Al fine di catturare matematicamente la nozione di conseguenza logica introduciamo i concetti fondamentali di modello e soddisfacibilità.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Al fine di catturare matematicamente la nozione di conseguenza logica introduciamo i concetti fondamentali di modello e soddisfacibilità."

Transcript

1 ELEMENTI DI LOGICA PROBABILISTICA Conseguenza logica. 7 Le condizioni di verità, unite ai principi semantici fondamentali che le sottendono, ci permettono di decidere, per ogni 2EL, quale tra 0 e 1 è il valore di v( ). Questo è un primo passo fondamentale nella caratterizzazione della logica degli eventi che farà da ossatura alla logica dell incerto che vogliamo sviluppare. Come vedremo è parte della definizione del concetto stesso di evento che le condizioni sotto le quali risulti vero o falso siano sempre univocamente determinabili. E questo è esattamente 8 ciò che ci garantisce la semantica proposizionale classica con le condizioni di verità sui connettivi e le tavole di verità che ci permettono di calcolarle in modo e ettivo. Lo scopo di questa sezione è mostrare come la semantica proposizionale classica ci permetta di articolare il secondo e decisivo passo nella costruzione dalla logica degli eventi: il concetto di conseguenza logica classica. Si tratta senza dubbio del singolo concetto più importante di tutta la logica. Il concetto di conseguenza è essenzialmente relazionale. Dato un insieme EL siamo interessati a determinarne le conseguenze logiche, ovvero quegli enunciati che siamo forzati ad accettare sotto l ipotesi che accettiamo tutti gli enunciati in. Esistono molti modi di intendere l espressione essere forzati ad accettare, ma quella di gran lunga più illuminante è dovuta a uno dei più grandi logici di tutti i tempi, Alfred Tarski. Let us consider an arbitrary class of sentences and an arbitrary sentence which follows from the sentences of this class. From the point of view of everyday intuitions it is clear that it cannot happen that all the sentences of the class would be true but at the same time the sentence would be false 9. Al fine di catturare matematicamente la nozione di conseguenza logica introduciamo i concetti fondamentali di modello e soddisfacibilità. 10 Definizione 2.23 (Modello). Siano V l insieme di valutazioni su L e EL. Diciamo che v 2 V è un modello di,sev( )=1per ogni 2. 7 Questa versione: 14 febbraio Nel caso più semplice, quello degli eventi non condizionati. 9 A. Tarski On the concept of following logically, History and Philosophy of Logic, Volume 23, Number 3, pp , La nozione di modello è di importanza centrale nello studio della logica matematica tanto che una delle sue aree più attive è appunto designata con il nome di Teoria dei modelli.

2 16 HYKEL HOSNI Figura 2. Alfred Tarski (14 gennaio 1902, Varsavia - 26 ottobre 1983, Berkeley) ritratto al Tarski Symposium del 1971, Berkeley Definizione 2.24 (Soddisfacibilità). Diciamo che se ha un modello. ELè soddisfacibile Si usa semplificare la notazione scrivendo v( ) = 1 per dire che v è u n modello di. z } { z} { Esempio Siano L = {p, q} e ={ p! q, q }. L insieme di tutte le valutazioni su L è dunque il seguente: v 1 : v(p) =v(q) =0 v 2 : v(p) =v(q) =1 v 3 : v(p) = 0; v(q) =1 v 4 : v(p) = 1; v(q) =0 1 2 Segue dalla definizione 2.23 che l insieme dei modelli di quelle valutazioni che assegnano 1 a 1 e 2,ecioèv 2 e v 3. è dato da tutte A questo punto possiamo dare una definizione completamente rigorosa della nozione di conseguenza logica, che Tarski enuncia come segue:

