Corso di Intelligenza Artificiale. Esercizio 1
|
|
|
- Marco Costantini
- 8 anni fa
- Visualizzazioni
Transcript
1 Esercizio 1 Si definisca un predicato in PROLOG chiamato maxlist che applicato ad una lista di liste di interi ListListInt dia come risultato la lista degli elementi massimi di ogni lista componente di ListListInt. Si definisca prima la versione ricorsiva e poi quella ricorsiva-tail. Esempio:?- maxlist([[3,10,2], [6,9],[1,2]], X). yes, X = [10,9,2] Soluzione: maxlist([],[]):-!. maxlist([x Y],[N T]):- max(x,n),maxlist(y,t). Versione ricorsiva max([x],x):-!. max([x T],X):- max(t,n),x>=n,!. max([x T],N):- max(t,n). Versione iterativa max([x T],M):- max(t,x,m). max([],m,m):-!. max([h T],MT,M):- H>MT,!,max(T,H,M). max([h T],MT,M):- max(t,mt,m). Esercizi Prolog 1
2 Esercizio 2 Data una lista L1 e un numero intero N, scrivere un predicato Prolog domanda1(l1,n,l2) che restituisca in L2 la lista degli elementi di L1 che sono liste contenenti solo due valori interi positivi fra 1 e 9 la cui somma valga N. Esempio: :- domanda1([[3,1],5,[2,1,1],[3],[1,1,1],a, [2,2]],4,L2). yes, L2 = [[3,1], [2,2]] Soluzione: domanda1([],n,[]). domanda1([[a,b] R ], N, [[A,B] S]):- N is A + B,!, domanda1( R,N,S ). domanda1([_ R], N,S ):- domanda1( R,N,S ). Esercizi Prolog 2
3 Esercizio 3 Si definisca un predicato in PROLOG chiamato averstud che applicato a un numero di matricola di uno studente Matr e a una lista di esami LE dia come risultato la media AV dei suoi voti. Ogni esame sia rappresentato da un termine della lista LE della forma esame(matr,esame,voto). Si definisca prima la versione ricorsiva e poi quella ricorsiva-tail. Esempio:?-averStud(s1,[esame(s2,f1,30), esame(s1,f1,27),esame(s3,f1,25), esame(s1,f2,30)], AV). yes, AV = 28.5 Esercizi Prolog 3
4 Soluzione: % versione ricorsiva averstud(s,l,av) :- totstud(s,l,n,t), N > 0, AV is T/N. totstud(_,[],0,0) :-!. totstud(s,[esame(s,_,v) R],N,T) :-!, totstud(s,r,nn,tt), N is NN + 1, T is TT + V. totstud(s,[_ R],N,T) :- totstud(s,r,n,t). % versione tail-ricorsiva averstud(s,l,av) :- totstud(s,l,0,n,0,t), N > 0, AV is T/N. totstud(_,[],n,n,t,t) :-!. totstud(s,[esame(s,_,v) R],NI,NO,TI,TO):-!, N is NI + 1, T is TI + V, totstud(s,r,n,no,t,to). totstud(s,[_ R],NI,NO,TI,TO) :- totstud(s,r,ni,no,ti,to). Esercizi Prolog 4
5 Esercizio 4 Si scriva un programma Prolog che, prendendo in ingresso due liste L1 e L2, restituisca in uscita due liste L3 e L4 tali che L3 contenga gli elementi di L1 che appartengono anche a L2, mentre L4 contenga gli elementi di L1 che non appartengono a L2. Si supponga disponibile il predicato member. Si dica inoltre se il predicato così definito è ricorsivo tail. Esempio:?-list_mem([a,r,t],[t,s,m,n,a],L3,L4). restituirà L3=[a,t] e L4=[r]. Soluzione: list_m([],l2,[],[]). list_m([a Rest1],L2,[A Rest3],L4):- member(a,l2),!,list_m(rest1,l2,rest3,l4). list_m([a Rest1],L2,L3,[A Rest4]):- list_m(rest1,l2,l3,rest4). Il predicato è ricorsivo tail. Esercizi Prolog 5
6 Esercizio 5 Si scriva un predicato Prolog che data una lista ed un elemento El appartenente alla lista, restituisca in uscita l'elemento successivo ad El nella lista. Esempio:?- consec(3, [1,7,3,9,11],X). yes X=9 Nel caso in cui El sia l'ultimo elemento il predicato dovrà fallire. Soluzione consec(el, [El [X _]],X):-!. consec(el, [_ Tail],X):- consec(el,tail,x). Esercizi Prolog 6
7 Esercizio 6 Si scriva un predicato Prolog list_to_set a due argomenti che data una lista di liste come primo argomento leghi il secondo argomento a una lista nella quale sono state eliminate le liste ripetute o le loro permutazioni. Per esempio dato il goal:?-list_to_set([[1,2,3],[3,1,2],[1]], Y). si vuole ottenere: yes Y=[[3,1,2],[1]] Per esempio dato il goal:?-list_to_set([[1,2],[1,2],[1,2]], Y). si vuole ottenere: yes Y=[[1,2]] Si supponga dato il predicato permutation(x,y) che verifica se una lista X è una permutazione della lista Y. Esercizi Prolog 7
8 Soluzione list_to_set([],[]):-!. list_to_set([i R],[I R1]):- not member_list(i,r),!, list_to_set(r,r1). list_to_set([i R],R1):- list_to_set(r,r1). member_list(x,[y _]):-permutation(x,y),!. member_list(x,[_ R]):-member_list(X,R). Esercizi Prolog 8
9 Esercizio 7 Si scriva un programma Prolog che data in ingresso una lista di liste con 2 elementi ciascuna ed una costante c1 restituisca in uscita due liste DX ed SX, la prima contenente gli elementi che nelle coppie compaiono a destra di c1, la seconda a sinistra. Soluzione coppie([],_,[],[]). coppie([[x,x] T],X,[X Td],[X Ts]) :-!, coppie(t,x,td,ts). coppie([[x,y] T],X,[Y Td],Ts) :-!, coppie(t,x,td,ts). coppie([[y,x] T],X,Td,[Y Ts]) :-!, coppie(t,x,td,ts). coppie([_ T],X,Td,Ts) :- coppie(t,x,td,ts). Esercizi Prolog 9
10 Esercizio 8 Scrivere un predicato Prolog che fornisce l ultimo elemento di una lista. Esercizio 9 Si definisca un predicato Prolog che calcola i massimi locali (esclusi gli estremi) di una lista, ad esempio: :- max_loc([5,4,7,2,3,6,1,2],x) yes, X=[7,6] Esercizio 10 Dare un programma in Prolog che definisca la relazione tra due liste di avere l'una lunghezza doppia dell'altra. Esercizio 11 Scrivere un predicato Prolog per verificare se una lista è palindroma Esercizio 12 Dato un albero binario, si scriva un predicato che calcola la profondità massima dell albero. Esercizi Prolog 10
11 Esercizio 13 Dare un programma in Prolog che definisca la relazione nodiinterni tra un albero binario e un naturale, tale che il numero naturale indichi il numero di nodi interni (non foglie) dell'albero Esercizio 14 Dati due alberi A1 ed A2 si scriva un predicato che verifica se A1 è un sottoalbero di A2. Esercizio 15 Data una matrice NxN rappresentata come lista di liste, si calcoli la somma degli elementi della diagonale principale. Esercizio 16 Una matrice M di bit n m, si dice matrice C-Grey se, j=1,,m- 1, la j-esima colonna della matrice differisce dalla colonna (j+1)- esima esattamente in un bit. Si realizzi un programma Prolog che, data M rappresentata come lista di colonne, risponda sì se M è C- Grey. Esercizio 17 Scrivere un predicato flatten che appiattisce una lista di liste. Ad esempio: :- flatten([1,a,[2,3],[],h,f(3),[c,[d,[e]]]],l). yes, L=[1,a,2,3,h,f(3),c,d,e] Esercizi Prolog 11
Linguaggio C++ 8. Matrici
2009-2010 Ingegneria Aerospaziale Prof. A. Palomba - Elementi di Informatica (E-Z) Linguaggio C++ 8 Matrici Linguaggio C++ 8 1 Array a più dimensioni. Sintassi generale : tipo nome [dimensione 1][dimensione
Informatica/ Ing. Meccanica/ Prof. Verdicchio/ 14/02/2012 / Foglio delle domande / VERSIONE 1
Informatica/ Ing. Meccanica/ Prof. Verdicchio/ 14/02/2012 / Foglio delle domande / VERSIONE 1 1) Il bus in un computer trasporta a) solo dati b) solo istruzioni c) sia dati sia istruzioni 2) In una sequenza
In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.
Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più
Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.
Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz
Linguaggi e Grammatiche Liberi da Contesto
N.Fanizzi-V.Carofiglio Dipartimento di Informatica Università degli Studi di Bari 22 aprile 2016 1 Linguaggi Liberi da Contesto 2 Grammatiche e Linguaggi Liberi da Contesto G = (X, V, S, P) è una grammatica
Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari
Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare
Algoritmi e Strutture Dati. HeapSort
Algoritmi e Strutture Dati HeapSort Selection Sort: intuizioni L algoritmo Selection-Sort scandisce tutti gli elementi dell array a partire dall ultimo elemento fino all inizio e ad ogni iterazione: Viene
C I R C O N F E R E N Z A...
C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della
Esercitazione 3. Espressioni booleane I comandi if-else e while
Esercitazione 3 Espressioni booleane I comandi if-else e while Esercizio Si consideri la seguente istruzione: if (C1) if (C2) S1; else S2; A quali delle seguenti interpretazioni corrisponde? if (C1) if
AMBIENTE EXCEL CALCOLO DEL RESTO DELLA DIVISIONE FRA NATURALI
AMBIENTE EXCEL CALCOLO DEL RESTO DELLA DIVISIONE FRA NATURALI Costruisci un foglio di lavoro che calcoli il resto r della divisione tra a e b (con a, b N e b 0) ed emetta uno dei seguenti messaggi : a
TEOREMA DEL RESTO E REGOLA DI RUFFINI
TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente
Risoluzione di problemi ingegneristici con Excel
Risoluzione di problemi ingegneristici con Excel Problemi Ingegneristici Calcolare per via numerica le radici di un equazione Trovare l equazione che lega un set di dati ottenuti empiricamente (fitting
DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze
DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da..., si dice che a è divisibile per b se... b) In N la divisione è possibile solo se... 2. Sostituisci
ESERCIZI DI PROBLEM SOLVING E COMPOSIZIONE DEI DIAGRAMMI DI FLUSSO per le classi seconde
ESERCIZI DI PROBLEM SOLVING E COMPOSIZIONE DEI DIAGRAMMI DI FLUSSO per le classi seconde vers.3 in lavorazione Docente SAFFI FABIO Contenuti 1. Esercizi generici sul diagramma di flusso - flow chart...2
Heap e code di priorità
Heap e code di priorità Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica AA 2009/2010
Informatica B
2013-2014 Matlab Laboratorio del 14/01/2014 Responsabili di laboratorio: Gianluca Durelli: [email protected] Luigi Malago : [email protected] Materiale di laboratorio reperibile all indirizzo: www.gianlucadurelli.com
ADT Coda con priorità
Code con priorità ADT Coda con priorità Una coda con priorità è una struttura dati dinamica che permette di gestire una collezione di dati con chiave numerica. Una coda con priorità offre le operazioni
UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Matlab: esempi ed esercizi
UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA Matlab: esempi ed esercizi Sommario e obiettivi Sommario Esempi di implementazioni Matlab di semplici algoritmi Analisi di codici Matlab Obiettivi
Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN [email protected]
Esercitazioni di Reti Logiche Lezione 1 Rappresentazione dell'informazione Zeynep KIZILTAN [email protected] Introduzione Zeynep KIZILTAN Si pronuncia Z come la S di Rose altrimenti, si legge come
1 Multipli e sottomultipli. Divisibilità
Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo
Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara
STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA
STATISTICA DESCRITTIVA Elementi di statistica medica STATISTICA DESCRITTIVA È quella branca della statistica che ha il fine di descrivere un fenomeno. Deve quindi sintetizzare tramite pochi valori(indici
EQUAZIONE DELLA RETTA
EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale
Esercitazione 10. 21 Dicembre 2010 (2 ore)
Esercitazione 10 21 Dicembre 2010 (2 ore) Riassunto Nell'esecitazione di oggi abbiamo lavorato ancora sulle funzioni. Abbiamo inoltre introdotto alcune delle seguenti funzioni per tracciare i grafici.
ESAME DI STATO. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza. Prova 4. Anno Scolastico Classe:... Data:...
Prova Nazionale di Matematica: Simulazioni - a cura di M. Zarattini Prova 4 ESAME DI STATO Anno Scolastico 20. - 20. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza Classe:... Data:...
1 Multipli di un numero
Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono
ESERCITAZIONE MICROECONOMIA (CORSO B) 21-12-2009 ESEMPI DI ESERCIZI DI TEORIA DEI GIOCHI
ESERCITZIONE MICROECONOMI (CORSO ) --009 ESEMPI DI ESERCIZI DI TEORI DEI GIOCHI Questo documento contiene alcuni esempi di esercizi di teoria dei giochi. Gli esercizi presentati non corrispondono esattamente
EXCEL: FORMATTAZIONE E FORMULE
EXCEL: FORMATTAZIONE E FORMULE Test VERO o FALSO (se FALSO giustifica la risposta) 1) In excel il contenuto di una cella viene visualizzato nella barra di stato 2) In excel il simbolo = viene utilizzato
ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il
Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 6 Eliminazione di Gauss con scambi di righe Sia A O una matrice m n. Abbiamo illustrato nella Lezione 5 un algoritmo che ha come
Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1
Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa E03 Esempi di algoritmi e programmi A. Miola Settembre 2006 http://www.dia.uniroma3.it/~java/fondinf1/ Esempi di algoritmi e
SQL - Sottointerrogazioni
una delle ragioni che rendono SQL un linguaggio potente è la possibilità di esprimere interrogazioni più complesse in termini di interrogazioni più semplici, tramite il meccanismo delle subqueries (sottointerrogazioni)
alberi binari e ricorsione
alberi binari e ricorsione un albero binario: ogni nodo ha al più 2 figli ogni figlio è destro o sinistro figlio sinistro nodo interno radice figlio destro foglia cammini = sequenze di nodi = sequenze
7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.
NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene
Successioni ricorsive lineari
Presentazione del problema In un piccolo comune, 1000 abitanti, il tasso di mortalità annuo è del 20%; fortunatamente ogni anno nascono 100 bambini. Qual è nel tempo l'evoluzione della popolazione? Si
SISTEMI DI 1 GRADO CON DUE EQUAZIONI IN DUE INCOGNITE
Pagina 1 di 6 SISTEMI DI 1 GRADO CON DUE EQUAZIONI IN DUE INCOGNITE L insieme di due equazioni di primo grado in due incognite si dice SISTEMA DI 1 GRADO. La soluzione del sistema è ogni coppia di numeri
Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi
Linguaggi di Programmazione Corso C Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali Nicola Fanizzi ([email protected]) Dipartimento di Informatica Università degli Studi di Bari Grammatiche
Appunti ed esercizi sulle coniche
1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O
Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m
Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Vale la [1] perché per le proprietà delle potenze risulta a m a
Esercitazione n o 3 per il corso di Ricerca Operativa
Esercitazione n o 3 per il corso di Ricerca Operativa Ultimo aggiornamento October 17, 2011 Fornitura acqua Una città deve essere rifornita, ogni giorno, con 500 000 litri di acqua. Si richiede che l acqua
Indicatori statistici
Indicatori statistici Ciro Marziliano 10 settembre 2015 Indice 1 Indicatori sugli immatricolati 2 1.1 Immatricolati........................................ 2 1.2 Immatricolati al primo anno................................
1 Definizione di sistema lineare omogeneo.
Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari
Punti nel piano cartesiano
Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e
ESERCIZI SVOLTI Giuliano Bonollo - Michele Bonollo
ESERCIZI SVOLTI Giuliano Bonollo - Michele Bonollo 1 La seguente tabella riporta le frequenze relative riguardanti gli studenti di un università e gli esiti dell esame da essi sostenuto. Qual è la percentuale
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli
Programmazione Ricorsione
Programmazione Ricorsione Samuel Rota Bulò DAIS Università Ca Foscari di Venezia. Outline Ricorsione Cos è la ricorsione? In matematica... n! = { n (n 1)! se n > 0 1 altrimenti N = {0} {i + 1 : i N} Principio
04 - Numeri Complessi
Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,
DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze
DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da zero, si dice che a è divisibile per b se la divisione a : b è esatta, cioè ha resto 0 b) In
Proprietà delle relazioni 1
Proprietà delle relazioni 1 Ricordiamo che una proprietà vale se vale per ogni elemento dell insieme. Al contrario perché non valga basta un controesempio, cioè anche un solo caso per il quale la proprietà
La simulazione con DERIVE Marcello Pedone LE SIMULAZIONI DEL LANCIO DI DADI CON DERIVE
LE SIMULAZIONI DEL LANCIO DI DADI CON DERIVE Premessa Abbiamo già visto la simulazione del lancio di dadi con excel Vedi: http:///statistica/prob_simu/index.htm Ci proponiamo di ottenere risultati analoghi
Rappresentazioni numeriche
Rappresentazioni numeriche Un numero è dotato di un valore una rappresentazione La rappresentazione di un numero è il sistema che utilizziamo per indicarne il valore. Normalmente è una sequenza (stringa)
ESERCIZI DEL CORSO DI INFORMATICA
ESERCIZI DEL CORSO DI INFORMTIC Questa breve raccolta di esercizi vuole mettere in luce alcuni aspetti della prima parte del corso e fornire qualche spunto di riflessione. Il contenuto del materiale seguente
Esercizi per il corso di Programmazione I
Esercizi per il corso di Programmazione I Programmi senza IF e cicli Esercizio 1 Leggere da tastiera il raggio r di una circonferenza, calcolare area e lunghezza della circonferenza e visualizzare a video
Roadmap. Ricorsione: funzioni ricorsive. Definizione di fattoriale. Definizione dei numeri Fibonacci
Modulo di Roadmap 0. Primi passi con Java 1. Buone abitudini 2. Tipi di dati primitivi 3. Uso di classi 4. Leggere e scrivere 5. Definire metodi 7. Array e Collection 8. Progetto di classi 9. Ereditarietà
MATRICI E SISTEMI LINEARI
- - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli
12) Metodo dei minimi quadrati e linea di tendenza
12) Metodo dei minimi quadrati e linea di tendenza 43 Si supponga di avere una tabella di dati {y exp i} i=1,,n in funzione di altri dati {x i } i=1,,n che siano il risultato di una qualche misura sperimentale.
MONOMI. Donatella Candelo 13/11/2004 1
Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere
Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo
Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano
Esercitazione 5. Procedure e Funzioni Il comando condizionale: switch
Esercitazione 5 Procedure e Funzioni Il comando condizionale: switch Comando: switch-case switch (espressione) { /* espressione deve essere case costante1: istruzione1 di tipo int o char */ [break]; case
4 0 = 4 2 = 4 4 = 4 6 = 0.
Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono
Compito Sistemi Informativi LA. Tempo concesso : 90 minuti 28 Giugno 05 Nome: Cognome: Matricola: Esercizio 1
Compito Sistemi Informativi LA. Tempo concesso : 90 minuti 28 Giugno 05 Nome: Cognome: Matricola: Esercizio 1 Si considerino le seguenti specifiche relative alla realizzazione del sistema informativo di
Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado.
