161. Intersezione di insiemi convessi: il Teorema di Helly di Andreana Zucco

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "161. Intersezione di insiemi convessi: il Teorema di Helly di Andreana Zucco"

Transcript

1 161. Intersezione i insiemi convessi: il Teorema i Helly i Anreana Zucco Se in una pinacoteca, comunque scelti tre quari, c è un posto a ove è possibile rimirarli tutti e tre, allora esiste un posto ove è possibile veere tutti i quari i questa pinacoteca senza spostarsi. Forse il visitatore avrà bisogno i una vista lunga o i un teleobiettivo, ma a un punto potrà rimirarli tutti, stano magari comoamente seuto. Questo risultato è un corollario al famoso teorema i Helly. Un cenno storico Euar Helly (Vienna 1884-Chicago 194), matematico austriaco, ebbe una vita talmente travagliata, che non gli consentì i fare lunghe ricerche e i ottenere i riconoscimenti che avrebbe meritato. Si laureò nel 1907 a Vienna. Negli anni successivi insegnò in un ginnasio, pubblicò quattro volumi su problemi i geometria e aritmetica e nel 1914 si arruolò nell esercito austriaco. Durante la prima guerra moniale fu catturato ai russi e rimase prigioniero in Siberia fino al Tornato a Vienna, per vivere lavorò in banca fino al 1929, ma la banca fallì. Fu assunto a una compagnia i assicurazioni, ma nel 198 fu licenziato, perché ebreo. Fu costretto a emigrare negli Stati Uniti ove morì nel 194. Le sue ricerche furono poche, ma ricche i risultati importanti per l analisi funzionale. Tuttavia, il teorema i cui ci occuperemo riguara la geometria convessa. Tale teorema fu scoperto a Helly nel 191 e lo comunicò a Raon, il quale ne pubblicò una prima imostrazione nel Premesse Come premesse al teorema i Helly, veiamo alcuni esercizi. Esercizio 1. Se una famiglia finita è formata a segmenti chiusi [a 1,b 1 ],, [a m,b m ] i una stessa retta aventi un punto comune a ue a ue, allora questa famiglia ha intersezione non vuota. Infatti se inichiamo con b s il minimo fra tutti i b i, al fatto che l intersezione fra qualsiasi segmento [a i,b i ] e il segmento [a s,b s ] non è vuota segue che b s a i e pertanto b s appartiene a tutti i segmenti ella famiglia. Così anche il massimo egli a i, sia a t, appartiene a tutti gli intervalli ella famiglia, per cui anche tutti i punti fra a t e b s sono comuni Prima i veere l esercizio successivo occorre premettere la seguente efinizione. 20