3 ELEMENTI DI LOGICA PROBABILISTICA 17 We say that the sentence follows logically from the sentences of the class if and only if every model of the class is at the same time a model of the sentence. 11. Definizione 2.26 (Conseguenza tarskiana). Diciamo che segue logicamente da e scriviamo se ogni modello di = è un modello di. In altre parole: =,8v 2 V, se v( ) = 1 allora v( ) =1. Si usa spesso riferirsi a logica delle premesse. come all insieme delle premesse ea la conseguenza Esercizio 7. Cosa vuol dire che non segue logicamente da? Osservazione Il concetto di conseguenza logica tarskiana è un concetto formale. In particolare questo significa che la sua determinazione è indipendentemente dalle intuizioni che abbiamo sugli enunciati in questione. Esempio 2.28 (Sull esistenza di Dio). Supponiamo che il linguaggio di Benedetto sia L = {d, p, e} che possiamo interpretare come segue: d: Dio esiste p: Dio è pregato e: le preghiere vengono esaudite Supponiamo inoltre che Benedetto accetti come insieme di premesse = { 1, 2}, dove 1: d! (p! e) 2: p Poiché = d (esercizio!) Benedetto è forzato ad accettare che Dio esiste (d) assumendo che non lo preghiamo e che se Dio esiste allora non è vero che se lo preghiamo le nostre preghiere verranno esaudite. Esercizio 8. Determinare, giustificando la risposta, se la seguente a ermazione è vera o falsa: se non ha modelli, allora = è vero per qualsiasi. 11 A. Tarski On the concept of following logically, History and Philosophy of Logic, Volume 23, Number 3, pp , 2002

4 18 HYKEL HOSNI Esempio Siano che è soddisfatto da = {p! q, q}. Dall esempio precedente sappiamo v 2 = v(p) =v(q) =1e v 3 = v(p) = 0; v(q) =1. Poniamo = p _ q e ' = p ^ q. Poiché v 2 ( ) =v 2 (') = 1 abbiamo e '. Nel secondo caso, ma 2 ' dal momento che v 3 ( ) = 1 e v 3 (') = Agenti logici. Il nostro interesse per una logica dell incertezza ci porterà a identificare una relazione di conseguenza con un agente idealizzato. In sostanza immaginiamo che tutte le facoltà di ragionamento di un agente siano catturate dalla nozione di conseguenza logica. In altre parole interpretiamo gli enunciati in come le informazioni (tutte e sole le informazioni!) che un agente ha a sua disposizione in un dato istante (che comunque non ci interessa specificare)., unito alle sue conseguenze logiche, può molto naturalmente essere interpretato come tutto ciò che l agente dà per scontato (in un dato istante). Questo corrisponde a tutti gli enunciati che hanno un modello e quindi sono veri. Lo scopo principale della logica probabilistica è di estendere, senza cuciture evidenti, questo insieme con enunciati che l agente non dà per scontati, ma ritiene più o meno plausibili. L idealizzazione principale che facciamo sull agente logico in questione è che questi non sia soggetto a limitazioni cognitive (computazionali), né sia soggetto ad errori di calcolo. Poiché il nostro interesse è costruire un modello normativo di ragionamento razionale (in condizioni di incertezza) non possiamo prendere queste limitazioni in considerazione. O almeno non siamo forzati a farlo Il metodo delle tavole di verità. Sotto l ipotesi della finitezza del linguaggio L, le tavole di verità costituiscono un metodo e ettivo, cioè algoritmico, per decidere se = 12.Perdeciderese = è su ciente considerare tutte le valutazioni che soddisfano e controllare se queste soddisfano omeno. Esempio Siano, come sopra, = {p! q, q}, = p _ q e ' = p ^ q. Possiamo quindi costuire immediatamente la tavola di verità ra gurata nella Tabella deve ovviamente essere un insieme finito.

