rotolamento e nelle ruote dentate.

11 Materiali antifrizione e. il politetrafluoroetilene (PTFE teflon) Lubrificanti olidi pellicole di metallo tenero (e. Piombo) grafite (ha truttura lamellare) reazioni chimiche uperficiali Contatti VOLVENTI Coppie cinematiche lubrificate

12

13 Le uperfici di contatto degli organi delle macchine vengono lubrificate qualora i voglia evitare il contatto diretto fra corpi olidi (otituendolo con un contatto mediato olido-lubrificante-olido). lubrificazione PERFETTA: non i ha contatto diretto fra le aperità delle uperfici cotituenti la coppia lubrificazione LIMITE: lo trato di lubrificante è coi ottile da non impedire il contatto fra le aperità delle due uperfici. In condizioni di lubrificazione LIMITE i ha una enibile riduzione del coefficiente di attrito di triciamento ripetto al cao di uperfici aciutte (il ottile film di lubrificante otacola la formazione di microgiunzioni riducendo l ampiezza delle zone di contatto diretto e la reitenza dei loro collegamenti).

14 Il coefficiente d'attrito può talvolta variare enibilmente in dipendenza di circotanze quali lo tato di pulizia delle uperfici, la temperatura, la preione di contatto i valori riportati vanno intei come indicativi

15 LUBRIFICAZIONE PERFETTA Fra gli elementi cinematici di una coppia con contatto di triciamento viene introdotto un fluido, in modo tale che al contatto diretto fra due uperfici aciutte venga otituito un contatto mediato olido-fluido-olido. L intercapedine prende il nome di meato. Il fluido contenuto nel meato è comunemente un liquido, talvolta un ga ad eo i dà il nome di lubrificante. Il lubrificante deve eere in grado di reagire alle forze normali che i due membri a contatto i tramettono in corripondenza della coppia e, nello teo tempo, di dare origine ad azioni tangenziali relativamente piccole. Tali riultati poono eere coneguiti mediante: una opportuna progettazione della geometria della coppia una opportuna celta delle caratteritiche fiiche del lubrificante (in particolare della vicoità).

16 Vicoità di un fluido Nel trattare il problema della lubrificazione upporremo che il lubrificante ia NEWTONIANO oia, coniderati due trati adiacenti di fluido in moto LAMINARE (bao numero di Reynold) la tenione tangenziale che i tramettono riponde alla relazione: u y con vicoità DINAMICA Il moto del fluido è a regime LAMINARE e il numero di Reynold Re della corrente fluida riulta ufficientemente bao. il numero di Reynold è dato da: Re U h = maa volumica; h = altezza del meato Nei cai pratici il moto del lubrificante è in genere a regime laminare: il numero di Reynold riulta infatti bao ia per i piccoli valori dello peore di lubrificante ia per i valori relativamente elevati della vicoità dei lubrificanti impiegati.

17 Vicoità di un fluido Fluidi NEWTONIANI la vicoità è funzione olo della natura del fluido e del uo tato fiico (oia della temperatura e della preione), mentre è indipendente dal gradiente di velocità ga e liquidi a bao peo molecolare, oli minerali Fluidi NON NEWTONIANI la loro vicoità dipende anche dal gradiente di velocità grai lubrificanti; oli multigradi u y

18 Vicoità di un fluido Vicoità DINAMICA Vicoità CINEMATICA y u ] [ ] [ ] [ ] [ T L M L L T L L T M ] [ ] [ ] [ ] [ T L M L T L M

19 Claificazione SAE Vicoità di un fluido

20 Coppie cinematiche lubrificate Per permettere al lubrificante di reagire al carico che due corpi a contatto i tramettono occorre creare all interno del meato un campo di preione uperiore a quella ambiente. Fluidodinamica (idrodinamica) Fluidotatica

21 Lubrificazione Bibliografia E. Funaioli, A. Maggiore, U. Meneghetti, Lezioni di Meccanica Applicata alle Macchine - Prima Parte: Fondamenti di Meccanica delle Macchine, Patron, Bologna, A. Z. Szeri, Fluid Film Lubrication: Theory and Deign, Cambridge Univerity Pre, 2005

Geotecnica e Laboratorio. Tensioni totali, neutrali e efficaci

Geotecnica e Laboratorio. Tensioni totali, neutrali e efficaci Coro di Laurea a ciclo Unico in Ingegneria Edile-Architettura Geotecnica e Laboratorio Tenioni totali, neutrali e efficaci Prof. Ing. Marco Favaretti e-mail: [email protected] ebite:.marcofavaretti.net