2 Definizione 1. Un insieme i punti el piano è etto convesso se conteneno ue punti, contiene anche il segmento che li congiunge. A esempio un ellisse piena è una figura convessa, mentre una corona circolare non lo è. Esercizio 2. Date nel piano quattro figure convesse tali che ogni loro terna abbia un punto comune, allora tutte e quattro le figure hanno almeno un punto comune. Dimostrazione. Siano A 0, A 1, A 2, A le quattro figure convesse e siano: - a 0 il punto comune i A 1, A 2, A, - a 1 il punto comune i A 0, A 2, A, - a 2 il punto comune i A 0, A 1, A, - a il punto comune i A 0, A 1, A 2. Poiché i punti a 0, a 1, a 2 appartengono tutti al convesso A, tutto il triangolo appartiene a A e così per le altre terne i punti. Si possono presentare ue casi: 1. Uno ei quattro punti a 0, a 1, a 2, a (per esempio a 0 ) appartiene al triangolo iniviuato agli altri tre (a 1, a 2, a ). In tal caso a 0 appartiene anche a A 0, per cui a 0 appartiene a A 1 A 2 A A 0. L osservazione resta valia anche se a esempio il triangolo conv(a 1, a 2, a ) iventa un segmento [a 1, a ]. Infatti in tal caso a 2 [a 1, a ], quini a 2 A 2 ( perché a 1 A 2 e a A 2 ) perciò a 2 A 1 A 2 A A I quattro punti sono vertici i un quarilatero (come nel isegno), in tal caso l intersezione elle ue iagonali è un punto i A 1 A 2 A A 0 A 2 a 0 a a 1 A 0 A 1 a 2 A Osservazione 1. L ipotesi i convessità è essenziale. Come contro-esempio costruiamo una famiglia F costituita a tre cerchi A 1, A 2, A che si intersecano (vei figura) e a una corona circolare A 4 (che non è convessa) che intersechi A 1 A 2, A A 1, A 2 A, ma non A 1 A 2 A. L intersezione i tre sottoinsiemi qualsiasi non è vuota, mentre non esiste un punto comune ai quattro insiemi. A 2 A 1 A 4 A Il teorema Teorema i Helly (nel piano, caso finito). Date n figure convesse nel piano tali che ogni loro terna abbia un punto comune, allora tutte le n figure hanno un punto comune. Dimostrazione. Si imostra per inuzione. Se il numero elle figure è quattro, il teorema vale come provato nell esercizio preceente. Supponiamo vero il teorema per k figure e lo imostriamo per k+1 figure. Siano B 1, B 2,, B k, B k + 1 le k + 1 figure convesse e sia B = B k B k + 1 che esseno intersezione i ue convessi è convesso. Consieriamo le k figure convesse B 1, B 2,, B k 1, B: se sono istinte a B, ogni tre hanno un punto comune per ipotesi, ma anche B j, B l, B hanno un punto comune perché B j, B l, B k, B k + 1 sono quattro convessi tali che ogni tre hanno un punto comune quini esiste un punto comune a tutte e quattro (per quanto imostrato nell esercizio preceente) che è anche punto comune a B j, B l, B. Poiché per ogni tre figure c è un punto comune, per l ipotesi inuttiva esiste un punto comune a tutte le k figure B 1, B 2,, B k 1, B quini anche a B 1, B 2,, B k, B k

3 Osservazione 2. Nel teorema si parla i terne, tale numero non può essere sostituito a un numero più piccolo. Come contro-esempio se nel piano consieriamo la famiglia formata a tre segmenti, lati i un triangolo, ogni coppia i tali insiemi si interseca nei vertici, ma non c è un punto comune a tutti gli elementi ella famiglia. Supponiamo ora che nel piano, la famiglia i convessi consierata non sia finita, ma formata a infinite figure convesse, sempre tali che ogni terna abbia un punto comune. Per il teorema visto nel caso finito, se consieriamo un qualunque numero finito i queste, l intersezione non è vuota. Ciò nonostante non si può ire in generale che le figure ate abbiano un punto comune. Tuttavia il teorema vale ancora anche se la famiglia non è finita, purché formata a insiemi chiusi e limitati. Teorema i Helly (nel piano, caso infinito). Data una famiglia infinita i figure convesse chiuse e limitate nel piano, tali che ogni tre i esse hanno un punto in comune, allora tutte le figure ella famiglia hanno un punto comune. Per la imostrazione si può consultare [Y-Bo]. Osservazione. Se la famiglia non è finita, né formata a insiemi al tempo stesso chiusi e limitati, non vale il teorema. Come primo contro-esempio consieriamo in R 2 la famiglia F, non finita, formata ai semispazi el piano cartesiano x 1, x 2, x,. Tali semispazi sono insiemi convessi, chiusi ma non limitati; l intersezione i un numero finito i essi non è vuota ma non esiste un punto comune a tutti. Come secono contro-esempio consieriamo, sulla retta reale, la famiglia infinita F ei segmenti 1 semiaperti F n = 0, n ove n è un numero naturale e il numero 0 è escluso. Gli elementi i F sono convessi, limitati ma non chiusi; l intersezione i un numero finito i essi non è vuota, ma non esiste un punto comune a tutti. Veiamo ora alcune conseguenze el teorema i Helly, le imostrazioni omesse si possono trovare su [Y-Bo]. Teorema. Se nel piano n punti sono tali che tre i essi, comunque scelti, possono essere racchiusi in un cerchio i raggio r, allora tutti gli n punti possono essere racchiusi in un cerchio i raggio r. Dimostrazione. Dobbiamo provare che esiste nel piano un punto h la cui istanza a tutti gli altri punti non è maggiore i r, cioè che esiste un punto h el piano che appartiene a tutti i cerchi i raggio r aventi centro in uno qualunque ei punti ati. Per il teorema i Helly, affinché n cerchi i raggio r e aventi centro in uno ei punti ati abbiano intersezione non vuota è sufficiente provare che tre qualunque i questi cerchi hanno intersezione non vuota. Per ipotesi ogni terna i punti a, b, c, può essere racchiusa in un cerchio i raggio r e centro x. Poiché la istanza i a a x è minore i r, il punto x sta nel cerchio i centro a e raggio r. Così tale punto x appartiene al cerchio i raggio r e i centro b e al cerchio i raggio r e centro c, in quanto anche la istanza i x a b e a c è minore i r. Perciò possiamo applicare il teorema i Helly e concluere che il punto h esiste c x b a 22

4 Corollario (Teorema i Jung). Se n punti el piano sono tali che per ogni loro terna nessun lato el triangolo a essa iniviuato è maggiore i, allora tutti gli n punti possono essere racchiusi in un cerchio i raggio. Dimostrazione. Per il teorema preceente è sufficiente provare che tre qualunque ei punti ati, inichiamoli con a, b, c, possono essere racchiusi in un cerchio i raggio r =. Nessun lato el triangolo (a,b,c) è maggiore i per ipotesi. Se il triangolo è ottusangolo oppure rettangolo, è completamente racchiuso al cerchio avente come iametro il lato maggiore. Tale cerchio ha raggio r ovviamente minore i. 2 Se il triangolo (a,b,c) è acutangolo il raggio el cerchio circoscritto è minore o uguale a in quanto uno egli angoli el triangolo, a esempio l angolo in a, è maggiore o uguale i 60. Il lato bc, come cora i un arco con angolo al centro compreso tra 120 e 180, è maggiore o uguale a r, ove r è il raggio circoscritto al triangolo (a,b,c) quini: istanza (b,c) r r Nel seguito ci serviremo ella seguente efinizione:, a cui Definizione 2. Si efinisce iametro i una figura piana la massima istanza fra ue suoi punti. Esempi. Il iametro i un ellisse piena coincie con l asse maggiore; il iametro i un triangolo ottusangolo con la misura el suo lato maggiore. Teorema i Jung. Ogni figura piana (non necessariamente convessa) i iametro può essere inclusa in un cerchio i raggio. Tale risultato può essere illustrato nel seguente moo: se su una tovaglia c è una macchia i iametro, allora si può certamente coprire con un tovagliolo rotono i raggio. Nel teorema seguente (citato all inizio quano abbiamo fatto riferimento alla pinacoteca) per poligono si intene ogni figura piana avente come contorno una poligonale chiusa non intrecciata. Teorema i Krasnosel skii (1946). Se per ogni terna a, b, c i punti i frontiera i un arbitrario poligono K, esiste un punto x tale che tutti e tre i segmenti [x,a],[x,b],[x,c] giacciono internamente al poligono, allora esiste all interno i K un punto h, tale che tutti i segmenti che congiungono h coi punti ella frontiera el poligono K, giacciono internamente al poligono. Osservazione. Una figura K per la quale esiste un punto h tale che tutti i segmenti che congiungono h con i punti i frontiera i K sono contenuti in K, viene etta a forma i stella o stellata. Quini il teorema preceente à una conizione necessaria e sufficiente per un poligono piano i essere a forma i stella (star-shape). Altra conseguenza el teorema i Helly è il seguente teorema, che trova applicazioni nella teoria ella approssimazione i funzioni. Teorema ella trasversale comune. Si consierino nel piano n segmenti i rette parallele, se per ogni terna esiste una retta che li interseca, allora esiste una retta che interseca tutti i segmenti. 2

5 Tale risultato è ovuto a L.A.Santaló (1942) e è stato iscusso in un lavoro i H.Raemacher e I.J.Schoenberger (1950). Per risultati analoghi si può veere l articolo i B.Grünbaum On common Trasversal Arch. Math., vol.9, 1958, oppure [D-G-K]. Per chi ha imestichezza anche con imensioni superiori, osserviamo che il teorema i Helly è vero anche nello spazio euclieo n-imensionale R n, ove n è un numero naturale. Teorema i Helly (191) (nel caso generale). Sia F una famiglia finita i k insiemi convessi i R n, con k > n. Se l intersezione i n + 1 qualsiasi insiemi i F non è vuota, allora esiste un punto comune a tutti gli insiemi i F. La preceente proprietà vale anche per una famiglia infinita i convessi, purché chiusi e limitati. Le imostrazioni i Köning e Raon si trovano a esempio in [F-Z]. A proposito i questa ultima versione el teorema nel caso generale, citiamo il caso el teorema i Kirchberger (190), la cui imostrazione originale era lunga circa 24 pagine. Utilizzano il teorema i Helly, nel 1950 Raemacher e Schoenberger fecero una imostrazione molto più breve, iciamo una pagina. Prima i citarlo, ricoriamo che ue sottoinsiemi A e B i R n si icono separati strettamente a un iperpiano H se appartengono a semispazi aperti ifferenti eterminati a H. Teorema i Kirchberger (190). Siano X e Y ue sottoinsiemi finiti i R n. Se per ogni sottoinsieme S i X Y formato a n + 2 punti, gli insiemi S X e S Y sono separati strettamente a un iperpiano, allora esiste un iperpiano che separa strettamente X e Y. Per conoscere ulteriori notizie e un ampia bibliografia, non ho ubbi nel consigliare ai più esperti il lavoro i J.Eckhoff Helly, Raon an Carathéoory Type Theorems pag i [G-W]. Testi consigliati [Be] M. BERGER, Géométrie, Ceic Nathan, Paris (1977) [D-G-K] L.DANZER-B.GRUNBAUM-V.KLEE, Helly s theorem an its relatives, in Convexity, Proc. of Symposia in Pure Math., vol.vii (Amer. Math. Soc.) (196) [F-Z] P.FAVRO A.ZUCCO, Appunti i Geometria Convessa, quaerno iattico n.4, Dip. Matematica, Univ. Torino (2005) [G-W ] P. M. GRUBER, J. M. WILLS, Hanbook of Convex Geometry, North Hollan Matematical Library (199) [V] F.A.VALENTINE, Convex sets, N.Y. MC Graw-Hill, (1964) [Y-Bo] YAGLOM-BOLTYANSKII, Convex figures, Holt, Rinehart e Winston, New York (1961). 24

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI 1 QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI Margherita Moretti (3D P.N.I.) Viviana Scoca (3D P.N.I.) Simone Moretti (3H P.N.I.) Abstract Si affronta il problema ella eterminazione el quarilatero i

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d Esercizi svolti i geometria elle aree Alibrani U., Fuschi P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

Una proposizione che si pone alla base di una teoria matematica senza darne una giustificazione. Sono le «regole del gioco».

Una proposizione che si pone alla base di una teoria matematica senza darne una giustificazione. Sono le «regole del gioco». Ripasso Scheda per il recupero Il metodo assiomatico-deduttivo OMNE he cos è un assioma? he cos è un concetto primitivo? he cos è un teorema? he cosa significa affrontare lo studio della geometria secondo

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

14 Sulle orme di Euclide. Volume 2

14 Sulle orme di Euclide. Volume 2 PREFAZIONE Il nostro viaggio negli Elementi prosegue con lo studio delle proprietà della circonferenza e dell equivalenza tra poligoni. Le questioni relative alla superficie dei poligoni occupano parte

Dettagli

C7. Circonferenza e cerchio

C7. Circonferenza e cerchio 7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

La circonferenza e i poligoni inscritti e circoscritti

La circonferenza e i poligoni inscritti e circoscritti Liceo Scientifico Isacco Newton - Roma Le lezioni multimediali di GeoGebra Italia efinizioni Luogo Geometrico Insieme di tutti e soli punti del piano che godono di una certa proprietà, detta proprieà caratteristica

Dettagli

La circonferenza e il cerchio

La circonferenza e il cerchio La circonferenza e il cerchio Def.: Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una circonferenza

Dettagli

La circonferenza Capitolo

La circonferenza Capitolo Archi, core, angoli erifica per la classe prima Core Quesiti 1.a Due core congruenti AB e CD si intersecano nel punto. Dimostrare che si formano triangoli congruenti. (Chiamano H e K i punti mei elle core

Dettagli

Poligoni con riga e compasso

Poligoni con riga e compasso Poligoni con riga e compasso Affrontiamo alcuni problemi di costruzione con riga e compasso, che ci aiuteranno a ricordare le principali relazioni tra le circonferenze e le rette, gli angoli inscritti,

Dettagli

Nome..Cognome. classe 5D 9 Febbraio VERIFICA di FISICA

Nome..Cognome. classe 5D 9 Febbraio VERIFICA di FISICA ome..cognome. classe 5D 9 Febbraio 9 VIFIC i FIIC Domana n. (punti: ) Dai la efinizione i capacità i un conensatore e ricava l espressione ella capacità i un conensatore piano i area e istanza tra le armature

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Appunti di geometria L. P. 17 Febbraio Notazione

Appunti di geometria L. P. 17 Febbraio Notazione ppunti di geometria L. P. 17 Febbraio 2008 Notazione I punti sono rappresentati da lettere maiuscole:,,, ecc.; rappresenta la lunghezza del segmento, rappresenta l ampiezza dell angolo compreso fra le

Dettagli

Allenamenti di Matematica

Allenamenti di Matematica rescia, 3-4 febbraio 2006 llenamenti di Matematica Geometria 1. Il trapezio rettangolo contiene una circonferenza di raggio 1 metro, tangente a tutti i suoi lati. Sapendo che il lato obliquo è lungo 7

Dettagli

La circonferenza e il cerchio

La circonferenza e il cerchio La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente

Dettagli

CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE

CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE E. Sernesi 1 Poligoni etichettati Denoteremo con il simbolo P 2n, o semplicemente con P, un poligono compatto e convesso i R 2, a 2n lati, n 2. Consiereremo

Dettagli

03) Somma degli angoli interni di un poligono. 04) Somma degli angoli esterni di un poligono

03) Somma degli angoli interni di un poligono. 04) Somma degli angoli esterni di un poligono Unità idattica N 24 I poligoni 35 U.. N 24 I poligoni 01) efinizione di poligono 02) lcune proprietà dei poligoni 03) Somma degli angoli interni di un poligono 04) Somma degli angoli esterni di un poligono

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................

Dettagli

Test A Teoria dei numeri e Combinatoria

Test A Teoria dei numeri e Combinatoria Test A Teoria dei numeri e Combinatoria Problemi a risposta secca 1. Determinare con quanti zeri termina la scrittura in base 12 del fattoriale di 2002. 2. Determinare quante sono le coppie (x, y) di interi

Dettagli

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a GEOMETRIA PIANA EQUAZIONI E DISEQUAZIONI a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1) Nel piano

Dettagli

Un problema geometrico

Un problema geometrico Un problema geometrico L. Perrella, G. Piazza; L. Crisci, V. Maiorca, V. Ruscio; L. Niculut Classi I sez. A; III sez. F; V sez. F L.S.S. E. Majorana Guidonia 11 giugno 011 1 Introduzione In questa nota

Dettagli

CONCETTI e ENTI PRIMITIVI

CONCETTI e ENTI PRIMITIVI CONCETTI e ENTI PRIMITIVI Sono Concetti e Enti primitivi ciò che non può essere definito in modo più elementare, il significato è noto a priori, cioè senza alcun'altra specificazione. es. es. movimento

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 10 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

Tangenti. Lezione 2. Tangenti

Tangenti. Lezione 2. Tangenti Lezione. Tangenti 1 Circonferenze tangenti tra loro Poiché due circonferenze sono reciprocamente tangenti quando hanno un solo punto in comune, vi sono essenzialmente due modi in cui ciò può avvenire:

Dettagli

Elementi di Geometria euclidea

Elementi di Geometria euclidea Elementi di Geometria euclidea Proprietà dei triangoli isosceli Il triangolo isoscele ha almeno due lati congruenti, l eventuale lato non congruente si chiama base, i due lati congruenti si dicono lati

Dettagli

I Triangoli e i criteri di congruenza

I Triangoli e i criteri di congruenza I Triangoli e i criteri di congruenza 1 Le caratteristiche di un triangolo Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni I punti

Dettagli

Postulati e definizioni di geometria piana

Postulati e definizioni di geometria piana I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una

Dettagli

Lezione introduttiva allo studio della GEOMETRIA SOLIDA

Lezione introduttiva allo studio della GEOMETRIA SOLIDA Lezione introduttiva allo studio della GEOMETRIA SOLIDA Geometria solida Lo spazio euclideo è un insieme infinito di elementi detti punti e contiene sottoinsiemi propri ed infiniti : le rette e i piani..

Dettagli

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6 1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 I-4 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il

Dettagli

24/03/2012 APPUNTI DI GEOMETRIA EUCLIDEA LEZIONE 2-3. definizione 26-29/3/2012

24/03/2012 APPUNTI DI GEOMETRIA EUCLIDEA LEZIONE 2-3. definizione 26-29/3/2012 PPUNTI DI GEOMETRI EULIDE LEZIONE 2-3 26-29/3/2012 definizione un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni un triangolo è un l

Dettagli

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali Anno 2 Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali 1 Introduzione In questa lezione tratteremo i poligoni inscritti e circoscritti a una circonferenza, descrivendone

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1

LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1 LA GEOMETRIA EUCLIDEA Seminario Cidi, Roma 13/05/2013 - prof.ssa Dario Liliana 1 Le difficoltà degli studenti nell apprendere la geometria nel 1 anno della scuola secondaria Gli argomenti della geometria

Dettagli

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE.

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE. POBLEMA 11 SIA DATO UN SOLENOIDE ETTILINEO DI LUNGHEZZA, AGGIO e COSTITUITO DA N SPIE. A) DETEMINAE IL CAMPO MAGNETICO PODOTTO LUNGO L ASSE DEL SOLENOIDE. Un solenoie rettilineo è costituito a un filo

Dettagli

FONDAMENTI DI GEOMETRIA

FONDAMENTI DI GEOMETRIA 1 FONDAMENTI DI GEOMETRIA (Fundamental geometrical concepts) La geometria [ghè (terra) metron (misura)] è una parte della matematica che studia lo spazio, la forma, l estensione, la trasformazione delle

Dettagli

4.1 I triedri Def triedro vertice spigoli facce triedro

4.1 I triedri Def triedro vertice spigoli facce triedro 1 FIGURE NELLO SPAZIO Rette, piani, semispazi, di cui abbiamo visto le prime proprietà, delimitano le figure solide che si sviluppano nello spazio. Introduciamo gradualmente le figure solide e le loro

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

lato obliquo trapezio isoscele Un quadrilatero che ha i lati opposti paralleli. Ogni parallelogramma ha... D α + β π

lato obliquo trapezio isoscele Un quadrilatero che ha i lati opposti paralleli. Ogni parallelogramma ha... D α + β π Ripasso Scheda per il recupero Trapezi e parallelogrammi OMNE he cos è un trapezio? RISOSTE Un trapezio è un quadrilatero con una coppia di lati opposti paralleli: i lati paralleli si chiamano basi del

Dettagli

Una volgare introduzione alle EDO

Una volgare introduzione alle EDO Una volgare introuzione alle EDO Tiziano Penati 1 Primitive Abbiamo già incontrato un esempio semplice i equazioni ifferenziali orinarie (EDO): il calcolo i primitive. Vale la pena infatti i ricorare che

Dettagli

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni.

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. Il problema dell altezza. Clara Colombo Bozzolo, Carla Alberti,, Patrizia Dova Nucleo di Ricerca in Didattica della Matematica Direttore

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione ordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione ordinaria 2012, matematicamente.it Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione orinaria, matematicamente.it PROBLEMA La funzione f è efinita e erivabile sull intervallo chiuso 7, e è f. Il grafico i y f

Dettagli

Elementi di Euclide. Libro I. Definizioni. 1. Un punto è ciò che non ha parti. 2. Una linea è lunghezza senza larghezza.

Elementi di Euclide. Libro I. Definizioni. 1. Un punto è ciò che non ha parti. 2. Una linea è lunghezza senza larghezza. Elementi di Euclide Libro I Definizioni 1. Un punto è ciò che non ha parti. 2. Una linea è lunghezza senza larghezza. 3. Gli estremi di una linea sono punti. 4. Una retta è una linea che giace ugualmente

Dettagli

I quadrilateri Punti notevoli di un triangolo

I quadrilateri Punti notevoli di un triangolo I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono

Dettagli

Anno 2. Circonferenza e retta: definizioni e proprietà

Anno 2. Circonferenza e retta: definizioni e proprietà Anno 2 Circonferenza e retta: definizioni e proprietà 1 Introduzione I Sumeri furono tra i primi popoli ad occuparsi di matematica, e in particolare di problemi relativi alla. La è una figura geometrica

Dettagli

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura 13. Magnetismo 13.1 La forza i Lorentz. Il magnetismo è un fenomeno noto a molti secoli, ma fino all inizio ell ottocento la teoria trattava i calamite, aghi magnetici e elle loro interazioni con il magnetismo

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2.

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2. VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI 1.- 0 < 3a+1 < 2 0 < 3a + 1 < 4 1 < 3a < 3 1 2 3 1 < 1 b < 2 2 < b < 1 1 < b < 2. 1 < a < 1 3 1 < b < 2 4 < a + b < 3 e, a fortiori, 4 < a +

Dettagli

Esercizi sulle rette nello spazio

Esercizi sulle rette nello spazio 1 Esercizi sulle rette nello spazio 1) Sono dati quattro punti non complanari, tre di essi possono essere allineati? 2) Sono dati quattro punti non complanari, quanti piani generano? 3) Quante coppie di

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

Storia del pensiero matematico

Storia del pensiero matematico Storia della Matematica 1 Storia del pensiero matematico Le coniche di Apollonio L'opera di Apollonio Ad Apollonio possiamo riconoscere due grandi meriti: il primo è una sintesi completa dei lavori precedenti

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Geometria degli origami

Geometria degli origami UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA TESI DI LAUREA Geometria degli origami Relatore Candidato Ch.ma Prof.ssa Mariacarmela

Dettagli

Kangourou della Matematica 2012 finale nazionale italiana Mirabilandia, 7 maggio 2012

Kangourou della Matematica 2012 finale nazionale italiana Mirabilandia, 7 maggio 2012 Kangourou della Matematica 2012 finale nazionale italiana Mirabilandia, 7 maggio 2012 LIVELLO STUDENT S1. (5 punti ) Assegnati tre punti non allineati nello spazio, quante sfere passano per questi tre

Dettagli

C5. Triangoli - Esercizi

C5. Triangoli - Esercizi C5. Triangoli - Esercizi DEFINIZIONI 1) Dato il triangolo in figura completare al posto dei puntini. I lati sono i segmenti,, Gli angoli sono,, Il lato AB e l angolo sono opposti Il lato AB e l angolo

Dettagli

= R. 4πε 0. R contiene valori costanti che descrivono caratteristiche fisiche(il dielettrico ε

= R. 4πε 0. R contiene valori costanti che descrivono caratteristiche fisiche(il dielettrico ε I conensatori. onsieriamo il potenziale per un conensatore sferico: Possiamo scrivere Il fattore Q π R Q π R π R contiene valori costanti che escrivono caratteristiche fisiche(il ielettrico ) e geometriche

Dettagli

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U Prendiamo in considerazione le figure geometriche nel piano, cioè le figure piane, intendendo con questo termine un qualsiasi insieme di punti appartenenti a uno stesso piano. Disegniamo più segmenti consecutivi:

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Geometria dei triangoli, senza assioma delle parallele

Geometria dei triangoli, senza assioma delle parallele Storia della matematica rogora@mat.uniroma1.it Università di Roma 13 Marzo 2017 - Roma (UniRoma) 13 Marzo 2017 1 / 25 , senza assioma delle L angolo esterno è maggiore di ciascuno degli angoli interni

Dettagli

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa.

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Lato Vertice Angolo interno Angolo esterno I lati del poligono sono segmenti che costituiscono la linea spezzata.

Dettagli

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti. Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema

Dettagli

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica Didattica della Matematica per il triennio Geometria sintetica e geometria analitica anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO È una linea chiusa formata da tutti i punti del piano che sono equidistanti da un punto interno detto centro. La distanza punto della circonferenza-centro è detto raggio. circonferenza

Dettagli

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto

Dettagli

Unità Didattica N 22 I triangoli. U.D. N 22 I triangoli

Unità Didattica N 22 I triangoli. U.D. N 22 I triangoli 10 Unità Didattica N 22 I triangoli U.D. N 22 I triangoli 01) Il triangolo ed i suoi elementi 02) Uguaglianza di due triangoli 03) Primo criterio di uguaglianza dei triangoli 04) Secondo criterio di uguaglianza

Dettagli

Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Solidi di rotazione Un solido di rotazione è generato dalla rotazione

Dettagli

Kangourou della Matematica 2016 finale nazionale italiana Cervia, 9 maggio 2016

Kangourou della Matematica 2016 finale nazionale italiana Cervia, 9 maggio 2016 Kangourou della Matematica 2016 finale nazionale italiana Cervia, 9 maggio 2016 LIVELLO STUDENT Tutte le risposte devono essere giustificate S1. (5 punti ) Per un certo valore di n, 2016 è esprimibile

Dettagli

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell

Dettagli

FIGURE EQUIVALENTI. Dimostrazione: dato il parallelogramma ABCD ed il parallogramma ABC'D', con

FIGURE EQUIVALENTI. Dimostrazione: dato il parallelogramma ABCD ed il parallogramma ABC'D', con 1. FIGURE EQUIVALENTI 1.1 EQUIVALENZA TRA PARALLELOGRAMMI TEOREMA: Due parallelogrammi aventi le basi e le altezze congruenti sono equivalenti. Dimostrazione: dato il parallelogramma ABCD ed il parallogramma

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università egli Stui i Palermo Facoltà i Economia Dipartimento i Scienze Economice, Azienali e Statistice Appunti el corso i Matematica 08 - Derivate Anno Accaemico 2015/2016 M. Tumminello, V. Lacagnina,

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

Circonferenza e cerchio

Circonferenza e cerchio Circonferenza e cerchio Definizione Una circonferenza di centro O e raggio r è l insieme dei punti del piano che hanno da O distanza uguale a r. I segmenti che congiungono il centro O con i punti della

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

APPUNTI DI GEOMETRIA SOLIDA

APPUNTI DI GEOMETRIA SOLIDA APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti

Dettagli

GEOMETRIA. Congruenza, angoli e segmenti

GEOMETRIA. Congruenza, angoli e segmenti GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre

Dettagli

Indice del vocabolario della Geometria euclidea

Indice del vocabolario della Geometria euclidea Indice del vocabolario della Geometria euclidea 1 Postulati di appartenenza: piano, retta e punto nello spazio Punto, retta, piano nello spazio Punto, retta nel piano Punto nella retta Punto esterno alla

Dettagli