5 ELEMENTI DI LOGICA PROBABILISTICA 19 p q ' ) ) Tabella 4. Tavola di verità ridotta. Segue dalla definizione 2.26 che le righe (cioè le valutazioni) rilevanti a determinare se e ' sono conseguenze logiche di sono la prima e la terza (contrassegnate da )). Nel primo caso, v 1 ( ) =v 1 (') = 1, quindi = e = '. Nel secondo caso = ma 6 = ' dal momento che v 3 ( ) = 1 ma v 3 (') =0 Esercizio 9. Verificare se i seguenti insiemi di formule sono soddisfacibili: (1) ={ _ ', } (2) ={ _ ',, '} (3) ={! ',! ', ( _ )! } Esercizio 10. Dimostrare usando il metodo delle tavole di verità che p! q = ((p! q)! p) Definizione 2.31 (Equivalenza logica)., ' 2ELsono logicamente equivalenti, scritto ', se8v 2 V, v( ) =v('). Le seguenti sono formulazioni alternative della definizione di equivalenza logica. Proposizione ' () 8v 2 V, v( ) =v(') (2.4) () 8v 2 V, v( ) =1, v(') = 1 (2.5) () 8v 2 V, v( ) =0, v(') = 0 (2.6) () 8v 2 V, v( ) =1) v(') =1e8v 2 V, v(') =1) v( ) =1 (2.7) () = ' e ' = (2.8) () =! ' e = '! (2.9) () 8v 2 V, v(! ') =1e v('! ) = 1 (2.10) () 8v 2 V, v((! ') =1^ v('! )) = 1 (2.11) () = (! ') ^ ('! ) (2.12)

6 20 HYKEL HOSNI Dimostrazione. Esercizio Tautologie e contraddizioni. Il concetto di conseguenza logica ci permette di definire due classi di enunciati particolarmente importanti. Definizione 2.33 (Tautologie). Diciamo che è una tautologia se v( ) = 1 per ogni v 2 V. Poiché tutte le valutazioni (su L) sono modelli di una tautologia, ; =. Di solito omettiamo di menzionare l insieme vuoto e scriviamo =. Segue quindi che le tavole di verità ci forniscono anche una procedura per decidere 13 se un dato enunciato è o meno una tautologia. Esempio Possiamo verificare che = q! (p! q) è una tautologia costruendo la tavola di verità per p! q e per poi determinare quella di : p q p! q Esercizio 11. Determinare se le seguenti formule sono tautologie: (1) _ ' (2)! (! ) (3)! (! ') (4) ( _ ') ^ ( _ )! _ (' ^ ) (5) ( _ ') ^! ' (6) (! ')! ((! ')! ) La nozione di tautologia ha un ovvia nozione duale. Definizione Diciamo che è una contraddizione se v( ) = 0 per ogni v 2 V. Esercizio 12. Possiamo equivalentemente definire una contraddizione come un enunciato tale che =, 8 2EL.Perché? Se un enunciato non è una tautologia nè una contraddizione, si dice che è contingente. Esercizio 13. Dato 2ELdimostrare che 13 Questo, a rigore, è vero in virtù di un importante teorema che garantisce la decidibilità (ovvero la risolvibilità in linea di principio) del problema.

7 ELEMENTI DI LOGICA PROBABILISTICA 21 (1) è una tautologia se e solo se è una contraddizione. (2) è contingente se e solo se è contingente

Logica. 7: Conseguenza ed equivalenza logica in logica classica proposizionale. Claudio Sacerdoti Coen. Universitá di Bologna

Logica. 7: Conseguenza ed equivalenza logica in logica classica proposizionale. Claudio Sacerdoti Coen. Universitá di Bologna Logica 7: Conseguenza ed equivalenza logica in logica classica proposizionale Universitá di Bologna 30/11/2016 Outline Conseguenza logica per la logica proposizionale Wikipedia:

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema

Dettagli

METODI MATEMATICI PER L INFORMATICA

METODI MATEMATICI PER L INFORMATICA METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

Semantica proposizionale. Unit 2, Lez 3 e 4 Corso di Logica

Semantica proposizionale. Unit 2, Lez 3 e 4 Corso di Logica Semantica proposizionale Unit 2, Lez 3 e 4 Corso di Logica Sommario Semantica dei connettivi Costruzione delle tavole di verità Tautologie, contraddizioni e contingenze Semantica delle forme argomentative

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite

Dettagli

NOZIONI DI LOGICA PROPOSIZIONI.

NOZIONI DI LOGICA PROPOSIZIONI. NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale

Dettagli

Maiuscole e minuscole

Maiuscole e minuscole Maiuscole e minuscole Abilità interessate Distinguere tra processi induttivi e processi deduttivi. Comprendere il ruolo e le caratteristiche di un sistema assiomatico. Riconoscere aspetti sintattici e

Dettagli

Logica proposizionale

Logica proposizionale Fondamenti di Informatica per la Sicurezza a.a. 2008/09 Logica proposizionale Stefano Ferrari UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI TECNOLOGIE DELL INFORMAZIONE Stefano Ferrari Università degli

Dettagli

Una Breve Introduzione alla Logica

Una Breve Introduzione alla Logica Una Breve Introduzione alla Logica LOGICA La LOGICA è la disciplina che studia le condizioni di correttezza del ragionamento Occorre dire, anzitutto, quale oggetto riguardi ed a quale disciplina spetti

Dettagli

Un po di logica. Christian Ferrari. Laboratorio di matematica

Un po di logica. Christian Ferrari. Laboratorio di matematica Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 3 Sommario. Introduciamo il Calcolo dei Predicati del I ordine e ne dimostriamo le proprietà fondamentali. Discutiamo il trattamento dell identità

Dettagli

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali:

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: Elementi di Algebra e Logica 2008. 8. Logica. 1. Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: (a) p ( q r); (b) p (q r); (c) (p q) ( p r); (d) (p q) ( p r); (e) (p

Dettagli

Aniello Murano Decidibilità delle teorie logiche

Aniello Murano Decidibilità delle teorie logiche Aniello Murano Decidibilità delle teorie logiche 11 Lezione n. Parole chiave: Teorie logiche Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009 Prefazione Nelle lezioni

Dettagli

UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE

UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE TAVOLE DI VERITÀ, COLETEZZA VERO-FUNZIONALE Esercizio 1. Calcola le tavole

Dettagli

La matematica non è un opinione, lo è oppure...?

La matematica non è un opinione, lo è oppure...? La matematica non è un opinione, lo è oppure...? Giulio Giusteri Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore Brescia 26 Febbraio 2010 Vecchie conoscenze Dedurre... dedurre...

Dettagli

Introduzione alla logica

Introduzione alla logica Corso di Intelligenza Artificiale 2011/12 Introduzione alla logica iola Schiaffonati Dipartimento di Elettronica e Informazione Sommario 2 Logica proposizionale (logica di Boole) Logica del primo ordine

Dettagli

LOGICA MATEMATICA PER INFORMATICA

LOGICA MATEMATICA PER INFORMATICA LOGICA MATEMATICA PER INFORMATICA A.A. 12/13, DISPENSA N. 6 Sommario. Il Teorema di Compattezza e alcune sue applicazioni: assiomatizzabilità e non-assiomatizzabilità di proprietà di strutture, e modelli

Dettagli

Introduzione ad alcuni sistemi di logica modale

Introduzione ad alcuni sistemi di logica modale Introduzione ad alcuni sistemi di logica modale Laura Porro 16 maggio 2008 1 Il calcolo proposizionale Prendiamo come primitivi i simboli del Calcolo Proposizionale (PC) tradizionale a due valori 1 : un

Dettagli

L'algebra Booleana. Generalità. Definizioni

L'algebra Booleana. Generalità. Definizioni L'algebra Booleana Generalità L algebra booleana è stata sviluppata da George Boole nel 1854, ed è diventata famosa intorno al 1938 poiché permette l analisi delle reti di commutazione, i cui soli stati

Dettagli

LA NOZIONE DI INSIEME, PRIME OPERAZIONI TRA INSIEMI, ELEMENTI BASILARI DI LOGICA

LA NOZIONE DI INSIEME, PRIME OPERAZIONI TRA INSIEMI, ELEMENTI BASILARI DI LOGICA LA NOZIONE DI INSIEME, PRIME OPERAZIONI TRA INSIEMI, ELEMENTI BASILARI DI LOGICA L impostazione logico-deduttiva propria della matematica affida un importanza basilare alle definizioni. La ricerca, poi,

Dettagli

DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione

DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI Corso di Logica per la Programmazione SULLE LEGGI DEL CALCOLO PROPOSIZIONALE Abbiamo visto le leggi per l'equivalenza ( ),

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

Prerequisiti Matematici

Prerequisiti Matematici Prerequisiti Matematici Richiami di teoria degli insiemi Relazioni d ordine, d equivalenza Richiami di logica Logica proposizionale, tabelle di verità, calcolo dei predicati Importante: Principio di Induzione

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è

Dettagli

I.2 Logica. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica

I.2 Logica. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica I.2 Logica Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti Logica 1 Logica 2 3 Logica Si occupa dello studio delle strutture e delle regole

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio

Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio Appunti di informatica Lezione 7 anno accademico 2016-2017 Mario Verdicchio L algoritmo di Euclide per l MCD Dati due numeri A e B, per trovare il loro MCD procedere nel seguente modo: 1. dividere il maggiore

Dettagli

Intelligenza Artificiale I

Intelligenza Artificiale I Intelligenza Artificiale I - AA 27/28 Intelligenza Artificiale I Logica formale Introduzione Marco Piastra Logica formale - Introduzione - Intelligenza Artificiale I - AA 27/28 Sistematicità del linguaggio

Dettagli

Richiami di logica matematica

Richiami di logica matematica Richiami di logica matematica Gli oggetti elementari dei discorsi matematici sono le proposizioni logiche = enunciati di cui si possa stabilire inequivocabilmente se sono veri o falsi. Sono proposizioni

Dettagli

Calcoli dei sequenti classici e lineare

Calcoli dei sequenti classici e lineare Calcoli dei sequenti classici e lineare Gianluigi Bellin November 5, 2009 Scheda per il compito 2, scadenza rinviata al marteedì 10 novembre 2009 1 Calcolo dei sequenti classico 1.1 Linguaggio ed interpretazione

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine 1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine In questo tipo di giochi l arena è costituita da due grafi orientati G = (V, E), G = (V, E ). Lo scopo del I giocatore è di mostrare, in un numero

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita.

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Intenderemo per PROPOSIZIONE (o ENUNCIATO) una qualunque

Dettagli

Ragionamento Automatico Richiami di calcolo dei predicati

Ragionamento Automatico Richiami di calcolo dei predicati Richiami di logica del primo ordine Ragionamento Automatico Richiami di calcolo dei predicati (SLL: Capitolo 7) Sintassi Semantica Lezione 2 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 2 0

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,

Dettagli

BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1

BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1 BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1 SOMMARIO DEL TOMO 1 CAPITOLO 1: IL LINGUAGGIO DEGLI INSIEMI 1.1 Gli insiemi e la loro rappresentazione pag. 1 1. I sottoinsiemi pag. 6 1.3 Insieme

Dettagli

Logica e fondamenti di matematica

Logica e fondamenti di matematica Logica e fondamenti di matematica Docente: Prof. Roberto Giuntini (giuntini@unica.it) Logica proposizionale Logica e teoria dell argomantazione. Cap. 1: Enunciati. Enunciato: Non ogni discorso è dichiarativo

Dettagli

Esercizi di logica. Ivan Valbusa 5 dicembre 2012

Esercizi di logica. Ivan Valbusa 5 dicembre 2012 Esercizi di logica Ivan Valbusa 5 dicembre 2012 Gli esercizi proposti di seguito coprono solo una piccola parte del programma del corso. Sono mediamente più difficili di quelli presenti sul manuale di

Dettagli

4. Logica. Insegnamento di Informatica. Elisabetta Ronchieri. I semestre, anno Corso di Laurea di Economia, Universitá di Ferrara

4. Logica. Insegnamento di Informatica. Elisabetta Ronchieri. I semestre, anno Corso di Laurea di Economia, Universitá di Ferrara 4. Logica Insegnamento di Informatica Elisabetta Ronchieri Corso di Laurea di Economia, Universitá di Ferrara I semestre, anno 2014-2015 Elisabetta Ronchieri (Universitá) Insegnamento di Informatica I

Dettagli

Ricordando che: = si ha:

Ricordando che: = si ha: Logica matematica Esempi 1. Stailisci il grado di verità delle seguenti proposizioni logiche: :" è h 2 è " :"5 è 2 3 è 6" :" è h : è è " :" h h " :" h è " :" è, è " F 2. Data la proposizione p:" " la sua

Dettagli

sempre vere sempre false

sempre vere sempre false Logica: elementi I principi della logica sono innanzitutto i seguenti: Identità: a=a (ogni cosa è cioè identica a se stessa) Non contraddizione: non (a e non a). E impossibile che la stessa cosa sia e

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Elementi di Logica Teoria degli insiemi

Elementi di Logica Teoria degli insiemi Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università

Dettagli

Le parole dell informatica: algoritmo e decidibilità

Le parole dell informatica: algoritmo e decidibilità Le parole dell informatica: algoritmo e decidibilità Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario Filosofico dell Informatica

Dettagli

Linguaggi. Claudio Sacerdoti Coen 29,?/10/ : La struttura dei numeri naturali. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 29,?/10/ : La struttura dei numeri naturali. Universitá di Bologna Linguaggi 5: La struttura dei numeri naturali Universitá di Bologna 29,?/10/2014 Outline La struttura dei numeri naturali 1 La struttura dei numeri naturali I numeri naturali La

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Indicali. Le relazioni di coppia sono difficili Le relazioni della nostra coppia sono difficili

Indicali. Le relazioni di coppia sono difficili Le relazioni della nostra coppia sono difficili Indicali Sono espressioni usate per riferirci a elementi del contesto: ci riferiamo a oggetti, persone, istanti o luoghi in quanto sono in relazione con chi parla o scrive Le relazioni di coppia sono difficili

Dettagli

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini INFERENZE CORRETTE E TAUTOLOGIE Il Calcolo Proposizionale permette di formalizzare

Dettagli

Appunti di geometria euclidea

Appunti di geometria euclidea Appunti di geometria euclidea Il metodo assiomatico Appunti di geometria Euclidea Lezione 1 Prima di esaminare nel dettaglio la Geometria dal punto di vista dei Greci è opportuno fare unrichiamo di Logica.

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Linguaggio comune Nel linguaggio comune si utilizzano spesso frasi imprecise o ambigue Esempio Un americano muore di melanoma ogni ora! Assurdo: significa che c è un americano (sfortunato)

Dettagli

Logica proposizionale

Logica proposizionale Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_2 V1.1 Logica proposizionale Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio personale

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Somma diretta di sottospazi vettoriali

Somma diretta di sottospazi vettoriali Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

LOGICA E FILOSOFIA DELLA SCIENZA

LOGICA E FILOSOFIA DELLA SCIENZA LOGICA E FILOSOFIA DELLA SCIENZA Claudia Casadio PRIMA LEZIONE Logica, Linguistica e Scienza Cognitiva Tre ambiti scientifici Logica Studia i processi in base a cui traiamo inferenze a partire dalle nostre

Dettagli

GIOVANNI FUSCHINO COMPLETEZZA E RAGIONAMENTO PER DEFAULT

GIOVANNI FUSCHINO COMPLETEZZA E RAGIONAMENTO PER DEFAULT GIOVANNI FUSCHINO COMPLETEZZA E RAGIONAMENTO PER DEFAULT La completezza logica si esprime nel modo seguente: M α M α che si legge: da M 1 segue logicamente ( ) α se e solo se ( ) da M si può dedurre (

