GIOVANNI FUSCHINO COMPLETEZZA E RAGIONAMENTO PER DEFAULT
|
|
|
- Cosimo Di Lorenzo
- 9 anni fa
- Visualizzazioni
Transcript
1 GIOVANNI FUSCHINO COMPLETEZZA E RAGIONAMENTO PER DEFAULT La completezza logica si esprime nel modo seguente: M α M α che si legge: da M 1 segue logicamente ( ) α se e solo se ( ) da M si può dedurre ( ) α. Se M è una teoria, un insieme di asserzioni, allora dire ciò significa dire che ogni modello di M è un modello di α (M α), cioè ogni volta che si crea una situazione per cui è vera M allora è vera anche α [SEMANTICA]. Invece M α significa che si può dedurre α da M nel senso che esiste una dimostrazione che conduce da M ad α [SINTASSI]. Ricapitolando: M α M α ogni modello di M è un modello di α [SEMANTICA] si può dedurre α da M [SINTASSI] Questi due concetti sono diversi fra loro. 1 Per M si intende un MODELLO di una teoria matematica. Ogni teoria matematica è fondata su un insieme di assiomi che stabiliscono delle relazioni tra un dato numero di enti primitivi. Per esempio, nella geometria del piano gli enti primitivi fondamentali sono il punto e la retta che sono definiti implicitamente da un gruppo di postulati. Lo sviluppo di una teoria è logicamente corretto solo se è fondato sulle proprietà formali e non dipende da alcuna rappresentazione intuitiva di tali enti. La distinzione tra enti primitivi e rappresentazione concreta di tali enti fu introdotta per la prima volta nelle dimostrazioni dell esistenza e della legittimità delle geometrie non euclidee e fu successivamente generalizzata a ogni tipo di teoria matematica con l introduzione del concetto di MODELLO. Un MODELLO di una teoria matematica formalizzata è un insieme M di elementi (ad esempio di figure geometriche) associati agli enti primitivi della teoria in modo che ai postulati della teoria corrispondano relazioni soddisfatte dagli elementi di M. Per esempio, l insieme formato da dalle nozioni intuitive di punto e di retta del piano costituisce un modello della geometria euclidea piana. La costruzione di opportuni modelli di una data teoria consente di studiare la sua struttura logica. Si può dimostrare che una teoria è non contraddittoria se possiede almeno un MODELLO. 1
2 M α significa che ogni volta che sono vere tutte le asserzioni contenute in M (per M si intende una teoria o un insieme di teorie o un insieme di asserzioni) allora è vera anche α. Poi vi è una sintassi, ovvero un concetto di deduzione che afferma che in maniera meccanica (ovvero mediante un numero finito di passi) è possibile produrre la formula α (di solito mediante il MP). Nulla dice a priori che M α sia collegata a M α (anche se intuitivamente il collegamento sembra molto naturale). E infatti basta mettere una nozione di dimostrazione tale che invece di usare il MP si usa una regola non-standard e le due nozioni non sono più collegate. Il teorema di completezza (valido solo per la logica del primo ordine) afferma invece che M α e M α coincidono e cioè che: = Invece per la logica del secondo ordine vale il teorema di incompletezza secondo cui ovvero conseguenza logica e deduzione non coincidono. Il teorema di incompletezza dice che se M è una teoria non banale (cioè almeno a livello della logica del secondo ordine o della teoria dei numeri interi) allora M non è completa cioè esiste almeno un α tale che M α (da M non si può dedurre α) e tale che da M α (da M non si può dedurre non α). In poche parole, esiste sempre un asserzione che non può né essere provata né confutata da M. 2
3 Questo è un insuccesso della logica in quanto con il teorema di incompletezza si afferma che non è possibile trovare una teoria in grado di descrivere completamente una situazione (come i numeri interi, i numeri reali, la geometria o qualunque altro ente matematico significativo) in quanto verrà fuori sempre un asserzione che non può essere né provata né confutata da questa teoria. I logici matematici per tradizione si sono occupati della logica come formalizzazione del ragionamento matematico e non del ragionamento comune. Il ragionamento matematico ha a che fare con la precisione, con la certezza, con la sicurezza ecc L intelligenza artificiale, invece, oltre a rapportarsi alla logica (classica), ha anche a che fare con altri problemi, più tipici, come il problema della completezza. Ad esempio, un robot che si muove in una stanza, anche se non riesce a dedurre se una cosa che sta davanti a lui è una sedia o un tavolo, deve poter decidere comunque, e quindi deve avere una situazione di completezza. Un altro esempio può chiarire meglio questo concetto: un essere umano (o un robot) non sa se è giusto (se si può dimostrare che è giusto) prendere un treno o non è giusto prendere un treno, ma deve poter decidere comunque. Nel ragionamento comune cioè non si accetta l incompletezza. E infatti la completezza è un requisito essenziale della decisione. Ad esempio si potrebbe creare una situazione in cui è possibile (non è possibile) dimostrare sia l asserzione oggi l aereo parte sia l asserzione oggi l aereo non parte ma bisogna comunque decidere. E allora? Nell intelligenza artificiale bisogna sempre decidere, anche in mancanza di informazioni (e infatti gli uomini decidono sempre). E quindi bisogna ricorrere al ragionamento per default, che fa sì che tutte le teorie siano complete. Deve cioè esistere una regola di default, in cui anche nel caso in cui non esistano elementi per prendere una decisione, si possa comunque decidere (perché, ad esempio, α è più probabile di non α). Questa regola di default è di solito un algoritmo che afferma come ci si deve comportare dicendo che α (non α) è un teorema. Nella logica matematica classica più informazioni si hanno, più cose si riescono a dimostrare, non si cambia mai idea. Se è stato dimostrato un teorema non si dirà mai (se si hanno nuove informazioni) che quel teorema è sbagliato. La logica (la matematica) classica è monotona e cumulativa, un teorema, una volta dimostrato, è stato dimostrato per sempre. 3
4 Le logiche di default sono invece non-monotone. Si può decidere che Tizio è una persona onesta ed essere convinti di questo. Se si hanno nuove informazioni, si può invece decidere che Tizio non è una persona onesta. Se si hanno ulteriori informazioni, si può ancora cambiare idea. Il ragionamento non è stabile, nel senso che si può cambiare continuamente opinione circa una situazione, quando le informazioni cambiano, senza che le informazioni siano sbagliate. Semplicemente, nuove informazioni consentono di cambiare opinione. Il ragionamento per default comporta numerosi problemi. Cosa succede, ad esempio, quando una prova combacia con le premesse di due regole di default con conclusioni contrastanti? Sembra che si debbano esprimere delle priorità tra le regole in modo che una regola abbia la precedenza. Una forma comunemente usata di priorità è quella della preferenza alla specificità in cui una regola di un caso specifico ha la precedenza su quella di un caso generale. Ad esempio, le macchine a tre ruote hanno tre ruote ha la precedenza su le macchine hanno quattro ruote. Un altro problema è che a volte si può giungere a diverse conclusioni sulla base di una credenza che viene poi ritrattata. Come si può tener conto delle conclusioni che devono essere ritrattate? Sembra ragionevole pensare che debbano essere trattenute le conclusioni che hanno più giustificazioni (di cui solo una piccola parte è stata ritrattata), mentre quelle senza alcuna giustificazione rimanente dovrebbero essere abbandonate. Ancora: come si possono usare le credenze che hanno stati di default per prendere decisioni? Questa è probabilmente la questione più difficile per il ragionamento di default. Le decisioni spesso comportano delle contropartite, quindi è necessario confrontare la forza della credenza che proviene da azioni differenti. Nei casi in cui gli stessi tipi di decisioni vengano prese ripetutamente, è possibile interpretare le regole di default come enunciati di probabilità di soglia. Ad esempio, la regola di default i freni dell auto sono sempre funzionanti in realtà significa la probabilità che i freni dell auto funzionino, data nessun altra informazione, è sufficientemente alta che la decisione ottimale per il guidatore è quella di guidare senza controllarli. Quando cambia il contesto della decisione, ad esempio quando si sta guidando su un camion stracarico lungo una ripida strada di montagna, la regola di default diventa improvvisamente inadeguata, anche se non c è alcuna prova che suggerisca che i freni non funzionino. 4
5 Se, come sembra, il ragionamento per default è non-monotono, è ragionevole pensare che (come le altre forme di ragionamento non-monotono) manchi di tre importanti proprietà che invece sono tipiche della logica classica e cioè: 1) località: nei sistemi logici classici, una volta che si è dimostrata una regola nella forma α β si può concludere β data prova di α, senza doversi preoccupare di nessun altra regola; nei sistemi di default si dovrebbe tener conto di tutte le prove disponibili; 2) distacco: una volta che si è trovata una dimostrazione logica per una proposizione β, nella logica classica tale proposizione può essere usata indipendentemente da come è stata derivata, ossia può essere distaccata dalla propria giustificazione; nel ragionamento di default sembra che la sorgente di prova per una credenza sia importante per i ragionamenti successivi; 3) vero-funzionalità: nella logica classica la verità delle formule complesse può essere calcolata a partire dalla verità dei componenti, mentre nel ragionamento per default questo non dovrebbe valere, a meno di forti assunzioni di indipendenza. Vi sono stati diversi tentativi di far derivare il ragionamento di default da un sistema probabilistico, usando l idea che una regola di default è praticamente una probabilità condizionata di 1-ε, ma questa ipotesi è stata oggetto di numerose critiche, in quanto troppo semplicistica e non abbastanza rappresentativa di questa forma di ragionamento 2. 2 Secondo R. Reiter, ideatore della logica di default, questa forma di ragionamento non ha nulla a che fare con la probabilità. La logica di default permette invece di asserire qualcosa che non si può derivare, ma per la quale non si ha nemmeno un informazione contraria. In parole povere, in assenza di ogni informazione contraria (default), cioè che non valga non-a, si asserisce A. E ciò ovviamente implica la non monotonia. Si veda in merito: R. REITER: A logic for default reasoning, in Artificial Intelligence, 13 (1-2) [1980], pp
Appunti di geometria euclidea
Appunti di geometria euclidea Il metodo assiomatico Appunti di geometria Euclidea Lezione 1 Prima di esaminare nel dettaglio la Geometria dal punto di vista dei Greci è opportuno fare unrichiamo di Logica.
Una Breve Introduzione alla Logica
Una Breve Introduzione alla Logica LOGICA La LOGICA è la disciplina che studia le condizioni di correttezza del ragionamento Occorre dire, anzitutto, quale oggetto riguardi ed a quale disciplina spetti
04 - Logica delle dimostrazioni
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,
LOGICA E FILOSOFIA DELLA SCIENZA
LOGICA E FILOSOFIA DELLA SCIENZA Claudia Casadio PRIMA LEZIONE Logica, Linguistica e Scienza Cognitiva Tre ambiti scientifici Logica Studia i processi in base a cui traiamo inferenze a partire dalle nostre
Introduzione alla logica
Corso di Intelligenza Artificiale 2011/12 Introduzione alla logica iola Schiaffonati Dipartimento di Elettronica e Informazione Sommario 2 Logica proposizionale (logica di Boole) Logica del primo ordine
IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.
IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è
GEOMETRIE NON EUCLIDEE. postulati definizioni
GEOMETRIE NON EUCLIDEE assiomi Euclide (300 a.c.) Elementi postulati definizioni ssioma: proposizione evidente di per sé che non ha bisogno di essere dimostrata (enunciati matematici di carattere generale).
PARALLELISMO NELLO SPAZIO
1 PARALLELISMO NELLO SPAZIO 3.1 Parallelismo retta piano Def Si dicono paralleli una retta e un piano che non hanno punti in comune Come già sappiamo non è sufficiente una definizione per garantire l esistenza
Maiuscole e minuscole
Maiuscole e minuscole Abilità interessate Distinguere tra processi induttivi e processi deduttivi. Comprendere il ruolo e le caratteristiche di un sistema assiomatico. Riconoscere aspetti sintattici e
Un po di logica. Christian Ferrari. Laboratorio di matematica
Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare
ANALISI 1 1 QUINTA LEZIONE
ANALISI 1 1 QUINTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: [email protected] web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:
2. Paradosso #1. Cominciamo col paradosso il più difficile, mentre che siamo ancora svegli.
1. Cercherò alla fine di questa presentazione di rispondere alla domanda: qual è il cuore della matematica? Ma prima è necessario discutere la natura della matematica. E voglio concentrare su un aspetto
Logica proposizionale
Fondamenti di Informatica per la Sicurezza a.a. 2008/09 Logica proposizionale Stefano Ferrari UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI TECNOLOGIE DELL INFORMAZIONE Stefano Ferrari Università degli
Logica proposizionale
Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite
Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia
Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione
8. Completamento di uno spazio di misura.
8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema
GEOMETRIA EUCLIDEA O RAZIONALE. Prof.ssa Angela Donatiello
GEOMETRIA EUCLIDEA O RAZIONALE Prof.ssa Angela Donatiello Non vi sono dubbi che la geometria storicamente sia partita dalla realtà (il nome stesso letteralmente vuol dire misura della terra ), pensiamo
Cosa dobbiamo già conoscere?
Cosa dobbiamo già conoscere? Come opera la matematica: dagli ai teoremi. Che cosa è una funzione, il suo dominio e il suo codominio. Che cosa significa n j=1 A j dove A j sono insiemi. Che cosa significa
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente
CALCOLO PROPOSIZIONALE. Corso di Logica per la Programmazione Andrea Corradini
CALCOLO PROPOSIZIONALE Corso di Logica per la Programmazione Andrea Corradini [email protected] UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti
GEOMETRIA. A cura della Prof.ssa Elena Spera. ANNO SCOLASTICO Classe IC Scuola Media Sasso Marconi. Prof.
GEOMETRIA A cura della Prof.ssa Elena Spera ANNO SCOLASTICO 2007 2008 Classe IC Scuola Media Sasso Marconi Prof.ssa Elena Spera 1 Come consultare l ipertesto l GEOMETRIA Benvenuti! Per navigare e muoversi
Logica: materiale didattico
Logica: materiale didattico M. Cialdea Mayer. Logica (dispense): http://cialdea.dia.uniroma3.it/teaching/logica/materiale/dispense-logica.pdf Logica dei Predicati (Logica per l Informatica) 01: Logica
Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio
Appunti di informatica Lezione 7 anno accademico 2016-2017 Mario Verdicchio L algoritmo di Euclide per l MCD Dati due numeri A e B, per trovare il loro MCD procedere nel seguente modo: 1. dividere il maggiore
BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta
BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta corretto e vero. Un ragionamento è corretto se segue uno
ANALISI 1 - Teoremi e dimostrazioni vari
ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite
Minimi quadrati vincolati e test F
Minimi quadrati vincolati e test F Impostazione del problema Spesso, i modelli econometrici che stimiamo hanno dei parametri che sono passibili di interpretazione diretta nella teoria economica. Consideriamo
Limiti di successioni
Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;
Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,
Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.
Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore
sempre vere sempre false
Logica: elementi I principi della logica sono innanzitutto i seguenti: Identità: a=a (ogni cosa è cioè identica a se stessa) Non contraddizione: non (a e non a). E impossibile che la stessa cosa sia e
Sviluppi e derivate delle funzioni elementari
Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora
PROGRAMMA CONSUNTIVO
PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi
Schema prove dell esistenza di Dio in Descartes Meditazioni (1642)
Schema prove dell esistenza di Dio in Descartes Meditazioni (1642) In tutte e tre le prove delle Meditazioni Descartes parte dall idea di Dio: III Meditazione: 2 prove a posteriori che procedono dall effetto
Complementi di Analisi Matematica Ia. Carlo Bardaro
Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo
1 Definizione di sistema lineare non-omogeneo.
Geometria Lingotto LeLing: Sistemi lineari non-omogenei Ārgomenti svolti: Sistemi lineari non-omogenei Il metodo di Gauss-Jordan per sistemi non-omogenei Scrittura della soluzione generale Soluzione generale
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: [email protected] 1 SOLUZIONI:
Semantica proposizionale. Unit 2, Lez 3 e 4 Corso di Logica
Semantica proposizionale Unit 2, Lez 3 e 4 Corso di Logica Sommario Semantica dei connettivi Costruzione delle tavole di verità Tautologie, contraddizioni e contingenze Semantica delle forme argomentative
2. Competenze: Conoscenza (titolo) 1
PIANO DI MATERIA 1. Dati generali Indirizzo Tutte Materia Matematica Classe Prima Anno scolastico: 2015/2016 2. : Conoscenza (titolo) 1 L ALGEBRA DEI NUMERI Conoscenze/Contenuti 2 Tempistica Abilità Numeri
NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE
NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile
La matematica non è un opinione, lo è oppure...?
La matematica non è un opinione, lo è oppure...? Giulio Giusteri Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore Brescia 26 Febbraio 2010 Vecchie conoscenze Dedurre... dedurre...
1-Forme Differenziali
1-Forme Differenziali 30 novembre 2011 1 Definizioni di base Siano n N e A R n un insieme aperto. Con (R n ) denotiamo il duale topologico di R n, cioè l insieme (R n ) = {p : R n R : R-lineari e continue}.
PROGRAMMAZIONE A.S Matematica - Classe Prima H Prof. Diana Giacobbi. Saper applicare i concetti acquisiti in contesti noti/nuovi;
VERIFICHE INIZIALI: 17% insufficiente; PROGRAMMAZIONE A.S. 2016-2017 Matematica - Classe Prima H Prof. Diana Giacobbi 36% sufficiente o quasi sufficiente; 48% buono o ottimo. OBIETTIVI DIDATTICI: Conoscenza
Teoria dei modelli. Alessandro Berarducci. 3 Marzo Dipartimento di Matematica Pisa
Teoria dei modelli Alessandro Berarducci Dipartimento di Matematica Pisa 3 Marzo 2014 Teoria dei campi algebricamente chiusi Denizione 1 La teoria del primo ordine dei campi algebricamente chiusi, ACF,
A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame
COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni
Logica proposizionale
Definire un linguaggio formale Logica proposizionale Sandro Zucchi 2013-14 Definiamo un linguaggio formale LP (che appartiene a una classe di linguaggi detti linguaggi della logica proposizionale) Per
1 Indipendenza lineare e scrittura unica
Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza
Macchine di Turing. Francesco Paoli. Istituzioni di logica, Francesco Paoli (Istituzioni di logica, ) Macchine di Turing 1 / 29
Macchine di Turing Francesco Paoli Istituzioni di logica, 2016-17 Francesco Paoli (Istituzioni di logica, 2016-17) Macchine di Turing 1 / 29 Alan M. Turing (1912-1954) Francesco Paoli (Istituzioni di logica,
ELEMENTI DI LOGICA PER IL CORSO DI LAUREA IN MATEMATICA. Prof. Giangiacomo Gerla Dipartimento di Matematica ed Informatica. Università di Salerno
ELEMENTI DI LOGICA PER IL CORSO DI LAUREA IN MATEMATICA Prof. Giangiacomo Gerla Dipartimento di Matematica ed Informatica Università di Salerno [email protected] II INTRODUZIONE Sotto il termine di logica
13 LIMITI DI FUNZIONI
3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con
DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini
DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini INFERENZE CORRETTE E TAUTOLOGIE Il Calcolo Proposizionale permette di formalizzare
Alberi: definizioni e dimostrazioni induttive.
Alberi: definizioni e dimostrazioni induttive. Gennaio 2005 Iniziamo con l introdurre la nozione di albero. Con N indichiamo l insieme dei numeri naturali (zero escluso) e con N l insieme delle liste finite
2. I numeri reali e le funzioni di variabile reale
. I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei
Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1
Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze
Corso di elettrotecnica Materiale didattico: i grafi
Corso di elettrotecnica Materiale didattico: i grafi A. Laudani 12 ottobre 2005 I grafi costituiscono uno strumento matematico che permette di descrivere e schematizzare una grande varietà di problemi
RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine
RISOLUZIONE IN LOGICA PROPOSIZIONALE Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine 1. Risoluzione Definitione 1.1. Un letterale l è una variabile proposizionale (letterale
NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n
NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare
Linguaggi Regolari e Linguaggi Liberi
Linguaggi Regolari e Linguaggi Liberi Linguaggi regolari Potere espressivo degli automi Costruzione di una grammatica equivalente a un automa Grammatiche regolari Potere espressivo delle grammatiche 1
I predicati di dimostrabilità e l'indimostrabilità della consistenza [coerenza]. 1
I predicati di dimostrabilità e l'indimostrabilità della consistenza [coerenza]. 1 Nell'ultimo capitolo abbiamo appreso che nessuna estensione coerente di Q è decidibile e che ogni teoria assiomatizzabile
Teoremi di Incompletezza di Gödel
Teoremi di Incompletezza di Gödel Pieri Lorenzo January 5, 2013 1 Introduzione Quello che segue è un breve riassunto della dimostrazione dei teoremi di Incompletezza di Gödel (e per il 2 è solo un accenno).
Un modello matematico della riflessione e rifrazione. Riflessione
Un modello matematico della riflessione e rifrazione. Proposizioni iniziali 1. In un dato mezzo la luce si muove con una velocità costante lungo una retta 1. 2. La velocità della luce dipende dal mezzo
Introduzione ad alcuni sistemi di logica modale
Introduzione ad alcuni sistemi di logica modale Laura Porro 16 maggio 2008 1 Il calcolo proposizionale Prendiamo come primitivi i simboli del Calcolo Proposizionale (PC) tradizionale a due valori 1 : un
Logica per la Programmazione
Logica per la Programmazione Lezione 2 Dimostrazione di tautologie Proof System pag. 1 Un Problema di Deduzione Logica [da un test di ingresso] Tre amici, Antonio, Bruno e Corrado, sono incerti se andare
LOGICA E PSICOLOGIA DEL PENSIERO. Logica, Linguistica e Scienza Cognitiva
titolo LOGICA E PSICOLOGIA DEL PENSIERO Claudia Casadio PRIMA LEZIONE Logica, Linguistica e Scienza Cognitiva Tre ambiti scientifici logica Logica Studia i processi in base a cui traiamo inferenze a partire
Microeconomia Finanziaria
Sara Savastano Università di Roma Tor Vergata DEF a.a. 2014-2015 1 Teoria Microeconomica: Analisi del comportamento degli individui, degli agenti, e l aggregazione delle loro azioni in un contesto istituzionale
Corso di Calcolo Numerico
Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 2 - EQUAZIONI NON LINEARI Introduzione Problema: trovare le soluzioni di un equazione del tipo f() = 0 Esempio sin a = 0 e = 3 1.0 2.0 0.5
Equazioni lineari con due o più incognite
Equazioni lineari con due o più incognite Siano date le uguaglianze: k 0; x + y = 6; 3a + b c = 8. La prima ha un termine incognito rappresentato dal simbolo letterale k; la seconda ha due termini incogniti
Capitolo IV SPAZI VETTORIALI EUCLIDEI
Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.
Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1
Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria [email protected] Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando
3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune...
Capitolo 3. Logica 3. Logica Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... sei una persona priva di logica è logico comportarsi cosí fai l
COERENZA, INCOMPLETEZZA E INDECIDIBILITÀ: UNA RIFLESSIONE SUI FONDAMENTI DELLA MATEMATICA
COERENZA, INCOMPLETEZZA E INDECIDIBILITÀ: UNA RIFLESSIONE SUI FONDAMENTI DELLA MATEMATICA LUCA LUSSARDI Sommario. In questo breve intervento presentiamo le più importanti problematiche legate ai fondamenti
ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI
ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni
Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A
Cenni di logica Hynek Kovarik Università di Brescia Analisi Matematica A Hynek Kovarik (Università di Brescia) Cenni di logica Analisi Matematica A 1 / 21 Scopo: introdurre nozioni di logica & terminologia
Argomento 6 Derivate
Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =
1 Funzioni reali di una variabile reale
1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f
Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi
Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare
Proposizioni e verità
Proposizioni e verità Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Parte Istituzionale A.A. 2007-08 Contents 1 Proposizione.......................................... 3 2 Verità...............................................
Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura)
GEOMETRIA EUCLIDEA La parola geometria deriva dalle parole greche geo (terra) e metron (misura) ed è nata per risolvere problemi di misurazione dei terreni al tempo degli antichi Egizi nel VI secolo a.c.
