Algoritmi e Strutture Dati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi e Strutture Dati"

Transcript

1 Algoritmi e Strttre Dati Itrodzioe Adetes frta ivat - Virgilio Se o sapete qale strada predere, fate a scelta casale Capitolo 7 - Algoritmi probabilistici Alberto Motresor Uiversità di Treto This work is licesed der the Creative Commos Attribtio-NoCommercial-ShareAlike Licese. To view a copy of this licese, visit or sed a letter to Creative Commos, 543 Howard Street, 5th Floor, Sa Fracisco, Califoria, 9405, USA. Abbiamo già icotrato il cocetto di casalità Aalisi del caso medio - si calcola a media s ttti i possibili dati di igresso, dopo aver idividato a distribzioe di probabilità per essi Esempio: caso medio Qicksort, si assme che ttte le permtazioi siao eqiprobabili Negli algoritmi probabilistici Il calcolo delle probabilità è applicato o ai dati di ipt, ma ai dati di otpt De possibilità Algoritmi corretti, il ci tempo di fzioameto è probabilistico Algoritmo la ci correttezza è probabilistica Esempio - espressioe poliomiale lla Statistica Defiizioe: data espressioe algebrica poliomiale p(x,..., x) i variabili, determiare se p è ideticamete lla oppre o Algoritmi statistici s vettori: Estraggoo da vettore merico alce caratteristiche statisticamete rilevati Discssioe Esempi Assmiamo che o sia i forma di moomi - altrimeti è baale Gli algoritmi basati s semplificazioi soo molto complessi Algoritmo Si geera a -pla di valori v,..., v Media: µ = (A[] + A[] A[])/ Variaza (sample variace): Moda: il valore più freqete (o i valori) = (A[i] µ) Mediao: il valore che occperebbe la posizioe / se l'array fosse ordiato i= Si calcola x= p(v,..., v) Se x 0, p o è ideticamete llo Se x = 0, p potrebbe essere ideticamete llo Selezioe: Dato array A[..] di valori distiti e valore k, trovare l'elemeto che è maggiore di esattamete k- elemeti Se vi = radom(, d), dove d è il grado massimo del poliomio, allora la probabilità di errore o spera /. Si ripete k volte, ridcedo la probabilità di errore a (/) k 3 4

2 Selezioe: casi particolari Selezioe: casi particolari Ricerca del miimo, massimo T() = - = θ() cofroti Possiamo dimostrare che qesto algoritmo è ottimale? Idea: scelta del miimo come toreo Ttti gli elemeti (trae il vicitore) deve perdere almeo partita Qidi il problema è Ω() ITEM mi(item[]a, iteger ) ITEM mi A[] for iteger i to do if A[i] < mi the mi A[i] retr mi Ricerca del secodo miimo Trovare il secodo elemeto più piccolo dell'array Domada: Aalisi del caso peggiore e medio ITEM mi(item[]a, iteger ) ITEM mi A[] ITEM mi A[] if mi < mi the mi mi for iteger i 3 to do if A[i] < mi the mi A[i] if mi < mi the mi mi retr mi 5 6 Selezioe: casi particolari Selezioe per piccoli valori di k Ricerca del secodo miimo L'albero del toreo permette di trovare il secodo miimo i O( + log ) cofroti el caso pessimo Dimostrazioe passi ecessari per la ricerca del miimo Siao M e S il miimo e il secodo miimo Sicramete c'è stato icotro fra M e S, dove M ha vito Se così o fosse, esisterebbe valore X<S che ha battto S assrdo dalla defiizioe di S Qidi, basta cercare ei log valori battti direttamete da M per trovare il secodo miimo. Totale: O( + log ) Itizioe L'albero del toreo pò essere simlato da o heap L'algoritmo pò essere geeralizzato a valori geerici di k > Complessità comptazioale: O( + k log ) Se k = O(/log ), il costo è O() No va acora bee per k = / Codice heapselect(item[] A, iteger, iteger k) bildheap(a) for i := to k- do deletemi(a, ) retr mi(a) 7 8