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di PS-Probabilità P.Baldi Tutorato 9, 19 maggio 11 Corso di Laurea in Matematica Esercizio 1 a) Volendo modellizzare l evoluzione della disoccupazione in un certo ambito

Dettagli

Precorso di Matematica. Parte I : Fondamenti di Matematica

Precorso di Matematica. Parte I : Fondamenti di Matematica Facoltà di Ingegneria Precorso di Matematica Parte I : Fondamenti di Matematica 1. Teoria degli insiemi e cenni di logica Il concetto di insieme costituisce l elemento fondante di gran parte delle esposizioni

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi

Dettagli

Massimo e minimo limite di successioni

Massimo e minimo limite di successioni Massimo e minimo limite di successioni 1 Premesse Definizione 1.1. Definiamo R esteso l insieme R = R { } {+ }. In R si estende l ordinamento tra numeri reali ponendo < a < +, a R. In base a tale definizione,

Dettagli

Connettivi del linguaggio e della logica

Connettivi del linguaggio e della logica Connettivi del linguaggio e della logica Fino a che punto il significato di,, e corrisponde al significato delle espressioni del linguaggio naturale e o, se... allora... e non? e e Congiunzioni e connettivi

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve

Dettagli

La Teoria (epistemica) della conferma bayesiana

La Teoria (epistemica) della conferma bayesiana La Teoria (epistemica) della conferma bayesiana La teoria della probabilità fornisce alcuni strumenti potenti anche in senso epistemico, per valutare argomentazioni e decisioni in cui sono usati dei metodi

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Come opera la matematica: dagli ai teoremi. Che cosa è una funzione, il suo dominio e il suo codominio. Che cosa significa n j=1 A j dove A j sono insiemi. Che cosa significa

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori

Dettagli

R. De Leo 9 Febbraio Liceo Scientifico L.B. Alberti. Invito alla Logica Matematica. attraverso gli Indovinelli

R. De Leo 9 Febbraio Liceo Scientifico L.B. Alberti. Invito alla Logica Matematica. attraverso gli Indovinelli Liceo Scientifico L.B. Alberti 9 Febbraio 2010 1 / 40 Outline 2 / 40 La come gioco da tavolo Quali sono gli elementi fondamentali di un gioco da tavolo? I Pezzi 3 / 40 La come gioco da tavolo Quali sono

Dettagli

APPUNTI DI ANALISI MATEMATICA Parte Prima

APPUNTI DI ANALISI MATEMATICA Parte Prima APPUNTI DI ANALISI MATEMATICA Parte Prima Versione preliminare del 24 settembre 2008 Pierpaolo Omari Dipartimento di Matematica e Informatica Università degli Studi di Trieste Maurizio Trombetta Dipartimento

Dettagli

Davidson. Verità e significato

Davidson. Verità e significato Davidson Verità e significato Teoria del significato Una teoria del significato soddisfacente deve spiegare come i significati degli enunciati dipendono dai significati delle parole Ma come si può costruire

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Quale Russell? APPROFONDIMENTO DI FILOSOFIA DEL LINGUAGGIO. a cura del prof. Flaviano Scorticati

Quale Russell? APPROFONDIMENTO DI FILOSOFIA DEL LINGUAGGIO. a cura del prof. Flaviano Scorticati Quale Russell? APPROFONDIMENTO DI FILOSOFIA DEL LINGUAGGIO a cura del prof. Flaviano Scorticati Un piccolo gioco per riscaldare l atmosfera CHE COSA HANNO IN COMUNE QUESTE IMMAGINI? BABBO NATALE IL QUADRATO

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

Calcolo proposizionale

Calcolo proposizionale 1 Il calcolo delle proposizioni Una proposizione logica si dice semplice o atomica se contiene soltanto un predicato. Due o più proposizioni semplici collegate mediante l'uso di connettivi formano proposizioni

Dettagli

Operatori di relazione

Operatori di relazione Condizioni Negli algoritmi compaiono passi decisionali che contengono una proposizione (o predicato) dal cui valore di verità dipende la sequenza dinamica Chiamiamo condizioni tali proposizioni Nei casi

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti. INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme

Dettagli

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k,

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k, 2.2 Serie Le serie numeriche sono semplicemente successioni reali o complesse di tipo particolare, che però, per la loro importanza pratica e teorica, meritano una trattazione a parte. Data una successione

Dettagli

L aritmetica degli insiemi infiniti Parte I

L aritmetica degli insiemi infiniti Parte I L aritmetica degli insiemi infiniti Parte I Stefano Baratella Versione L A TEX realizzata in collaborazione con Tullio Garbari 1 Prerequisiti La relazione di equipotenza tra insiemi. Definizione 1. Si

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare

LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare LEZIONE 30 30.1. Insiemi aperti e chiusi in R n. Nel corso di Analisi sono state introdotte alcune nozioni di topologia di R, come la nozione di aperto, di chiuso, di punto d accumulazione. Lo scopo di

Dettagli

Riconoscere e formalizzare le dipendenze funzionali

Riconoscere e formalizzare le dipendenze funzionali Riconoscere e formalizzare le dipendenze funzionali Giorgio Ghelli 25 ottobre 2007 1 Riconoscere e formalizzare le dipendenze funzionali Non sempre è facile indiduare le dipendenze funzionali espresse

Dettagli

Logica, teoria della conoscenza, filosofia della scienza. Gianluigi Bellin

Logica, teoria della conoscenza, filosofia della scienza. Gianluigi Bellin Logica, teoria della conoscenza, filosofia della scienza. Gianluigi Bellin October 8, 2013 0.1. La filosofia della scienza esamina le strutture concettuali e le argomentazioni in uso nelle varie scienze;

Dettagli

401 PREDICATI RICORSIVI PRIMITIVI

401 PREDICATI RICORSIVI PRIMITIVI 401 PREDICATI RICORSIVI PRIMITIVI Corso di Informatica Teorica - modulo 2 Prof. Settimo Termini 1 Breve richiamo Un predicato su un insieme S è una funzione totale P su S tale che a S si ha: P(a) = VERO

Dettagli

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica.

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Richiami di Matematica 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Insiemi Definizioni di base Dato un insieme A: x A: elemento x appartenente

Dettagli

Eventi Condizionati. se E ed H sono entrambi veri se E è f a l s o e H è v e r o. indeterminato

Eventi Condizionati. se E ed H sono entrambi veri se E è f a l s o e H è v e r o. indeterminato Dati due eventi E ed H, con H 6= logico a tre valori E H = 8 < : Eventi Condizionati vero falso indeterminato, si definisce evento condizionato il seguente ente se E ed H sono entrambi veri se E è f a

Dettagli

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare

Dettagli

Appunti di. Logica. per l insegnamento di Matematica Discreta e Logca del corso di laurea triennale in Informatica

Appunti di. Logica. per l insegnamento di Matematica Discreta e Logca del corso di laurea triennale in Informatica Marco Barlotti Appunti di Logica per l insegnamento di Matematica Discreta e Logca del corso di laurea triennale in Informatica Vers. 1.0 Anno Accademico 2015-2016 In copertina un disegno di autore ignoto.

Dettagli

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono:

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono: Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: Connettivi logici True (vero identificato con 1) False (falso identificato con 0) Le variabili

Dettagli

1 Principio di Induzione

1 Principio di Induzione 1 Principio di Induzione Per numeri naturali, nel linguaggio comune, si intendono i numeri interi non negativi 0, 1,, 3, Da un punto di vista insiemistico costruttivo, a partire dall esistenza dell insieme

Dettagli

Richiami teorici ed esercizi di Logica

Richiami teorici ed esercizi di Logica Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla

Dettagli

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune...

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... Capitolo 3. Logica 3. Logica Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... sei una persona priva di logica è logico comportarsi cosí fai l

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli