RAPPRESENTAZIONE GRAFICA DEI RISULTATI SPERIMENTALI INTERPOLAZIONE E CURVE DI REGRESSIONE
|
|
|
- Fortunato Capelli
- 8 anni fa
- Visualizzazioni
Transcript
1 RAPPRESENTAZIONE GRAFICA DEI RISULTATI SPERIMENTALI INTERPOLAZIONE E CURVE DI REGRESSIONE
2 Rappresentazione grafica Visione d insieme di una grandezza, in funzione del tempo o di un altro parametro Tipicamente si utilizzano assi coordinati che devono riportare la descrizione della grandezza rappresentata e all occorrenza anche la sua unità di misura Rappresentazione e Analisi dei Dati 2/24
3 Tipi di Grafici Quando sugli assi compaiono dei valori numerici, bisogna sempre indicare l unità di misura corrispondente. Il grafico si dice QUANTITATIVO Altrimenti il diagramma è QUALITATIVO e può servire per indicare degli andamenti o delle tendenze Rappresentazione e Analisi dei Dati 3/24
4 Grafico in un PIANO CARTESIANO ASCISSE (asse X): variabile indipendente o di comando o di ingresso ORDINATE (asse Y): variabile dipendente o grandezza di uscita Tipicamente u(x i )<< u(y i ), ossia la variabile di comando è nota con buona precisione (incertezza trascurabile) mentre la variabile di uscita presenta una maggiore incertezza Molte volte le incertezze di ingressi e uscite non sono specificate ma insieme al rumore sui dati si traducono in una dispersione dei punti sperimentali Rappresentazione e Analisi dei Dati 4/24
5 Caratteristica tensione corrente per un diodo Zener punti sperimentali Rappresentazione e Analisi dei Dati 5/24
6 Rappresentazione grafica della dispersione (incertezza): Barre di Errore Caratteristica ingresso-uscita di un amplificatore elettronico. Le barre di errore indicano un intervallo di confidenza, che va specificato: ad esempio ±1σ (68%), oppure ad esempio il 90%. Rappresentazione e Analisi dei Dati 6/24
7 Diagrammi polari Coordinata radiale ρ =(x 2 +y 2 ) 1/2 Coordinata angolare θ =arctg(y/x) per x 0 Diagramma di direttività di un altoparlante x =ρ cos(θ ) y =ρ sin(θ ) ρ (θ ) può anche indicare la potenza irradiata da un antenna Rappresentazione e Analisi dei Dati 7/24
8 Scale logaritmiche Utili per visualizzare grandezze che variano di diversi ordini di grandezza, con dettaglio relativo costante: punti equispaziati in scala logaritmica stanno in uno stesso rapporto in scala lineare. z log =log B (z/z 0 ) B è la base e z 0 è il riferimento Molto comuni db e dbm (con B=10) P db =10 log 10 (P/P 0 ) A db =20 log 10 (A/A 0 ) P dbm =10 log 10 [P/(P m )] con P m =1 mw Rappresentazione e Analisi dei Dati 8/24
9 Diagrammi Semilogaritmici (log-lin) Diagramma semilog-y per la curva I-V di un diodo a semiconduttore in polarizzazione diretta: I=I 0 exp(v/v T ) y = log(i) = (1/V T ) V+log(I 0 ) = mx+q m = (1/V T ) q=log(i 0 ) Rappresentazione e Analisi dei Dati 9/24
10 Diagrammi Semilogaritmici (lin-log): diagramma di Bode (della fase) 6 decadi (da 1 mhz a 1 khz) Sfasamento in gradi o radianti in funzione della frequenza riportata in scala logaritmica (ampia dinamica). Rappresentazione e Analisi dei Dati 10/24
11 Diagrammi Bilogaritmici (log-log): diagramma di Bode (dell'ampiezza) Ampiezza o guadagno in db in funzione della frequenza riportata in scala logaritmica: si possono individuare delle pendenze tipiche (e.g. -20 db/dec). Rappresentazione e Analisi dei Dati 11/24
12 Diagrammi Bilogaritmici (log-log): spettro di potenza di un segnale Ampia dinamica di frequenze e potenze visualizzabili sullo stesso diagramma. Rappresentazione e Analisi dei Dati 12/24
13 Interpolazione Misura: insieme finito e discreto di valori sperimentali. Questi punti sperimentali discreti sono tipicamente i valori assunti dal misurando al variare di uno o più parametri di comando (grandezza/e di ingresso). Oppure sono i campioni discreti prelevati nel tempo. La rappresentazione è più facilmente leggibile se operiamo un riempimento o interpolazione tra due punti sperimentali adiacenti. Interpolante: è una funzione continua, che passando per i due punti in questione ci fornisce l andamento presunto (interpolato) della relazione ingresso-uscita. Rappresentazione e Analisi dei Dati 13/24
14 Interpolazione lineare È la più semplice interpolazione possibile: consiste nel congiungere i punti con una spezzata (insieme dei segmenti di rette che passano per due punti adiacenti). Non consente una buona ricostruzione del segnale perché non sfrutta l informazione dei punti precedenti e successivi. Rappresentazione e Analisi dei Dati 14/24
15 Interpolazione polinomiale cubica È la curva che passa per i punti sperimentali, mantenendo continue la derivata prima e seconda. Ha l effetto visivo di una linea smussata. Può essere ottenuta con differenti condizioni al contorno (nei due punti estremi dell intervallo di dati disponibili ). Rappresentazione e Analisi dei Dati 15/24
16 Interpolazione a seno cardinale Utilizzata per la ricostruzione di segnali campionati nel tempo. Si ricava matematicamente dall operazione di filtraggio passa-basso ideale del segnale campionato. Nel dominio del tempo consiste in una convoluzione del segnale campionato con la funzione sinc(πx)=sin(πx)/πx Rappresentazione e Analisi dei Dati 16/24
17 Esempio di ricostruzione di un segnale mediante interpolatore Sinusoide campionata a 2.51 punti per periodo Interpolatore sinc(x) Interpolatore lineare Rappresentazione e Analisi dei Dati 17/24
18 Regressione di più punti sperimentali Un diagramma sperimentale, ottenuto da risultati di misura, spesso mostra una dipendenza y = f (x) che appare ragionevolmente approssimabile con una funzione nota Alternativamente, da un analisi teorica, possiamo conoscere quale tipo di relazione matematica (modello) dovrebbe essere rappresentata dai punti, ma la dispersione dei dati è talmente grande (e.g. per la presenza di rumore) che non riusciamo a definire con sufficiente affidabilità i valori dei parametri Come è possibile ricavare questi valori (parametri caratteristici del fenomeno misurato) da una misura/osservazione di più punti? Rappresentazione e Analisi dei Dati 18/24
19 Regressione ai minimi quadrati (LS) Consideriamo una generica dipendenza di una variabile fisica y da un altra variabile x, attraverso una funzione f con più parametri A,B, : y = f (A,B, x) Effettuiamo quindi n misure y i della variabile y in funzione della variabile x osservata nei punti x i Per stimare i parametri che meglio rappresentano la realtà misurata, definiamo una funzione distanza tra la misura e la funzione f. Si vuole minimizzare tale distanza La funzione distanza più comunemente usata è la somma degli scarti quadratici tra f e il valore misurato Scarto: δ i = y i f(x i ) Funzione distanza da minimizzare: Rappresentazione e Analisi dei Dati 19/24
20 Regressione lineare LS (1/2) Un importante caso di regressione, semplice da risolvere analiticamente, è quello della regressione lineare: Consideriamo una dipendenza lineare y = m x + b di cui si vogliono ricavare i due parametri m e b. Per il punto i-esimo di misura, lo scarto δ i tra il valore empirico, y i, e quello della curva di regressione, f(x i ), vale δ i = y i [ m x i + b ] Dobbiamo trovare i valori dei parametri (m e b) per i quali è minima la distanza Rappresentazione e Analisi dei Dati 20/24
21 Regressione lineare LS (2/2) Per trovare il minimo di Φ, annulliamo le due derivate prime parziali rispetto a m e b : dove tutte le sommatorie sono ovviamente estese per i che va da 1 fino a n. Si è ottenuto un sistema lineare di due equazioni in due incognite, m e b appunto. Rappresentazione e Analisi dei Dati 21/24
22 Regressione lineare: calcolo di m e b La soluzione del sistema (che si ottiene facilmente per sostituzione) è: Questa soluzione corrisponde a un minimo (lo si può dimostrare matematicamente facendo le derivate seconde, entrambe >0, oppure ripensando al significato della funzione distanza, intrinsecamente positiva e che cresce allontanandosi dai punti acquisiti...) Rappresentazione e Analisi dei Dati 22/24
23 Esercizio su retta di regressione (1/2) n(=5) misure di y=f(x) con punti sperimentali i x i = [ ] y i = [ ] Modello lineare δ i = y i [ mx i + b ] Regressione ai minimi quadrati (δ i ) 2 = min. Rappresentazione e Analisi dei Dati 23/24