3 Selezioe Complessità Idea Approccio divide-et-impera simile al Qicksort Ma essedo problema di ricerca, o è ecessario cercare i etrambe le partizioi, basta cercare i a sola di esse ITEM selezioe(item[]a, iteger primo, iteger ltimo, iteger k) if primo = ltimo the retr A[primo] iteger j pero(a, primo, ltimo) iteger q j primo + if k = q the retr A[j] if k<qthe retr selezioe(a, primo,j,k) retr selezioe(a, j +, ltimo, k q) primo j ltimo q Caso pessimo: O( ) Caso ottimo: O() Caso medio Assmiamo che pero() restitisca co la stessa probabilità a qalsiasi posizioe j del vettore A T () =0, per =0, T () = + T (max{q, q}) apple + q= q=b/c T (q), per caso sia pari, è facile vedere che i valori b c b c ve 9 0 Dimostrazioe Versioe probabilistica Per sostitzioe Siamo partiti dall asszioe apple T ( 0 ) apple c 0, 8 0 < apple T () apple = + c + c q=b/c ( ) q apple + c q q= b/c (b/c ) b/c X q= qa j assme eqiprobabilisticamete ttti i valori compresi fra e E se o è vero? Lo forziamo oi A[radom(primo, ltimo)] A[primo] Qesto accorgimeto vale ache per QickSort apple + c ( ) (/ + ) (/) = + c ( ) (c/) (/ + ) = + c c c/4 c/ = c c oiché l ltima qatità tra paretesi è miore di per sfficietemete grade e per

4 Selezioe i tempo pessimo lieare Selezioe i tempo pessimo lieare Algoritmo determiistico Se cooscessi tale algoritmo Determiistico: o ecessita di radomizzazioe il problema della selezioe sarebbe qidi risolto Algoritmo complesso, co fattori coivolti molto alti... ma dove lo trovo simile algoritmo? Iteressate dal pto di vista della tecica Rilassiamo le ostre pretese Svilppiamo l'idea Sppoiamo di avere algoritmo black box che mi ritori il mediao di valori i tempo O() Domada Potrei tilizzarlo per ottimizzare il problema della selezioe? Che complessità otterrei? Sppoiamo di avere algoritmo black box che mi ritori valore che dista al più /4 dal mediao (ell'ordiameto) Domada Potrei tilizzarlo per ottimizzare il problema della selezioe? Che complessità otterrei? U algoritmo del geere esiste! 3 4 Selezioe determiistica - cei Selezioe determiistica L'idea dell'algoritmo Sddividi i valori i grppi di 5. Chiameremo l'i-esimo grppo Si, co i [, /5 ] Trova il mediao mi di ogi grppo Si Tramite a chiamata ricorsiva, trova il mediao M dei mediai mi Usa M come pivot e richiama l'algoritmo ricorsivamete sll'array opporto, come ella selezioe() radomizzata Caso base Possiamo tilizzare algoritmo d'ordiameto per trovare il mediao qado la dimesioe scede sotto a certa soglia ITEM select(item[]a, iteger primo, iteger ltimo, iteger k) % Se la dimesioe è iferiore ad a soglia (0), ordia il vettore e % restitisci il k-esimo elemeto di A[primo...ltimo] if ltimo primo +apple 0 the IsertioSort(A, primo, ltimo) % Versioe co idici iizio/fie retr A[primo + k ] % Divide A i d/5e sottovettori di dim. 5 e calcola la mediaa di ogo di essi M ew iteger[...d/5e] for i to d/5e do M[i] media5(a, primo +(i ) 5, ltimo) % Idivida la mediaa delle mediae e sala come pero 5 6

5 Selezioe determiistica d e % Idivida la mediaa delle mediae e sala come pero ITEM m select(m,, d/5e, dd/5e/e) iteger j pero(a, primo, ltimo,m) % Versioe co m i ipt % Calcola l idice q di m i [primo...ltimo] % Cofroto q co l idice cercato e ritora il valore cosegete iteger q j primo + if q = k the retr m if q<kthe retr select(a, primo,q,k) retr select(a, q +, ltimo,k q) Selezioa determiistica - cei Lemma Lemma Il calcolo dei mediai M[] richiede al più 6 /5 cofroti. La prima chiamata ricorsiva dell'algoritmo select() viee effettata s circa /5 Lemma 3 (esattamete /5 ) elemeti La secoda chiamata ricorsiva dell'algoritmo select() viee effettata al massimo s 7/0 elemeti (esattamete - 3 /5 / ) Teorema L'algoritmo select() esege el caso pessimo O() cofroti Eqazioe di ricorreza: T() T(/5) + T(7/0) + /5 E' possibile dimostrare che T() = O() 7 8 Alce ote storiche Bcket sort Il problema della selezioe ella storia... Ipotesi sll'ipt Nel 883 Lewis Carroll (!) otò che il secodo premio ei torei di teis o veiva assegato i maiera eqa. I valori da ordiare soo meri reali iformemete distribiti ell'itervallo [0, ) Nel 93, Schreier dimostrò che + log - icotri soo sempre sfficieti per trovare il secodo posto Qalqe isieme di valori distribiti iformemete pò essere ormalizzato ell'itervallo [0, ) Nel 973, a opera di Blm, Floyd, Pratt, Rivest e Tarja, appare il primo algoritmo determiistico Idea Dividere l'itervallo i sottoitervalli di dimesioe /, detti bcket, e poi distribire gli meri ei bcket Per l'ipotesi di iformità, il mero atteso di valori ei bcket è I sigoli bcket possoo essere ordiati co Isertio Sort

