Appunti ed esercitazioni di Microonde 2
|
|
|
- Gianpiero Vacca
- 9 anni fa
- Visualizzazioni
Transcript
1 Appunti ed eercitazioni di Microonde Studio di una linea priva di perdite in regime impulivo di impedenza caratteritica =5Ω, chiua u di un carico R erie avente R==5Ω, =mh, =nf. Si aume come velocità di fae in linea quella del vuoto e il generatore di impuli adattato alla linea, cioè con impedenza interna pari alla impedenza caratteritica della linea, e l impulo prodotto ha durata T*=n mentre la prima rifleione i rileva dopo un tempo T=µ. R GI a) Studio qualitativo Per valutare gli andamenti della tenione ul carico e ul generatore biogna come prima coa oervare che all itante iniziale l induttore è carico e quindi rappreenta un circuito aperto ed eendo poto in erie ad altri bipoli, il bipolo riultante i comporta come un aperto preentando un coefficiente di rifleione pari a. onda incidente e quella riflea ono quindi uguali (empre all itante iniziale). Inoltre, dato che il generatore di impuli è adattato alla linea, non darà luogo a neuna rifleione e la tenione incidente arà pari a /. ita la preenza di elementi reattivi di divera natura è preumibile un comportamento di tipo ocillatorio di una qualche grandezza elettrica. Gli andamenti qualitativi ono tati tracciati in due divere ituazioni: una in regime di ocillazioni morzate e una in regime di forte morzamento. Nel primo cao i contributi dei due elementi reattivi i ono uppoti confrontabili, mentre nel econdo cao la componente induttiva è fortemente dominante ripetto a quella capacitiva. b) Studio analitico equazione che decrive la tenione ai capi del bipolo R erie è: ( ) i t, v( t,) = Ri( t,) + i( t,) + Derivando tale epreione i ottiene: ( t,) i( t,) v = R + i ( t,) i + ( t,) () () a tenione v(t,) ul carico puòeere critta come omma dell onda di tenione incidente e di un onda di tenione riflea dal bipolo. Tenendo preente la condizione di adattamento del generatore alla linea i puòcrivere: v ( t,) + ( t,) i( t,) ( t,) = = = ( t,) (3)
2 + R ( t,) = ( t,) + ( t,) + ( t,) () Data la particolare forma dell impulo prodotto dal generatore è verificata la relazione eguente: + ( t,) = ( t,) dψ = (5) equazione del bipolo diventa allora, dopo aver eeguito le otituzioni e alcuni paaggi algebrici: d ψ R dψ ψ t ( ) = (6) Tale epreione rappreenta una equazione differenziale lineare a coefficienti cotanti di econdo ordine omogenea la cui oluzione generale è del tipo: ψ t t ( t ) = A e + A e (7) equazione caratteritica e le ue oluzioni ono le eguenti: R R + = + R + = = (9) () (8) A queto punto è neceario ditinguere 3 cai alienti, dicriminati dal egno dell epreione argomento della radice quadrata. Infatti abbiamo: a) b) c) > = < forte morzamento morzamento critico ocillazioni morzate ω = Queto ignifica che a econda dei valori aunti dalle componenti R avremo un impulo ul carico che aumerà forme d onda divere in ragione al cao in cui ci troveremo. Nella fattipecie, con i valori numerici celti iamo nel cao di ocillazioni morzate.
3 Per poter determinare le epreioni delle cotanti A e A biogna imporre le condizioni iniziali che devono eere due, in quanto le cotanti da determinare ono in numeri di due. Tali condizioni iniziali poono eere impotate tenendo preente che all itante iniziale t= l induttore i comporta come un circuito aperto ed eendo poto in erie ad altri bipoli caratterizza il bipolo erie compleivo come un circuito aperto, preentando un coefficiente di rifleione pari a. Inoltre all itante iniziale l induttore i preume carico e quindi la corrente circolante nella erie in t= deve eere nulla. Queto i riflette nel fatto che la tenione preente ull induttore all itante t= deve eere pari a. Quindi le condizioni iniziali ono: (,) (,) + di = = () oniderando ora che la tenione + è pari a / i ricavano le relazioni tra le cotanti: = di = (,) (,) = ψ (,) d = A + A = () ( t,) = [ A + A ] = () A = A Riolvendo il itema i ottengono i valori delle cotanti cercate: A = = = A ( ) + (3) epreione finale generale della tenione ψ(t)= /- - (t,) è dunque: ( ) R + R + R+ t = +, exp exp Da quet ultima relazione i poono eplicitare la tenione riflea e la tenione globale preente ai capi del bipolo di carico: ( t,) = ψ + v( t,) = + = + ψ = ψ Per quanto riguarda la tenione preente al generatore è ufficiente adottare una otituzione della variabile temporale, ovvero porre t =t-t. Da notare che nel cao di ocillazioni morzate, quete hanno una pulazione pari alla ω, ed uno peudoperiodo pari a π/ω.
4 Particolareggiando il cao delle ocillazioni morzate i puòcrivere: R + α = ψ = α + αt = exp( αt) [ exp( α + jω ) exp( α jω )] = e en( ω t) ω jω ω = = α jω Quet ultima epreione mette in evidenza il termine ocillatorio morzato preente nella tenione ψ(t), la quale permette di tracciare l andamento analitico della tenione ul carico:( =5) ω x - c) Deduzione di alcuni parametri oervando i diagrammi temporali della tenione Diponendo dei tracciati relativi all andamento della tenione preente al generatore i poono trarre alcune indicazioni riguardo la tipologia del carico poto all altra etremità della linea. Dalla miura del tempo di arrivo della rifleione ul carico (T) e note le caratteritiche della linea è deducibile la ditanza a cui è poto il carico: T = µ = Tc = 5m Eendo la tenione riflea nell itante T di egno poitivo e pari al valore /, i puòupporre che il carico i comporti come un aperto, ovvero vi ia almeno un elemento induttivo in erie ad altri bipoli. a compara di ocillazioni comporta la preenza di elementi ia capacitivi che induttivi e che vi iano degli cambi di energia elettromagnetica tra i bipoli cotituenti il carico. Non è in ogni cao poibile dedurre le conneioni e il numero di elementi cotituenti il carico.
5 Regime ocillatorio Smorzato (t,) arico Prima rifleione / T T+T* - / Seconda rifleione (t,-) Generatore / / T* T - / Regime fortemente morzato (t,) arico Prima rifleione / T T+T* - / Seconda rifleione (t,-) Generatore / / T* T T+T* - /
Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine. t come riportato in figura.
Eercitazione Noembre ircuiti dinamici del econdo ordine ircuito L- erie Per quanto riguarda queto circuito, l eercizio egue la traccia della oluzione del compito d eame numero, reperibile in rete al olito
Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID
Controllo di Azionamenti Elettrici Lezione n 3 Coro di Laurea in Ingegneria dell Automazione Facoltà di Ingegneria Univerità degli Studi di alermo Caratteritiche e predipoizione dei regolatori ID 1 Introduzione
2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE
METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata
LAVORO ED ENERGIA. 1J = 1N 1m
ppunti di fiica LVORO ED ENERGI LVORO Nel linguaggio cientifico il termine lavoro ha un ignificato ben precio e talvolta divero da quello che queto termine aume nel linguaggio quotidiano. In fiica il concetto
PROBLEMI RISOLTI DI DINAMICA
PROBLEMI RISOLTI DI DINAMICA 1 Un autoobile di aa 100 Kg auenta in odo unifore la ua velocità di 30 / in 0 a) Quale forza agice durante i 0? b) Quale forza arebbe necearia per ipriere un accelerazione
Circuito Simbolico. Trasformazione dei componenti
Circuito Simbolico Principio di bae E poibile applicare a tutte le leggi matematiche che regolano un circuito la traformata di Laplace, in modo da ottenere un nuovo circuito con delle proprietà differenti.
Meccanica Applicata alle Macchine Appello del 12/01/2012
Meccanica Applicata alle Macchine Appello del 12/01/2012 1. Eeguire l analii tatica del meccanimo in figura 2 (cala 1:1). Si calcoli l azione reitente ul membro 5 quando F m =1N. 2. In figura 1 è rappreentato
Diagramma circolare di un motore asincrono trifase
Diagramma circolare di un motore aincrono trifae l diagramma circolare è un diagramma che permette di leggere tutte le grandezze del motore aincrono trifae (potenza rea, perdite nel ferro, coppia motrice,
Controllo di Azionamenti Elettrici. Lezione n 13
Controllo di Azionamenti Elettrici Lezione n 1 Coro di Laurea in Ingegneria dell Automazione Facoltà di Ingegneria Univerità degli Studi di Palermo CTROLLO DIRETTO DI COPPIA DI AZIAMENTI C MOTORE IN CORRENTE
a) Caso di rottura duttile con armatura compressa minore di quella tesa
LEZIONI N 39 E 40 FLESSIONE SEMPLICE: LA DOPPIA ARMATURA E LA SEZIONE A T LA VERIFICA DELLA SEZIONE INFLESSA CON DOPPIA ARMATURA a) Cao di rottura duttile con armatura comprea minore di quella tea Si può
Modellazione e Analisi di Sistemi Meccanici
Modellazione e Analii di Sitemi Meccanici Modellazione e Analii di Sitemi Meccanici Davide Giglio Maa in movimento Si conideri il itema rappreentato in figura. Il itema conite in una maa che può correre
I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE
I.T.I.S. APPUNTI DI ELETTRONICA TRASFORMATA DI LAPLACE E DIAGRAMMI DI BODE PREMESSA Per lo studio dei sistemi di controllo si utilizzano modelli matematici dinamici lineari. L analisi o il progetto di
3. Catene di Misura e Funzioni di Trasferimento
3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici
Modellazione e Analisi di Sistemi Idraulici
Modellazione e Analii di Sitemi Idraulici Modellazione e Analii di Sitemi Idraulici Davide Giglio La ingola vaca Si conideri il itema rappreentato in figura. Il itema conite in una vaca contenente acqua.
Amplificatore a BJT in configurazione CE e CC
Amplificatore a JT in configurazione e Traccia per lo olgimento dell eercitazione del 7 maggio 008 1 ircuito da realizzare 100k 1V 4k7 10u Vo 100k 4k7 1V Rif. Vi Gen. 100n N Vi Gen. 100n N 10u Vo 18k 1k
ESERCIZIO 1 L/2 C.R. D
SRIZIO Il itema di corpi rigidi in figura è oggetto ad uno potamento impreo (cedimento), in direzione verticale e vero il bao, in corripondenza del vincolo in. Si vuole determinare la nuova configurazione
Lezione 12. Regolatori PID
Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La
Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE
PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione
Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale
CONTROLLORI DI TIO ID rincipi di funzionamento Il termine controllo definice l azione volta per portare e mantenere ad un valore prefiato un parametro fiico di un impianto o di un proceo (ad eempio, la
F = 150 N F 1 =? = 3,1 s. 3,2
ESERCIZI SVOLTI : Principi di Newton Lavoro Energia Prof.. Marletta ITC Zanon - Udine ESERCIZIO (): Una caa di 30 kg viene tirata con una corda che forma un angolo di 50 col pavimento u una uperficie licia.
Calcolo della tensione ammissibile Dovendo essere il grado di sicurezza non inferiore a 3 si ricava che il coefficiente di sicurezza γ è 3 per cui:
Il recipiente diegnato in figura ha una configurazione cilindrica avente diametro interno D = 000 mm è chiuo con fondi emiferici, eo è itemato u due elle A e B pote ad una ditanza L AB = 7000 mm e fuoriece
19.12. Impianti motori con turbine a gas
19.12. Impianti motori con turbine a ga Approfondimenti 19.12.1. Generalità. Il ciclo di Brayton (o ciclo di oule) Il rendimento (h) di un ciclo termodinamico può eere epreo dalla relazione: h q up q inf
Problema n. 2. Soluzione
Problema n. Un auto da cora A iaia u un piano orizzontale con elocità cotante = 69 km/ i 11 km/ j ripetto ad un oeratore olidale al uolo Ox. Qual è la elocità dell auto A miurata da un oeratore olidale
Definizione delle specifiche per un sistema di controllo a retroazione unitaria
Definizione delle pecifiche per un itema di controllo a retroazione unitaria Obiettivi del controllo Il itema di controllo deve eere progettato in modo da garantire un buon ineguimento dei egnali di riferimento
Resistenza a sforzo normale e flessione (elementi monodimensionali) [ ]
41 1. Calcolo dell armatura longitudinale delle travi in funzione delle azioni riultanti dall analii; 2. Calcolo dell armatura a taglio delle travi in funzione del taglio dovuto ai momenti reitenti delle
GENERATORE ASINCRONO A DOPPIA ALIMENTAZIONE
UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTROTECNICA DIPARTIMENTO DI INGEGNERIA ELETTRICA TESI DI LAUREA GENERATORE ASINCRONO A DOPPIA ALIMENTAZIONE RELATORE:
Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma
Note u alcuni principi fondamentali di macroeconomia Verione parziale e provvioria Claudio Sardoni Sapienza Univerità di Roma Anno accademico 2010-2011 ii Indice Premea v I Il breve periodo 1 1 Il fluo
Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità
Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime
TRASDUTTORI DI UMIDITA. II trasduttore di umidità (capacitivo)
lez. 3 TASDUTTOI DI UMIDITA I traduttori di umidità rilevano l'umidità relativa definita come il rapporto tra l'umidità aoluta(quantità di vapore acqueo (maa) contenuta in m 3 d aria) e l umidità di aturazione
Semplificazioni di schemi a blocchi
Semplificazioni di chemi a blocchi 4. Blocchi in cacata 4. Blocchi in parallelo 4.3 Blocchi in catena chiua (reazione negativa) 4.4 Blocchi in catena chiua (reazione poitiva) 4.5 Spotamento di blocchi
Capitolo IV L n-polo
Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire
Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - [email protected]
Cinematica: oluzioni Problema di: Cinematica - C0015ban Teto [C0015ban] Eercizi banali di Cinematica: 1. Moto rettilineo uniforme (a) Quanto pazio percorre in un tempo t = 70 un oggetto che i muove con
Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1
Lezione 2. Campionamento e Aliaing F. Previdi - Controlli Automatici - Lez. 2 1 Schema della lezione 1. Introduzione 2. Il campionatore ideale 3. Traformata di un egnale campionato 4. Teorema del campionamento
STRUTTURE IN CEMENTO ARMATO - III
Suidi didattici per il coro di COSTRUZIONI EDILI Prof. Ing. Franceco Zanghì STRUTTURE IN CEMENTO ARMATO - III AGGIORNAMENTO 26/09/2012 Coro di COSTRUZIONI EDILI Prof. Ing. Franceco Zanghì STATI LIMITE
Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A
Facoltà di Ingegneria Prova critta di Fiica I 13 Febbraio 6 Copito A Eercizio n.1 Un blocco, aiilabile ad un punto ateriale di aa, partendo da fero, civola da un altezza h lungo un piano inclinato cabro
L induzione elettromagnetica - Legge di Faraday-Lentz
L induzione elettromagnetica - Legge di Faraday-Lentz Si oerano alcuni fatti perimentali. 1 ) Conideriamo un filo metallico chiuo u e teo (pira) tramite un miuratore di corrente poto in icinanza di un
scaricato da
A. Maffucci: ircuiti in regime sinusoidale ver - 004 ES.. Esprimere la corrente i(t) in termini di fasore nei seguenti tre casi: a) i(t) = 4sin(ωt.4) b) i(t) = 0sin(ωt π) c) i(t) = 8sin(ωt π / ) isultato:
Elementi di programmazione lineare. Ottimizzazione di funzioni soggette a vincoli
Elementi di programmazione lineare Ottimizzazione di funzioni oggette a vincoli Formulazione del problema min Z ma oggetta b c a T d Z:funzione obiettivo calare d: coto fio calare : variabile deciionale
Fenomeni di moto vario nelle correnti in pressione
Stefano Mambretti Fenomeni di moto vario nelle correnti in preione ARACNE Copyright MMIV ARACNE editrice S.r.l. www.aracne editrice.it info@aracne editrice.it via Raffaele Garofalo, 133 A/B 00173 Roma
1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt
1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO i(t) Tensione applicata : v(t) v(t) = V M sen ωt V(t) = V M e jωt : vettore ruotante che genera la sinusoide RESISTORE i(t) = v(t) / R = V M / R sen
Stati limite nel cemento armato Stato limite ultimo per tensioni normali: applicazioni BOZZA
Lezione n. 1 Stati limite nel cemento armato Stato limite ultimo per tenioni normali: applicazioni Nel eguito i riportano alcuni eempi di applicazione delle procedure decritte nel paragrao precedente.
Esercizio C2.1 Laminazione a freddo di una lamiera di alluminio
Eercizio C. Lainazione a freddo di una laiera di alluinio Si vuole lainare a freddo una laiera di alluinio ( ρ700 kg/ ) di peore pari a 6 illietri e larghezza 600 illietri, fino a portarla ad uno peore
Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:
LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione
Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore
Sezioni in c.a. La fleione compota Catania, 16 marzo 004 arco uratore Per chi non c era 1. Compreione: verifica Tenioni ammiibili α cd Ac f 1.5 f yd A 0.7 σ ( A max c c n A ) Riultati comparabili per il
A tal fine consideriamo un esempio come punto di partenza per le nostre considerazioni.
Moto Parabolico Sino ad ora abbiamo ito due tipi di moto: moto rettilineo uniforme moto uniformemente accelerato lo tudio che è tato condotto fino a queto punto ha preo in coniderazione un moto alla olta,
22 - Il principio dei lavori virtuali
- Il principio dei lavori virtuali ü [.a. 0-0 : ultima reviione 5 aprile 0] Eempio n. Si conideri il portale di Figura, emplicemente ipertatico. Si vuole applicare il principio dei lavori virtuali per
ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico-Tecnologico Progetto Brocca
Eame di tato 00 ESAME D STATO D LCEO SCENTFCO 00 ndirizzo Scientifico-Tecnologico rogetto Brocca Tema di: FSCA tracrizione del teto e redazione oluzione di Quintino d Annibale Secondo tema L'etto oule
Poiché la retta è definita dall equazione: y = a + bx. Capitolo 4. Regressione e Correlazione.
Diaz - Appunti di tatitica - AA 1/ - edizione 9/11/1 Cap. 4 - Pag. 1 Capitolo 4. Regreione e Correlazione. Regreione Il termine regreione ha un'origine antica ed un ignificato molto particolare. L inventore
Note sulle lezioni del corso di STATICA tenute dal Prof. Luis Decanini. Parte 3
Prima Facoltà di rchitettura Ludovico Quaroni Coro di Laurea 5 U.E... 001/00 - II emetre Note ulle lezioni del coro di STTIC tenute dal Prof. Lui Decanini Con la collaborazione del Dott. Laura Liberatore
1.1 Tecniche di telerilevamento dell umidità del suolo 1.1.1 Microonde
1.1 Tecniche di telerilevamento dell umidità del uolo 1.1.1 Microonde Da quanto detto al paragrafo precedente, nella regione pettrale delle microonde l atmofera può dunque coniderari traparente, oprattutto
2. LA DIFFUSIONE - CONCETTI BASE
LA DIFFUSIONE . LA DIFFUSIONE - CONCETTI BASE Molte reazioni e molti procei di rilevante importanza nel trattamento dei materiali i baano ul traporto di maa. Queto traporto può avvenire o all interno di
ESERCIZI SVOLTI di ANALISI DEI SISTEMI
ESERCIZI SVOLTI di ANALISI DEI SISTEMI Davide Giglio DIST - Univerità di Genova Via Opera Pia, 3 645 - Genova, Italy Tel: +39 353748 Fax: +39 35354 [email protected] Queta raccolta di eercizi volti
Con riferimento ad uno schema di trave semplicemente appoggiata di lunghezza L = 6 m il momento flettente massimo in mezzeria è pari a:
Eempio Verifica dell apertura delle feure Si conidera la ezione rettangolare caratterizzata dalle eguenti proprietà: - bae b = 00 mm, - altezza totale h = 00 mm, - copriferro c =0 mm, - altezza utile d
Modellistica dinamica di sistemi fisici
.. MODELLISTICA - Modellitica dinamica. Modellitica dinamica di itemi fiici Nella realtà fiica eitono vari ambiti energetici, per eempio: meccanico (tralazionale e rotazionale) elettrico-magnetico idraulico
A.A MATERIALI POLIMERICI B. Capitolo 5 Calore specifico
A.A. 2005-06 MATERIALI POLIMERICI B Capitolo 5 Calore pecifico A preione cotante il calore pecifico c p (JK -1 kg -1 ) o la capacità termica molare (JK -1 mol -1 ) ((298) = M 0 c p(298) con M 0 peo molecolare
Esercizi sul Moto Circolare Uniforme
Eercizi ul Moto Circolare Uniforme 1.Un oroloio ha tre lancette: quella delle ore luna 1 cm, quella dei minuti luna 1.4 cm e quella dei econdi luna 1.6 cm. Conidera il punto etremo di oni lancetta. Calcola
Esercizi sul moto del proiettile
Eercizi ul moto del proiettile Riolvi li eercizi ul quaderno utilizzando la oluzione olo per controllare il tuo riultato. 1 Un fucile è puntato orizzontalmente contro un beralio alla ditanza di 30 m. Il
Paolo Rocco. Automatica
Paolo Rocco Dipene ad uo degli tudenti del Politecnico di Milano per i cori da cinque crediti didattici Automatica Ingegneria Aeropaziale E vietato l uo commerciale di queto materiale Avvertenza Queta
Lezione 45 - Il principio dei lavori virtuali nell'analisi delle travi
ezione 45 - Il pncipio dei lavo virtuali nellanalii delle travi ü [A.a. 11-1 : ultima reviione aple 1] Si pecializza il pncipio dei lavo virtuali al cao dei itemi monodimenionali piani, utilizzando i ultati
CAPITOLO IV ANALISI E PROGETTO DI UN CONVERTITORE DC-DC DEL TIPO SWITCHING STEP_UP
CAPITOLO IV ANALISI E PROGETTO DI UN CONVERTITORE DC-DC DEL TIPO SWITCHING STEP_UP 1 Introduzione Gli alimentatoriwitching ( a commutazione), ono in grado di contenere la potenza diipata molto meglio dei
Slide del corso di. Controllo digitale
Slide del coro di Controllo digitale Coro di Laurea in Ingegneria Informatica e dell Informazione Univerità di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte III Sitemi a dati campionati Gianni
ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I
ELETTOTECNICA (0 CFU) CS INGEGNEIA MATEMATICA I prova in itinere 20 Novembre 2009 SOLUZIONI - - D. (punti 4 ) ) Spiegare cosa si intende per DUALITA nello studio dei circuiti elettrici. 2) Scrivere per
1 Generalità sui sistemi di controllo
1 Generalità ui itemi di controllo Col termine proceo nell impiantitica chimica i intende un inieme di operazioni eeguite u una certa quantità di materia allo copo di modificarne in tutto o in parte alcune
Reti nel dominio del tempo. Lezione 7 1
Reti nel dominio del tempo Lezione 7 1 Poli (o frequenze naturali) di una rete Lezione 7 2 Definizione 1/2 Il comportamento qualitativo di una rete dinamica dipende dalle sue frequenze naturali o poli
Oscilloscopio analogico
Miure elettriche di bae Ocillocopio analogico - Ocillocopio analogico - Prcipio di funzionamento Il CT e la defleione del facio elettronico L ocillocopio è uno degli trumenti elettronici più diffui e veratili.
Ottica. LEYBOLD Schede di fisica P5.6.2.1
Ottica LEYBOLD Schede di fiica Velocità della luce Miura eeguita ediante ipuli luinoi di breve durata LEYBOLD Schede di fiica Deterinazione della velocità della luce nell aria eeguita ediante il tepo di
Sintesi tramite il luogo delle radici
Sintei tramite il luogo delle radici Può eere utilizzata anche per progettare itemi di controllo per itemi intabili Le pecifiche devono eere ricondotte a opportuni limiti u %, ta, t di W(), oltre quelle
Corso di Microonde II
POITECNICO DI MIANO Coro di Microonde II ezi n. 3: Generalità ugli amplificatori ineari Coro di aurea pecialitica in Ingegneria delle Telecomunicazi Circuiti attivi a microonde (Amplificatori) V in Z g
Sicché l effetto di una variazione del prezzo sulla domanda del bene può essere scisso in due componenti
Appunti equazione di Slutk. Variazione del prezzo e quantità doandata In preenza di un auento del prezzo i conuatori reagicono a due egnali differenti a) è auentato il prezzo relativo del bene in quetione
Potenza in regime sinusoidale
26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando
Stato limite di ampiezza delle fessure
UNIVERSITA DEGLI STUDI DI MESSINA DIPARTIMENTO di INGEGNERIA CIVILE Stato limite di ampiezza delle feure A. Recupero La formazione di feure Poizione del problema La feurazione nel Cemento Armato ormazione
2 I METODI DI ANALISI DEI SISTEMI DI CONTROLLO AD ANELLO CHIUSO LINEARI 12
COSO DI SISTEMI Sommario 1 I SISTEMI DI CONTOLLO...4 1.1 Introduzione...4 1.1.1 Sitemi di controllo ad anello aperto...5 1.1.2 Sitemi di controllo a previione...7 1.1.3 Sitemi di controllo ad anello chiuo
Esercizi sui sistemi trifase
Esercizi sui sistemi trifase Esercizio : Tre carichi, collegati ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (regime AC, frequenza 50 Hz, valore efficace
Descrizione generale di Spice
Decrizione generale di Spice SPIE A/D (Simulation Program with Integrated ircuit Emphai Analog/Digital) Ppice è un imulatore circuitale di uo generale, prodotto dalla ADENE Il imulatore Spice è uno dei
D. MR (*) 2. Il modulo dell accelerazione angolare α della carrucola vale rad A s rad B s rad C s rad D. 55.
acoltà di Ingegneria a prova intracoro di iica I 30.0.0 Copito A (*) Eercizio n. Una carrucola, aiilabile ad un dico di aa 3.7 kg e raggio 70 c, è libera di ruotare intorno ad un ae orizzontale paante