24 Esercizio su retta di regressione (2/2) Rappresentazione e Analisi dei Dati 24/24
Analisi dei Dati Tabelle e Grafici
Analisi dei Dati Tabelle e Grafici Spesso una misurazione consiste nello studio di una grandezza,y i in funzione di un altra, x i. Esempi: o lo spazio percorso da un oggetto in funzione di un intervallo
Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log
Rappresentazione di Dati: Scala lineare Scala logaritmica Grafici Lin Lin Grafici Lin Log Grafici Log Log Grafici in scala lineare Grafici Lin Lin Nella rappresentazione di dati in un piano cartesiano
Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16
Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti
COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE
COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE Un sistema risponde ad una sinusoide in ingresso con una sinusoide in uscita della stessa pulsazione. In generale la sinusoide d uscita ha una diversa
Trasformazioni Logaritmiche
Trasformazioni Logaritmiche Una funzione y = f(x) può essere rappresentata in scala logaritmica ponendo Si noti che y = f(x) diventa ossia Quando mi conviene? X = log α x, Y = log α y. log α (x) = log
EQUAZIONE DELLA RETTA
EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale
Lab. 2 - Excel. Prof. De Michele e Farina
Lab. 2 - Excel Prof. De Michele e Farina 1 Utilizzo avanzato di un foglio elettronico: - Utilizzo di funzioni Regressioni lineari Istogrammi 2 La funzione somma restituisce la somma dei valori dei propri
LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti. Rappresentazione grafica dei risultati sperimentali
LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti Rappresentazione grafica dei risultati sperimentali Uno strumento molto utile per comunicare e leggere risultati sperimentali
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il
Utilizzo di index() per determinare la colonna delle x
Utilizzo di inde() per determinare la colonna delle In generale devo essere in grado di costruire un foglio dati con una colonna delle i cui estremi siano (a,b) bbiamo visto che le righe sono individuate
La retta di regressione
La retta di regressione Michele Impedovo Uno dei temi nuovi e centrali per il rinnovamento dei programmi di matematica, che si impone in modo naturale quando si abbia a disposizione un qualunque strumento
Precorso di Matematica
Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,
Quadro riassuntivo di geometria analitica
Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive
Dispensa di Statistica
Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza
Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza
Esperienza n. 10 Partitore resistivo e sua compensazione in c.a. Partitore resistivo-capacitivo Partitore resistivo: abbiamo visto che in regime di corrente continua il rapporto di partizione è costante:
Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa
Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione
ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO
ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : [email protected] - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO
La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi
La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare
Banda passante e sviluppo in serie di Fourier
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: [email protected]
Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source
Funzioni elementari Proporzionalità diretta e inversa Retta, funzione identità e funzione costante Parabola, funzione quadratica e cubica Funzione omografica Funzione esponenziale e logaritmica Funzioni
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria [email protected] Il concetto di interpolazione In matematica, e in particolare in
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
REGRESSIONE E CORRELAZIONE
REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.
SCOPO DELL ANALISI DI CORRELAZIONE
CORRELAZIONE 1 SCOPO DELL ANALISI DI CORRELAZIONE STUDIARE LA RELAZIONE TRA DUE VARIABILI X E Y 2 diagrammi di dispersione un diagramma di dispersione (o grafico di dispersione) èuna rappresentazione grafica
La regressione lineare. Rappresentazione analitica delle distribuzioni
La regressione lineare Rappresentazione analitica delle distribuzioni Richiamiamo il concetto di dipendenza tra le distribuzioni di due caratteri X e Y. Ricordiamo che abbiamo definito dipendenza perfetta
Rappresentare Grafici
Capitolo 5 Rappresentare Grafici L importanza della rappresentazione grafica è fondamentale sotto tutti i punti di vista in particolar modo quello commerciale, per il quale esistono svariate tipologie
Scheda_PolTras Trasmittività di filtri rifrangenti e filtri polaroid
Cognome Nome Data Scheda_PolTras Trasmittività di filtri rifrangenti e filtri polaroid Attività A_ Filtri rifrangenti. Si dispongono: un sensore e una torcetta tipo penlight ad una fissata distanza in
FUNZIONI LINEARI (Retta, punto di pareggio e relazioni lineari generalizzate)
FUNZIONI LINEARI (Retta, punto di pareggio e relazioni lineari generalizzate) Copyright SDA Bocconi, Milano La retta Una retta può essere espressa secondo due formulazioni: a. Forma esplicita b. Forma
Le derivate parziali
Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire
INDICATORI DI TENDENZA CENTRALE
Psicometria (8 CFU) Corso di laurea triennale INDICATORI DI TENDENZA CENTRALE Torna alla pri ma pagina INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore
Sistemi di rappresentazione
Sistemi di rappresentazione Uno dei problemi che i geografi devono affrontare è la scelta e l utilizzo di un linguaggio specifico e al tempo stesso facilmente comprensibile. Nel passato essi si basavano
Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una
l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale
Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi.
.. 3.2 Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I
Laboratorio di Fisica
Laboratorio di Fisica dott. G. Casini ARGOMENTO 1: Misura delle grandezze fisiche LDFM Laboratorio di Fisica presentazione realizzata dal prof. Antonio Covello Schema della relazione di laboratorio Strumenti
PIANO CARTESIANO:EQUAZIONI
PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R
Esercizi- Risposta in frequenza
esercizi 6, 1 Esercizi- Risposta in frequenza Diagrammi di Nyquist Data una funzione di trasferimento: Vogliamo ottenere la sua rappresentazione nel piano complesso al variare della frequenza. curva parametrizzata
Protocollo dei saperi imprescindibili Ordine di scuola: professionale
Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima servizi commerciali calcolo numerico (N,
( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come
Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata
ANALISI B alcuni esercizi proposti
ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
12) Metodo dei minimi quadrati e linea di tendenza
12) Metodo dei minimi quadrati e linea di tendenza 43 Si supponga di avere una tabella di dati {y exp i} i=1,,n in funzione di altri dati {x i } i=1,,n che siano il risultato di una qualche misura sperimentale.
UNITÀ DIDATTICA 5 LA RETTA
UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme
INDICATORI DI TENDENZA CENTRALE
INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla
Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di tendenza centrale
INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla scala di misura dei dati in
DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:
DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione
LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI
LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI Via Toscana, 20 28100 NOVARA 0321 465480/458381 0321 465143 [email protected] http://www.liceoantonelli.novara.it C.F.80014880035 Cod.Mecc.
Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari)
Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari). Piano cartesiano Per piano cartesiano si intende un piano dotato
INTERPOLAZIONE. Introduzione
Introduzione INTERPOLAZIONE Quando ci si propone di indagare sperimentalmente la legge di un fenomeno, nel quale intervengono due grandezze x, y simultaneamente variabili, e una dipendente dall altra,
Ricerca di massimi e minimi col metodo della derivata prima
Massimi e minimi con la derivata prima pag. 1 di 6 Ricerca di massimi e minimi col metodo della derivata prima Ricordiamo che il significato geometrico della derivata prima è quello di coefficiente angolare
Geometria analitica di base (seconda parte)
SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo
Amplificatori in classe A con accoppiamento capacitivo
Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,
Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3
Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,
L A B C di R. Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010
L A B C di R 0 20 40 60 80 100 2 3 4 5 6 7 8 Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010 La scelta del test statistico giusto La scelta della analisi
PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010
PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)
2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:
Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica
13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected]
PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE
PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE (da un idea di M. Impedovo Variabili aleatorie continue e simulazione Progetto Alice n. 15, ) 1. La simulazione Nelle schede precedenti
INDICATORI DI TENDENZA CENTRALE
INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo è indice che riassume o descrive i dati e dipende
Sperimentazioni di Fisica I mod. A Statistica - Lezione 2
Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 A. Garfagnini M. Mazzocco C. Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Statistica Lezione 2: 1. Istogrammi
Test sull ellisse (vai alla soluzione) Quesiti
Test sull ellisse (vai alla soluzione) Quesiti ) Considerata nel piano cartesiano l ellisse Γ : + y = 8 valutare il valore di verità delle seguenti affermazioni. I fuochi si trovano sull asse delle ordinate
ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio
ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO
METODO DEI MINIMI QUADRATI
Vogliamo determinare una funzione lineare che meglio approssima i nostri dati sperimentali e poter decidere sulla bontà di questa approssimazione. Sia f(x) = mx + q, la coppia di dati (x i, y i ) appartiene
Verifiche di matematica classe 3 C 2012/2013
Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico
METODO DEI MINIMI QUADRATI
METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità
.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1
Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y
Corso di Calcolo Scientifico
I Modulo del corso integrato di Calcolo Dott.ssa Maria Carmela De Bonis a.a. 2012-13 Approssimazione di Funzioni In molti problemi matematici emerge l esigenza di dover approssimare una funzione f C k
COMPENDIO ESPONENZIALI LOGARITMI
TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama
CURVE DI DURATA: Introduzione e Rappresentazione analitica
CURVE DI DURATA: Introduzione e Rappresentazione analitica Premesse Si definisce durata di una portata Q riferita ad una sezione di misura, l'intervallo di tempo in cui le portate naturali del corso d
1.3. Logaritmi ed esponenziali
1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione
Indice. Capitolo 1 Richiami di calcolo numerico 1. Capitolo 2 Rappresentazioni di dati 13
Autori Prefazione Nota dell Editore e istruzioni per l uso Guida alla lettura XI XIII XV XVII Richiami di calcolo numerico 1 1.1 Unità di misura e fattori di conversione; potenze del 10; notazioni scientifiche
Geometria Analitica Domande e Risposte
Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano
LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele
PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni
Matematica classe 5 C a.s. 2012/2013
Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.
La distribuzione delle frequenze. T 10 (s)
1 La distribuzione delle frequenze Si vuole misurare il periodo di oscillazione di un pendolo costituito da una sferetta metallica agganciata a un filo (fig. 1). A Figura 1 B Ricordiamo che il periodo
1 Nozioni utili sul piano cartesiano
Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x
Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica
DISCIPLINA: MATEMATICA Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima tecnico della grafica calcolo numerico
Condizione di allineamento di tre punti
LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.
Campionamento e quantizzazione
Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione