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 17 - Algoritmi probabilistici Alberto Montresor Università di Trento This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Selezioe e statistiche di ordie Problemi di statistiche d ordie Estrarre da gradi quatità di dati u piccolo isieme di idicatori che e rappresetio caratteristiche statisticamete

Dettagli

i-esima statistica d ordine di un insieme = i-esimo elemento più piccolo

i-esima statistica d ordine di un insieme = i-esimo elemento più piccolo Geeralità i-esima statistica d ordie di u isieme i-esimo elemeto più piccolo prima statistica d ordie di u isieme miimo -esima statistica d ordie di u isieme di elemeti massimo Mediao di u isieme di elemeti

Dettagli

CAPITOLO 3. Quicksort

CAPITOLO 3. Quicksort CAPITOLO 3 Quicksort I questa lezioe presetiamo l algoritmo di ordiameto Quicksort(vedi []). L algoritmo Quicksort riceve i iput u array A e idici p r ed ordia l array A[p,, r] el modo seguete. L array

Dettagli

Spazio vettoriale Euclideo

Spazio vettoriale Euclideo Spazio vettoriale Eclideo Nell isieme R delle ple ordiate, o vettori ad compoeti, di meri reali abbiamo defiito la somma + v di de vettori e il prodotto αv di o scalare per vettore; la strttra cosi otteta

Dettagli

Divide et Impera. Minimo e Massimo. Minimo e Massimo. Risoluzione di problemi per partizione con lavoro bilanciato

Divide et Impera. Minimo e Massimo. Minimo e Massimo. Risoluzione di problemi per partizione con lavoro bilanciato Divide et Imera Risoluzioe di roblemi er artizioe co lavoro bilaciato Miimo e Massimo L algoritmo Mi-Max calcola il miimo ed il massimo tra i valori di u vettore A. Mi-Max A least A[] greatest A[] for

Dettagli

Algoritmi e Strutture Dati (Mod. B) Programmazione Dinamica (Parte I)

Algoritmi e Strutture Dati (Mod. B) Programmazione Dinamica (Parte I) Algoritmi e Strutture Dati (Mod. B) Programmazioe Diamica (Parte I) Numeri di Fiboacci Defiizioe ricorsiva (o iduttiva) F() = F() = F() = F() + F() Algoritmo ricorsivo Fib(: itero) if = or = the retur

Dettagli

Relazioni di ricorrenza

Relazioni di ricorrenza Relazioi di ricorreza Teciche di soluzioe e teorema del metodo pricipale Ugo de' Liguoro - Algoritmi e Sperimetazioi 03/04 - Lez. Relazioi di ricorreza Ci soo metodi geerali per trovare l ordie di gradezza

Dettagli

Note per la Lezione 11 Ugo Vaccaro

Note per la Lezione 11 Ugo Vaccaro Progettazioe di Algoritmi Ao Accademico 2017 2018 Note per la Lezioe 11 Ugo Vaccaro Abbiamo visto ella lezioe scorsa u argometo ituitivo secodo il quale il tempo medio di esecuzioe di QuickSort è O( log

Dettagli

Tempo di calcolo. , per cui x è un caso più sfavorevole quando T. peggiore(

Tempo di calcolo. , per cui x è un caso più sfavorevole quando T. peggiore( Tempo di calcolo. Tempo di calcolo di u algoritmo La complessità computazioale è ua misura della difficoltà di risolvere problemi di calcolo co algoritmi. Per misurare la complessità di u algoritmo si

Dettagli

Informatica 3. Informatica 3. LEZIONE 18: Ordinamento. Lezione 18 - Modulo 1. Introduzione. Analisi algoritmi di ordinamento.

Informatica 3. Informatica 3. LEZIONE 18: Ordinamento. Lezione 18 - Modulo 1. Introduzione. Analisi algoritmi di ordinamento. Iformatica 3 Iformatica 3 LEZIONE 18: Ordiameto Lezioe 18 - Modulo 1 Modulo 1: Algoritmi di base Modulo 2: Shellshort Modulo 3: Quicksort Algoritmi di base Politecico di Milao - Prof. Sara Comai 1 Politecico

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

Corso di Linguaggi e Traduttori 1 AA TEORIA DELLA COMPUTAZIONE (cenni)

Corso di Linguaggi e Traduttori 1 AA TEORIA DELLA COMPUTAZIONE (cenni) Corso di Liguaggi e Traduttori 1 AA 2004-05 TEORIA DELLA COMPUTAZIONE cei) 1 Sommario Iterazioe e ricorsioe Relazioi di ricorreza Complessità computazioale 2 Iterazioe e Ricorsioe Dato u problema, la sua

Dettagli

Algoritmi e Programmazione Avanzata - teoria. Questa lezione si occupa di ordinamenti: gli algoritmi iterativi di ordinamento

Algoritmi e Programmazione Avanzata - teoria. Questa lezione si occupa di ordinamenti: gli algoritmi iterativi di ordinamento lgoritmi e Programmazioe vazata - teoria 1/232 Che cosa c è ella lezioe Questa lezioe si occupa di ordiameti: gli algoritmi iterativi di ordiameto gli algoritmi ricorsivi di ordiameto. 2/232 lgoritmi e

Dettagli

Ricerca di un elemento in una matrice

Ricerca di un elemento in una matrice Ricerca di u elemeto i ua matrice Sia data ua matrice xm, i cui gli elemeti di ogi riga e di ogi coloa soo ordiati i ordie crescete. Si vuole u algoritmo che determii se u elemeto x è presete ella matrice

Dettagli

Algoritmi e Strutture Dati Esercizi Prima parte

Algoritmi e Strutture Dati Esercizi Prima parte Algoritmi e Strutture Dati Esercizi Prima parte Esercizio 1 Si cosideri il seguete codice: 1 i 1 2 k 0 3 while i 4 do if A[i] s 5 the k k + 1 6 A[k] A[i] 7 i i + 1 e si dimostri la sua correttezza rispetto

Dettagli

Programmazione dinamica vs. divide-et-impera

Programmazione dinamica vs. divide-et-impera Programmazioe diamica vs. divide-et-impera Aalogia Soo etrambi paradigmi di sitesi di algoritmi che risolvoo problemi combiado le soluzioi di sottoproblemi Differeza Secodo divide-et-impera si suddivide

Dettagli

Progetto e analisi di algoritmi

Progetto e analisi di algoritmi Progetto e aalisi di algoritmi Roberto Cordoe DTI - Uiversità degli Studi di Milao Polo Didattico e di Ricerca di Crema Tel. 0373 / 898089 E-mail: cordoe@dti.uimi.it Ricevimeto: su apputameto Web page:

Dettagli

3 Ricorrenze. 3.1 Metodo iterativo

3 Ricorrenze. 3.1 Metodo iterativo 3 Ricorreze Nel caso di algoritmi ricorsivi ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

T n = f n log n = log n. 1 ] 1 ] 1 = sono verificate le disuguaglianze c 1

T n = f n log n = log n. 1 ] 1 ] 1 = sono verificate le disuguaglianze c 1 A.A. 00 05 Esame di Algoritmi e strutture dati luglio 005 Esercizio (6 puti) Risolvere co almeo due metodi diversi la seguete relazioe di ricorreza T = T =T Master Theorem a= b= per cui log b a = log /

Dettagli

Ricorrenze. 3 1 Metodo iterativo

Ricorrenze. 3 1 Metodo iterativo 3 Ricorreze 31 Metodo iterativo Il metodo iterativo cosiste ello srotolare la ricorreza fio ad otteere ua fuzioe dipedete da (dimesioe dell iput). L idea è quella di reiterare ua data ricorreza T () u

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Esercizi sull estremo superiore ed inferiore

Esercizi sull estremo superiore ed inferiore AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sull estremo superiore ed iferiore Esercizio svolto. Dire se i segueti isiemi soo limitati iferiormete o superiormete ed, i caso affermativo, trovare l estremo

Dettagli

Ordinamento. Lorenzo Donatiello,Moreno Marzolla Dip. di Scienze dell'informazione Università di Bologna

Ordinamento. Lorenzo Donatiello,Moreno Marzolla Dip. di Scienze dell'informazione Università di Bologna Ordinamento Lorenzo Donatiello,Moreno Marzolla Dip. di Scienze dell'informazione Università di Bologna Original work Copyright Alberto Montresor, University of Trento (http://www.dit.unitn.it/~montreso/asd/index.shtml)

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

Algoritmi di Ordinamento

Algoritmi di Ordinamento Algoritmi di Ordinamento Univ. degli Stdi di Cagliari Algoritmi di Ordinamento per Strttre Lineari Una semplice classe di algoritmi e qella degli algoritmi di ordinamento per strttre lineari. La classe

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018 Primo appello di Calcolo delle probabilità Laurea Trieale i Matematica 22/0/20 COGNOME e NOME... N. MATRICOLA... Esercizio. Siao X e Y due variabili aleatorie idipedeti, co le segueti distribuzioi: X Uif(0,

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

Testing, correttezza e invarianti

Testing, correttezza e invarianti Testing, correttezza e invarianti Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ Copyright 2018 Moreno Marzolla, Università

Dettagli

COMPLESSITA COMPUTAZIONALE ESERCITAZIONI (I PARTE) Tutor: Francesca Piersigilli

COMPLESSITA COMPUTAZIONALE ESERCITAZIONI (I PARTE) Tutor: Francesca Piersigilli COMPLESSITA COMPUTAZIONALE ESERCITAZIONI (I PARTE) Tutor: Fracesca Piersigilli ANALISI DI ALGORITMI Aalizzare u algoritmo sigifica prevedere le risorse che esso richiede: MEMORIA TEMPO Per fare ciò assumeremo

Dettagli

Delimitazioni inferiori e superiori alla complessita di un problema

Delimitazioni inferiori e superiori alla complessita di un problema Delimitazioi iferiori e superiori alla complessita di u problema Alcue teciche Nozioi prelimiari Ua ozioe prelimiare: albero k-ario completo U U albero k-ario è completo se se tutti i i odi iteri hao k

Dettagli

Incertezza. Tipi di incertezza. Tipi di incertezza. Metodo di valutazione dell incertezza di tipo A. Espressione della misura

Incertezza. Tipi di incertezza. Tipi di incertezza. Metodo di valutazione dell incertezza di tipo A. Espressione della misura Espressioe della misra Ua MISURA è a iformazioe costitita da (UI 56): mero Icertezza (co il livello di cofideza, espressa secodo GUM) Uità di misra Misre Meccaiche e Termiche Espressioe della misra ed

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Stima di somme: esercizio

Stima di somme: esercizio Stima di somme: esercizio Valutare l'ordie di gradezza della somma k l (1 + 3 k ) Quado x

Dettagli

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Appendice 2D: Operatori in spazi Hilbertiani

Appendice 2D: Operatori in spazi Hilbertiani ppedice 2D: Operatori i spazi Hilbertiai Operatore  ello spazio Hilbertiao: corrispodeza da geerico elemeto v ad elemeto ivocamete determiato, detto trasformato di v secodo  v Notazioe formale: v dove

Dettagli

06 LE SUCCESSIONI DI NUMERI REALI

06 LE SUCCESSIONI DI NUMERI REALI 06 LE SUCCESSIONI DI NUMERI REALI Ua successioe è ua fuzioe defiita i. I simboli ua f : A tale che f ( ) è ua successioe di elemeti di A. Se poiamo f ( i) ai co i,...,,..., ua successioe può essere rappresetata

Dettagli

Il problema dello zaino

Il problema dello zaino Il problema dello zaino (knapsack problem) Damiano Macedonio mace@unive.it Copyright 2010 2012 Moreno Marzolla, Università di Bologna (http://www.moreno.marzolla.name/teaching/asd2011b/) This work is licensed

Dettagli

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09, CANALE E-O)

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09, CANALE E-O) ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09, CANALE E-O) DISPENSA N. 1 1. Limiti superiori, iferiori ed esatti, O, Ω, Θ Defiizioe 1.1 (Limitazioe Superiore). Diciamo che g() è ua itazioe superiore

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Progettazione di Algoritmi - lezione 23

Progettazione di Algoritmi - lezione 23 Progettazioe di Algoritmi - lezioe 23 Discussioe dell'esercizio [palidroma] Dobbiamo trovare u algoritmo efficiete che data ua striga s di caratteri trova la più luga sottostriga di s che sia palidroma.

Dettagli

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo.

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo. AM110 - ESERCITAZIONI V - VI 16-18 OTTOBRE 2012 Esercizio svolto 1. Dimostrare che ogi isieme fiito ha u massimo ed u miimo. Sia A = {a 1,..., a } R. Dimostriamo che A ha u massimo si procede i maiera

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

SECONDO ESONERO DI AM1 10/01/ Soluzioni

SECONDO ESONERO DI AM1 10/01/ Soluzioni Esercizio. Calcolare i segueti iti: Razioalizzado si ottiee SECONDO ESONERO DI AM 0/0/2008 - Soluzioi 2 + 2, 2 + 2 = 2 + 2 + 2 + 2 = Per il secodo ite ci soo vari modi, e mostro tre. Ora ( ) ( + si = +

Dettagli

algoritmi e strutture di dati

algoritmi e strutture di dati algoritmi e strutture di dati complessità degli algoritmi m.patrigai ota di copyright queste slides soo protette dalle leggi sul copyright il titolo ed il copyright relativi alle slides (iclusi, ma o limitatamete,

Dettagli

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni.

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni. Lezioe del 26 settembre. 1. Successioi. Defiizioe 1 Ua successioe di umeri reali e ua legge che associa a ogi umero aturale = 0, 1, 2,... u umero reale - i breve: e ua fuzioe N R; si scrive ella forma

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica La distribuzioe delle statistiche campioarie Matematica co elemeti di Iformatica Tiziao Vargiolu Dipartimeto di Matematica vargiolu@math.uipd.it Corso di Laurea Magistrale i Chimica e Tecologie Farmaceutiche

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terzi) STUDIO DELLE DISTRIBUZIONI SEMPLICI Esercitazioe. Data la segete distribzioe di freqeza: X 0- -2 2-3 3-5 5-0 0-5 5-25 N 44 35 22 58 60 06 02 a) calcolare le freqeze

Dettagli

Entropia ed informazione

Entropia ed informazione Etropia ed iformazioe Primi elemeti sulla teoria della misura dell iformazioe Per trasmettere l iformazioe è ecessaria ua rete di comuicazioe, che, secodo l approccio teorico di Claude E. Shao e Warre

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi mesi i u allevameto! Si

Dettagli

Algoritmi e Strutture di Dati

Algoritmi e Strutture di Dati Algoritmi e Strutture di Dati Capitolo 0 - Code con priorità e insiemi disgiunti This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license,

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

Il risultato di una prova è un n. aleatorio Funzioni degli esiti: Ω IR X, Y, Z,... funzioni, X(ω), Y (ω), Z(ω)

Il risultato di una prova è un n. aleatorio Funzioni degli esiti: Ω IR X, Y, Z,... funzioni, X(ω), Y (ω), Z(ω) Variabili aleatorie (v.a.) Il risultato di ua prova è u. aleatorio Fuzioi degli esiti: Ω IR X, Y, Z,... fuzioi, X(ω), Y (ω), Z(ω) se B IR, P(X B) = = P({ω Ω : X(ω) B}) = P(X 1 (B)) I geerale iteressa B

Dettagli

Pensiero Algoritmico. Lezione 4 30 Novembre Ripasso. Torri di Hanoi Soluzione. Torri di Hanoi Definizione. Ozalp Babaoglu Università di Bologna

Pensiero Algoritmico. Lezione 4 30 Novembre Ripasso. Torri di Hanoi Soluzione. Torri di Hanoi Definizione. Ozalp Babaoglu Università di Bologna Pesiero lgoritmico Lezioe 4 30 Novembre 06 Ozalp Babaoglu Uiversità di Bologa Passi primitivi Strategia divide-et-impera Ricorsioe Defiizioi ricorsivi Crescita espoeziale Ripasso Torri di Haoi Defiizioe

Dettagli

Distribuzione normale o gaussiana

Distribuzione normale o gaussiana Distribuzioe ormale o gaussiaa Ua variabile radom si dice distribuita ormalmete (o secodo ua curva gaussiaa) se la sua fuzioe di desità di probabilità è del tipo: f () ( ) ep co - rappreseta il valore