D1. Retta D1.1 Equazione implicita ed esplicita Ogni equazione di primo grado in due incognite rappresenta una retta sul piano cartesiano (e viceversa). Si può scrivere un equazione di primo grado in due
Distribuzioni di probabilità
Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione
Esercizi svolti sulla parabola
Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice
I RADICALI QUADRATICI
I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,
Fondamenti di Informatica
Fondamenti di Informatica lesson 25 Exercises 2013/06/23 Prof. Emiliano Casalicchio [email protected] Esami n Appelli (Prova Scritta - Prova Pratica) 1 Luglio (ore 9:00) 3 Luglio (ore 14)
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 41 Outline 1 2 3 4 5 () Statistica 2 / 41 Misura del legame Data una variabile doppia (X, Y ), la
FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti
FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (7 punti) Si formalizzi in logica dei predicati del primo ordine la seguente
Chi non risolve esercizi non impara la matematica.
5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi
Fig. 1: rotore e statore di una dinamo
La dinamo La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua. Costruttivamente è costituita da un sistema induttore
DIP.LAB.MCR E.d L/1. Emissione Redatta da: Dott. Vitale Francesco U.O. Patologia Clinica Distretto Ospedaliero PA1 P.O.Partinico.
DIP.LAB.MCR E.d L/1 Data Pagina 1 di 5 Emissione Redatta da: Dott. Vitale Francesco U.O. Patologia Clinica Distretto Ospedaliero PA1 P.O.Partinico Struttura: Dipartimento di Diagnostica di Laboratorio
Note sull implementazione in virgola fissa di filtri numerici
Note sull implementazione in virgola fissa di filtri numerici 4 settembre 2006 1 Introduction Nonostante al giorno d oggi i processori con aritmetica in virgola mobili siano molto comuni, esistono contesti
Sistemi di equazioni lineari
Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti
Prof.ssa Laura Salvagno
Prof.ssa Laura Salvagno Nella vita di tutti i giorni abbiamo spesso a che fare con il concetto di rapporto, partiamo perciò da alcuni esempi per introdurre l argomento. Consideriamo tutte le gare combattute
= < < < < < Matematica 1
NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato
Alberi Bilanciati di Ricerca
Alberi Bilanciati di Ricerca Damiano Macedonio Uniersità Ca' Foscari di Venezia [email protected] Copyright 2009, 2010 Moreno Marzolla, Uniersità di Bologna (http://www.moreno.marzolla.name/teaching/asd2010/)
Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A
Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 5-6 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 5//5 ) Dato un triangolo, siano a, b le lunghezze di
Esercitazione su Bilancio Familiare
Esercitazione su Bilancio Familiare 1 - Apri una nuova cartella di lavoro vuota di Excel 2 - Rinomina "Totali" il primo foglio. 3 - Nel foglio, ora rinominato "Totali", inizia a compilare i seguenti dati,
Importanza delle incertezze nelle misure fisiche
Importanza delle incertezze nelle misure fisiche La parola errore non significa equivoco o sbaglio Essa assume il significato di incertezza da associare alla misura Nessuna grandezza fisica può essere
2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:
Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante
Fondamenti di Informatica. Codifiche per numeri decimali: virgola fissa e mobile
Corso di per il corso di Laurea di Ingegneria Meccanica Codifiche per numeri decimali: virgola fissa e mobile Università degli Studi di Udine - A.A. 2010-2011 Docente Ing. Sandro Di Giusto Ph.D. 1 Rappresentazioni
LA FORZA...SIA CON TE!
LA FORZA...SIA CON TE! CHE COS'E' LA FORZA? E' UNA GRANDEZZA FISICA VETTORIALE. L'UNITA' DI MISURA NEL S.I. E' IL "NEWTON" ( N ), DAL CELEBRE SCIENZIATO INGLESE ISAAC NEWTON, CHE NE HA STUDIATO LE LEGGI,
Excel come foglio di calcolo. Altri Grafici con Excel Istogrammi, grafici a torta
Excel come foglio di calcolo Altri Grafici con Excel Istogrammi, grafici a torta Funzioni di Excel per elaborazioni di dati presenti nel foglio Excel prevede una serie di funzioni predeterminate, raggruppate
11.4 Chiusura transitiva
6 11.4 Chiusura transitiva Il problema che consideriamo in questa sezione riguarda il calcolo della chiusura transitiva di un grafo. Dato un grafo orientato G = hv,ei, si vuole determinare il grafo orientato)
Applicazioni lineari e diagonalizzazione. Esercizi svolti
. Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)