Dettagli

Calcolo della tensione ammissibile Dovendo essere il grado di sicurezza non inferiore a 3 si ricava che il coefficiente di sicurezza γ è 3 per cui:

Calcolo della tensione ammissibile Dovendo essere il grado di sicurezza non inferiore a 3 si ricava che il coefficiente di sicurezza γ è 3 per cui: Il recipiente diegnato in figura ha una configurazione cilindrica avente diametro interno D = 000 mm è chiuo con fondi emiferici, eo è itemato u due elle A e B pote ad una ditanza L AB = 7000 mm e fuoriece

Dettagli

ESPERIMENTO 2: ATTRITO

ESPERIMENTO 2: ATTRITO ESPERIMETO 2: ATTRITO Scopo dell eperimento: tudiare l attrito tatico, dinamico e volvente. MATERIALE A DISPOSIZIOE: 1 coppia di blocchetti 1 dinamometro di preciione da 5 1 dinamometro di preciione da

Dettagli

F = 150 N F 1 =? = 3,1 s. 3,2

F = 150 N F 1 =? = 3,1 s. 3,2 ESERCIZI SVOLTI : Principi di Newton Lavoro Energia Prof.. Marletta ITC Zanon - Udine ESERCIZIO (): Una caa di 30 kg viene tirata con una corda che forma un angolo di 50 col pavimento u una uperficie licia.

Dettagli

A.A MATERIALI POLIMERICI B. Capitolo 5 Calore specifico

A.A MATERIALI POLIMERICI B. Capitolo 5 Calore specifico A.A. 2005-06 MATERIALI POLIMERICI B Capitolo 5 Calore pecifico A preione cotante il calore pecifico c p (JK -1 kg -1 ) o la capacità termica molare (JK -1 mol -1 ) ((298) = M 0 c p(298) con M 0 peo molecolare

Dettagli

GUIDA al PROGETTO dei SISTEMI di TRACCIATURA ELETTRICA

GUIDA al PROGETTO dei SISTEMI di TRACCIATURA ELETTRICA Via dell Olmo 66 20853 BIASSONO (MB Tel +39-039-2494256 Fax +39-039-2495161 GUIA al PROGTTO dei SISTMI di TRACCIATURA LTTRICA Riteniamo indipenabile chiarire i concetti di Mantenimento e Ricaldamento.

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 6 CICLI TERMODINAMICI DIRETTI ED INVERSI

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 6 CICLI TERMODINAMICI DIRETTI ED INVERSI ERMODINAMICA E ERMOFLUIDODINAMICA Cap. 6 CICLI ERMODINAMICI DIREI ED INVERSI max min Sorgente termica (Bruciatore) Q H = Q in a 2 Caldaia 2 L - = L in L + = L urbina out Pompa Condenatore = 2 = Q C = Q

Dettagli

Meccanica Applicata alle Macchine Appello del 12/01/2012

Meccanica Applicata alle Macchine Appello del 12/01/2012 Meccanica Applicata alle Macchine Appello del 12/01/2012 1. Eeguire l analii tatica del meccanimo in figura 2 (cala 1:1). Si calcoli l azione reitente ul membro 5 quando F m =1N. 2. In figura 1 è rappreentato

Dettagli

Q Flusso di calore (Joule m -2 s -1 )

Q Flusso di calore (Joule m -2 s -1 ) Conduzione Convezione Meccanimo Colliioni molecolari Diffuione molecolare Equazione generale ka ha T dt dx ( T ) Radiazione Evaporazione Fotoni Cambiamento di fae Fluo di calore (Joule m -2-1 ) Calore

Dettagli

Resistenza a sforzo normale e flessione (elementi monodimensionali) [ ]

Resistenza a sforzo normale e flessione (elementi monodimensionali) [ ] 41 1. Calcolo dell armatura longitudinale delle travi in funzione delle azioni riultanti dall analii; 2. Calcolo dell armatura a taglio delle travi in funzione del taglio dovuto ai momenti reitenti delle

Dettagli

Catene fleyer. Catene per un sollevamento sicuro. Combinazioni di piastre nelle catene fleyer. Combinazioni di piastre nelle catene fleyer

Catene fleyer. Catene per un sollevamento sicuro. Combinazioni di piastre nelle catene fleyer. Combinazioni di piastre nelle catene fleyer Catene fleyer Qualità RexPro Catene per un ollevamento icuro. Combinazioni di piatre nelle catene fleyer b3 b3 b3 p p p p d 1 g 2 x 3 3 x 4 4 x 6 Combinazioni di piatre nelle catene fleyer b 3 b 3 b 3

Dettagli

Con riferimento ad uno schema di trave semplicemente appoggiata di lunghezza L = 6 m il momento flettente massimo in mezzeria è pari a:

Con riferimento ad uno schema di trave semplicemente appoggiata di lunghezza L = 6 m il momento flettente massimo in mezzeria è pari a: Eempio Verifica dell apertura delle feure Si conidera la ezione rettangolare caratterizzata dalle eguenti proprietà: - bae b = 00 mm, - altezza totale h = 00 mm, - copriferro c =0 mm, - altezza utile d

Dettagli

Flessione su 4 punti. Configurazione sperimentale. Schematizzazione di calcolo. Studio delle sollecitazioni semplici. Taglio.

Flessione su 4 punti. Configurazione sperimentale. Schematizzazione di calcolo. Studio delle sollecitazioni semplici. Taglio. Fleione u punti Configurazione imentale Scematizzazione di calcolo Taglio omento flettente Studio delle ollecitazioni emplici Tratto ollecitato da fleione pura la ua deformata è un arco di cercio Deformazioni

Dettagli

Esercitazione di Controlli Automatici 1 n 6

Esercitazione di Controlli Automatici 1 n 6 4 maggio 007 Eercitazione di Controlli Automatici n 6 a.a. 006/07 Si conideri il itema della eercitazione n 5 cotituito da un braccio robotico in rotazione, utilizzato per la movimentazione di oggetti.

Dettagli

BOZZA. Lezione n. 24. Il cemento armato La verifica alla S.L. di fessurazione

BOZZA. Lezione n. 24. Il cemento armato La verifica alla S.L. di fessurazione Lezione n. 4 Il cemento armato La verifica alla S.L. di feurazione Il problema della feurazione nel C.. La preenza di feure nelle trutture in cemento armato rappreenta una ituazione fiiologica e, di coneguenza,

Dettagli

Analisi di Stabilità: metodo pendio indefinito PENDIO INDEFINITO 1

Analisi di Stabilità: metodo pendio indefinito PENDIO INDEFINITO 1 Analisi di tabilità: metodo pendio indefinito PENDIO INDEINITO 1 Analisi di stabilità di pendii naturali ed artificiali in materiale sciolto con superfici di rottura piane: metodo del pendio indefinito

Dettagli

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine. t come riportato in figura.

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine.  t come riportato in figura. Eercitazione Noembre ircuiti dinamici del econdo ordine ircuito L- erie Per quanto riguarda queto circuito, l eercizio egue la traccia della oluzione del compito d eame numero, reperibile in rete al olito

Dettagli

Meccanica. LEYBOLD Schede di fisica P Determinazione della costante gravitazionale con la bilancia di torsione gravitazionale di Cavendish

Meccanica. LEYBOLD Schede di fisica P Determinazione della costante gravitazionale con la bilancia di torsione gravitazionale di Cavendish Meccanica LEYBOLD chede di fiica Metodi di miura Determinazione della cotante gravitazionale LEYBOLD chede di fiica P P Determinazione della cotante gravitazionale con la bilancia di torione gravitazionale

Dettagli

1.1 Tecniche di telerilevamento dell umidità del suolo 1.1.1 Microonde

1.1 Tecniche di telerilevamento dell umidità del suolo 1.1.1 Microonde 1.1 Tecniche di telerilevamento dell umidità del uolo 1.1.1 Microonde Da quanto detto al paragrafo precedente, nella regione pettrale delle microonde l atmofera può dunque coniderari traparente, oprattutto

Dettagli

LAVORO ED ENERGIA. 1J = 1N 1m

LAVORO ED ENERGIA. 1J = 1N 1m ppunti di fiica LVORO ED ENERGI LVORO Nel linguaggio cientifico il termine lavoro ha un ignificato ben precio e talvolta divero da quello che queto termine aume nel linguaggio quotidiano. In fiica il concetto

Dettagli

Contatto ed Usura. Juvinall, Marshek Fondamenti della progettazione dei componenti delle macchine. Shigley et al. Progetto e costruzione di macchine

Contatto ed Usura. Juvinall, Marshek Fondamenti della progettazione dei componenti delle macchine. Shigley et al. Progetto e costruzione di macchine Contatto ed Usura Riferimenti bibliografici Juvinall, Marshek Fondamenti della progettazione dei componenti delle macchine Shigley et al. Progetto e costruzione di macchine 1 Tribologia: studio dei fenomeni

Dettagli

a) Caso di rottura duttile con armatura compressa minore di quella tesa

a) Caso di rottura duttile con armatura compressa minore di quella tesa LEZIONI N 39 E 40 FLESSIONE SEMPLICE: LA DOPPIA ARMATURA E LA SEZIONE A T LA VERIFICA DELLA SEZIONE INFLESSA CON DOPPIA ARMATURA a) Cao di rottura duttile con armatura comprea minore di quella tea Si può

Dettagli

FUNZIONI DI TRASFERIMENTO

FUNZIONI DI TRASFERIMENTO FUNZIONI DI TRASFERIMENTO Funzioni Di Traferimento La difficoltà maggiore nel trattare i modelli matematici di itemi dinamici lineari è dovuta al fatto che le equazioni delle leggi fiiche che decrivono

Dettagli

STRUTTURE IN CEMENTO ARMATO - III

STRUTTURE IN CEMENTO ARMATO - III Suidi didattici per il coro di COSTRUZIONI EDILI Prof. Ing. Franceco Zanghì STRUTTURE IN CEMENTO ARMATO - III AGGIORNAMENTO 26/09/2012 Coro di COSTRUZIONI EDILI Prof. Ing. Franceco Zanghì STATI LIMITE

Dettagli

= 20 m/s in una guida verticale circolare. v A A

= 20 m/s in una guida verticale circolare. v A A Eercizio (tratto dal Problema 4.39 del Mazzoldi Un corpo di maa m = 00 Kg entra con elocità A licia di raggio = 5 m. Calcolare: = 0 m/ in una guida erticale circolare. la elocità nei punti B e C;. la reazione

Dettagli

3. Taglio (prof. Elio Sacco)

3. Taglio (prof. Elio Sacco) . Taglio (prof. Elio Sacco).. Formula di Jourawky Si conidera inizialmente il cao di una ezione oggetta ad una ollecitazione di taglio V. Si definice tenione tangenziale media ulla corda B di lunghezza

Dettagli

Esercizio C2.1 Laminazione a freddo di una lamiera di alluminio

Esercizio C2.1 Laminazione a freddo di una lamiera di alluminio Eercizio C. Lainazione a freddo di una laiera di alluinio Si vuole lainare a freddo una laiera di alluinio ( ρ700 kg/ ) di peore pari a 6 illietri e larghezza 600 illietri, fino a portarla ad uno peore

Dettagli

LEZIONI N 35 E 36 ANALISI ALLO STATO LIMITE ULTIMO DELLA SEZIONE INFLESSA

LEZIONI N 35 E 36 ANALISI ALLO STATO LIMITE ULTIMO DELLA SEZIONE INFLESSA LEZIONI N 35 E 36 ANALISI ALLO STATO LIMITE ULTIMO DELLA SEZIONE INFLESSA Nel cao delle ezioni inflee di cemento armato, la verifica di icurezza allo tato limite ultimo di reitenza conite nel controllare

Dettagli

Ottica. LEYBOLD Schede di fisica P Determinazione della velocità della luce con lo specchio ruotante secondo il metodo di Foucault e Michelson

Ottica. LEYBOLD Schede di fisica P Determinazione della velocità della luce con lo specchio ruotante secondo il metodo di Foucault e Michelson Ottica LEYBOLD Schede di fiica Velocità della luce Miura con il metodo di Foucault/Michelon LEYBOLD Schede di fiica Determinazione della velocità della luce con lo pecchio ruotante econdo il metodo di

Dettagli

TRASDUTTORI DI UMIDITA. II trasduttore di umidità (capacitivo)

TRASDUTTORI DI UMIDITA. II trasduttore di umidità (capacitivo) lez. 3 TASDUTTOI DI UMIDITA I traduttori di umidità rilevano l'umidità relativa definita come il rapporto tra l'umidità aoluta(quantità di vapore acqueo (maa) contenuta in m 3 d aria) e l umidità di aturazione

Dettagli

Disegno di Macchine. Lezione n 10 Cuscinetti radenti e volventi. corso per I anno della laurea in ing. meccanica Docente: ing.

Disegno di Macchine. Lezione n 10 Cuscinetti radenti e volventi. corso per I anno della laurea in ing. meccanica Docente: ing. Disegno di Macchine corso per I anno della laurea in ing. meccanica Docente: ing. Francesca Campana Lezione n 10 Cuscinetti radenti e volventi Supporti e Cuscinetti I supporti sorreggono gli elementi rotanti

Dettagli

ESERCIZIO 1 L/2 C.R. D

ESERCIZIO 1 L/2 C.R. D SRIZIO Il itema di corpi rigidi in figura è oggetto ad uno potamento impreo (cedimento), in direzione verticale e vero il bao, in corripondenza del vincolo in. Si vuole determinare la nuova configurazione

Dettagli

Esercizi sul Moto Circolare Uniforme

Esercizi sul Moto Circolare Uniforme Eercizi ul Moto Circolare Uniforme 1.Un oroloio ha tre lancette: quella delle ore luna 1 cm, quella dei minuti luna 1.4 cm e quella dei econdi luna 1.6 cm. Conidera il punto etremo di oni lancetta. Calcola

Dettagli

Resistenze passive. Prof. Paolo Biondi Dip. GEMINI

Resistenze passive. Prof. Paolo Biondi Dip. GEMINI Resistenze passive Prof. Paolo Biondi Dip. GEMINI Resistenze passive -01 Tutte quelle forze che si oppongono al moto determinando una perdita di energia meccanica in calore. Sembrano avere connotati solo

Dettagli

Sistemi aperti. Stato di flusso di massa

Sistemi aperti. Stato di flusso di massa Sitemi aperti ) Concetti di bae ) Primo principio della termodinamica 3) Secondo principio della termodinamica 4) Stati di equilibrio tabile 5) Diagramma energia-entropia 6) Lavoro, non-lavoro e calore

Dettagli

4 Esercizi Saldature

4 Esercizi Saldature Elementi Cotruttivi delle Maccine 4 Eercizi Saldature E. Una taffa in acciaio S7 (ex Fe40) è aldata tramite due cordoni d angolo a un upporto; le dimenioni d interee ono: 00 mm, 80 mm, 40 mm, p 8 mm. Il

Dettagli

Modellazione e Analisi di Sistemi Meccanici

Modellazione e Analisi di Sistemi Meccanici Modellazione e Analii di Sitemi Meccanici Modellazione e Analii di Sitemi Meccanici Davide Giglio Maa in movimento Si conideri il itema rappreentato in figura. Il itema conite in una maa che può correre

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c 2 ; P 1 1( ( + 4 ; P 2 ( ( + 1 (

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID

Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID Controllo di Azionamenti Elettrici Lezione n 3 Coro di Laurea in Ingegneria dell Automazione Facoltà di Ingegneria Univerità degli Studi di alermo Caratteritiche e predipoizione dei regolatori ID 1 Introduzione

Dettagli

PROBLEMI RISOLTI DI DINAMICA

PROBLEMI RISOLTI DI DINAMICA PROBLEMI RISOLTI DI DINAMICA 1 Un autoobile di aa 100 Kg auenta in odo unifore la ua velocità di 30 / in 0 a) Quale forza agice durante i 0? b) Quale forza arebbe necearia per ipriere un accelerazione

Dettagli

BauBuche Legno microlamellare di faggio. Fisica delle costruzioni

BauBuche Legno microlamellare di faggio. Fisica delle costruzioni BauBuche Legno microameare di faggio Fiica dee cotruzioni 03 BauBuche Fiica dee cotruzioni 03 Fiica dee cotruzioni 09-16 - IT Fogio 1 / 6 Fogio INDICE 2 3 4 5 6 3.1 Proprietà fiico-cotruttive Protezione

Dettagli

3.3 Il principio di disgregazione Esempi applicativi del principio di disgregazione Il principio dei lavori virtuali...

3.3 Il principio di disgregazione Esempi applicativi del principio di disgregazione Il principio dei lavori virtuali... Indice 1 Cinematica 1 1.1 Introduzione......................... 1 1.2 Classificazione delle coppie e relativi gradi di libertà... 2 1.2.1 Esempi di coppie inferiori............. 5 1.2.2 Esempi di coppie

Dettagli

Lezione 4 GEOTECNICA. Docente: Ing. Giusy Mitaritonna

Lezione 4 GEOTECNICA. Docente: Ing. Giusy Mitaritonna Lezione 4 GEOTECNICA Docente: Ing. Giusy Mitaritonna e-mail: [email protected] - Lezione 4 A. Cenni sul moto di filtrazione nelle terre B. Tensioni efficaci in presenza di forze di filtrazione C.

Dettagli

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE 1 PERDITE DI CARICO CONTINUE Sono le perdite di carico (o di pressione) che un fluido, in moto attraverso un condotto, subisce a causa delle resistenze

Dettagli

PROGETTO E VERIFICA DI STRUTTURE IN C.A.: SOLUZIONI

PROGETTO E VERIFICA DI STRUTTURE IN C.A.: SOLUZIONI Laurea in Ingegneria Civile PROGETTO E VERIFICA DI STRUTTURE IN C.A.: SOLUZIONI 1) Con riferimento alla truttura in c.a. rappreentata in figura, ollecitata da un carico uniformemente ripartito il cui valore

Dettagli

COSTRUZIONI CON SISTEMA A CASSERI A RIMANERE ECOSISM approccio strutturale

COSTRUZIONI CON SISTEMA A CASSERI A RIMANERE ECOSISM approccio strutturale COSTRUZIONI CON SISTEMA A CASSERI A RIMANERE ECOSISM approccio trutturale AUTORE: Andrea Demo Ing. 1. APPROCCIO STRUTTURALE CON SISTEMA COSTRUTTIVO ECOSISM L obiettivo della preente relazione è quello

Dettagli

BARRE. Barre in rame e alluminio

BARRE. Barre in rame e alluminio Nei quadri elettrici ono attualmente impiegati due metalli in qualità di conduttori: il rame e l alluminio. In particolare, dovendo definire una ditribuzione di potenza all interno di un quadro elettrico,

Dettagli

19.12. Impianti motori con turbine a gas

19.12. Impianti motori con turbine a gas 19.12. Impianti motori con turbine a ga Approfondimenti 19.12.1. Generalità. Il ciclo di Brayton (o ciclo di oule) Il rendimento (h) di un ciclo termodinamico può eere epreo dalla relazione: h q up q inf

Dettagli

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime

Dettagli

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè: LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione

Dettagli

D. MR (*) 2. Il modulo dell accelerazione angolare α della carrucola vale rad A s rad B s rad C s rad D. 55.

D. MR (*) 2. Il modulo dell accelerazione angolare α della carrucola vale rad A s rad B s rad C s rad D. 55. acoltà di Ingegneria a prova intracoro di iica I 30.0.0 Copito A (*) Eercizio n. Una carrucola, aiilabile ad un dico di aa 3.7 kg e raggio 70 c, è libera di ruotare intorno ad un ae orizzontale paante

Dettagli

ESERCIZI SULLE SUPERFICI. 1) Calcolare le curvature principali, la curvatura media e la curvatura Gaussiana della sfera

ESERCIZI SULLE SUPERFICI. 1) Calcolare le curvature principali, la curvatura media e la curvatura Gaussiana della sfera ESERCIZI SULLE SUPERFICI Calcolare le curvature principali, la curvatura media e la curvatura Gauiana della fera α u; v = r in u co v ; r in u in v ; r co u Dato il paraboloide ellittico α u; v = u; v;

Dettagli

L induzione elettromagnetica - Legge di Faraday-Lentz

L induzione elettromagnetica - Legge di Faraday-Lentz L induzione elettromagnetica - Legge di Faraday-Lentz Si oerano alcuni fatti perimentali. 1 ) Conideriamo un filo metallico chiuo u e teo (pira) tramite un miuratore di corrente poto in icinanza di un

Dettagli

Appunti ed esercitazioni di Microonde 2

Appunti ed esercitazioni di Microonde 2 Appunti ed eercitazioni di Microonde Studio di una linea priva di perdite in regime impulivo di impedenza caratteritica =5Ω, chiua u di un carico R erie avente R==5Ω, =mh, =nf. Si aume come velocità di

Dettagli

Approccio iterativo per il progetto a duttilità controllata di sezioni presso-inflesse in c.a.

Approccio iterativo per il progetto a duttilità controllata di sezioni presso-inflesse in c.a. Approccio iterativo per il progetto a duttilità controllata di ezioni preo-inflee in c.a. Erika Matromarino * ; Giueppe Carlo Marano, Giorgio Monti **, Paquale Smaldini *** * Ingegnere trutturale, Metal.Ri,

Dettagli

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 29/09/2006(ESEMPIO)

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 29/09/2006(ESEMPIO) PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 9/09/00(ESEPIO) Eercizio n 1 Sia data la trave appoggiata in figura, di luce l = 8,00 m, larghezza B = 0 cm e altezza H = 80 cm. Il carico applicato, uniformemente

Dettagli