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

IL CAMPIONAMENTO. POPOLAZIONE un insieme finito o infinito di unità statistiche

IL CAMPIONAMENTO. POPOLAZIONE un insieme finito o infinito di unità statistiche IL CAMPIONAMENTO Defiizioi POPOLAZIONE u isieme fiito o ifiito di uità statistiche CAMPIONE piccola frazioe di ua popolazioe le cui caratteristiche si approssimao a quelle della popolazioe. Il campioe

Dettagli

Algoritmi e Strutture di Dati

Algoritmi e Strutture di Dati Algoritmi e Strutture di Dati Complessità degli algoritmi m.patrigai Nota di copyright queste slides soo protette dalle leggi sul copyright il titolo ed il copyright relativi alle slides (iclusi, ma o

Dettagli

ESERCIZI - FASCICOLO 1

ESERCIZI - FASCICOLO 1 ESERCIZI - FASCICOLO 1 Esercizio 1 Sia (Ω, A) uo spazio misurabile. Se (A ) 1 è ua successioe di eveti (= elemeti di A), defiiamo lim sup A := A k lim if A = A k. Mostrare che =1 k= (lim sup A ) c = lim

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

Funzioni continue. Definizione di limite e di funzione continua. Esercizio 1. x 0, 1 x 2, 3

Funzioni continue. Definizione di limite e di funzione continua. Esercizio 1. x 0, 1 x 2, 3 Fuzioi cotiue Defiizioe di limite e di fuzioe cotiua Esercizio. Dire quali delle segueti fuzioi soo cotiue. f : 0,, 3, f 0,, 3 Plot Piecewise,,,,, 0, 3.0 0.8 0.6 0.4 0. f è cotiua. Ifatti, fissiamo y [0,].

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioi degli esercizi di Aalisi Matematica I (Prof. Pierpaolo Natalii) Roberta Biachii 6 ovembre 2016 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x2 1 x + 1 π/3. 2. Dimostrare,

Dettagli

Forme Bilineari 1 / 34

Forme Bilineari 1 / 34 Forme Bilieari 1 / 34 Defiizioe applicazioe Dicesi forma bilieare su uo spazio vettoriale V, ua ϕ : V V R che è lieare i etrambi gli argometi, ossìa tale che u,v,w V e a,b R si abbia: ϕ(au + bv,w) =aϕ(u,w)

Dettagli

Argomenti. Stima Puntuale e per Intervallo. Inferenza. Stima. Leonardo Grilli. Università di Firenze Corso di Laurea in Statistica Statistica

Argomenti. Stima Puntuale e per Intervallo. Inferenza. Stima. Leonardo Grilli. Università di Firenze Corso di Laurea in Statistica Statistica Uiversità di Fireze Corso di Laurea i Statistica Statistica Leoardo Grilli Stima Cicchitelli cap. 6 Argometi Defiizioe di stimatore Proprietà degli stimatori (campioi fiiti): No distorsioe Efficieza relativa

Dettagli

Es. di Ordine di crescita. Di quanto aumenta il running time se la taglia ~nlog(n) operazioni. dell input)

Es. di Ordine di crescita. Di quanto aumenta il running time se la taglia ~nlog(n) operazioni. dell input) Ricomiciamo da quato fatto Riflettiamo su quato fatto Problemi icotrati Algoritmi Problemi icotrati Algoritmi Max Subarray Stable Matchig Max Subarray Stable Matchig 2 possibilità! possibilità Algoritmo

Dettagli

Elementi di statistica

Elementi di statistica Elemeti di statistica La misura delle gradezze fisiche può essere effettuata direttamete o idirettamete. Se la misura viee effettuata direttamete si parla di misura diretta; se essa viee dedotta attraverso

Dettagli

Associativo A (B C ) = (A B) C Distributivo su somma: A (B + C ) = (A B) + (A C) Non commutativo:

Associativo A (B C ) = (A B) C Distributivo su somma: A (B + C ) = (A B) + (A C) Non commutativo: MARIIII PRODOO RIIGHE OLONNE Associatio A (B (A B Distribtio s somma: A (B + (A B + (A No commtatio: A B B A No legge allameto prodotto: ( (AB 0 (A0 B0 No legge di cacellazioe é a d é a si: ( (A B (AB

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Uiversità degli Studi di Udie Ao Accademico 00/0 Facoltà di Scieze Matematiche Fisiche e Naturali Corso di Laurea i Iformatica Esercizi di Aalisi Matematica Dott. Paolo Baiti Esercizi del 5 Ottobre 00.

Dettagli

TECNICA DIVIDE ET IMPERA

TECNICA DIVIDE ET IMPERA TECNICA DIVIDE ET IMPERA 1. Itroduzioe Data l istaza di u problema, la strategia del divide-et-impera suggerisce di partizioarla i k sotto-istaze i modo da otteere k uove istaze per lo stesso problema

Dettagli

Esercitazione 3 Sistemi lineari

Esercitazione 3 Sistemi lineari Esercitazioe 3 Sistemi lieari a.a. 2018-19 Esercizio 1 (M) Scrivere ua M-fuctio che calcola l iversa di ua matrice triagolare iferiore L di ordie mediate ua tecica compatta, memorizzadola ella matrice

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE Sia V uo spazio vettoriale sul campo K. Siao v, v,..., v vettori dati apparteeti a V e siao, ioltre, assegati scalari k, k,..., k apparteeti a K. Si defiisce

Dettagli

Y = ln X è normalmente distribuita. (y) = dg(x) dx. f Y. (x) = dy dx f Y. f X. (g(x)) & exp$ dx x - $ % ( x) DISTRIBUZIONE LOG-NORMALE.

Y = ln X è normalmente distribuita. (y) = dg(x) dx. f Y. (x) = dy dx f Y. f X. (g(x)) & exp$ dx x - $ % ( x) DISTRIBUZIONE LOG-NORMALE. DISTRIBUZIONE LOG-NORMALE. La variabile si dice log-ormalmete distribuita se: l è ormalmete distribuita g( l g ( e 0 +. uzioe di desità di probabilità: f ( d d f ( dg( d f (g( dg( d f (. & ep$ - / $ %,

Dettagli

INFERENZA o STATISTICA INFERENTE

INFERENZA o STATISTICA INFERENTE INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe

Dettagli

= = 32

= = 32 Algabra lieare (Matematica CI) - 9 Algebra delle matrici - Moltiplicazioe Euple, righe e coloe Notazioe I algebra lieare giocao u ruolo importate le coppie, tere,, ple ordiate di umeri reali; cosi come

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Capitolo Parte V

Capitolo Parte V Capitolo 1 1.1 Parte V Exercise 1.1. Sia X ua variabile aleatoria, defiita su (Ω,P a valori i E, quasi certamete costate, ossia esiste c E tale che P(X = c = 1. Si mostri che esiste u uico elemeto c E

Dettagli

Esercizi sul metodo degli elementi finiti. Esercizio 1 Si consideri il seguente problema differenziale: du dx. d a(x) dx. du dx.

Esercizi sul metodo degli elementi finiti. Esercizio 1 Si consideri il seguente problema differenziale: du dx. d a(x) dx. du dx. Esercizi sl metodo degli elemeti fiiti Esercizio 1 d a d 1 d d b L 1 e 16 d d e 16 c f L co a 1 b c 4 f 4 L 8 ella forma KU=F+Q essedo Q il vettore derivate dai termii di bordo Discretizzare ora il domiio

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche Corso di laurea i Matematica Corso di Aalisi Matematica -2 AA. 0809.. Cooscere. Dott.ssa Sadra Lucete. Successioi umeriche Defiizioe di successioe, isieme degli elemeti della successioe, successioe defiita

Dettagli

SUCCESSIONI SERIE NUMERICHE pag. 1

SUCCESSIONI SERIE NUMERICHE pag. 1 SUCCESSIONI SERIE NUMERICHE pag. Successioi RICHIAMI Ua successioe di elemeti di u isieme X è ua fuzioe f: N X. E covezioe scrivere f( ) = x, e idicare le successioi mediate la ifiitupla ordiata delle

Dettagli

P(X = k) = (k 1). 2 Infatti, le uniche sequenze di lunghezza k (di T e C) possibili sono

P(X = k) = (k 1). 2 Infatti, le uniche sequenze di lunghezza k (di T e C) possibili sono Prima Prova Itermedia testo co soluzioi 5 Aprile 09 Elemeti di Probabilità e Statistica, Laurea Trieale i Matematica, 08-9 M Romito, M Rossi Problema 0 Ua moeta equa viee laciata fio alla prima volta i

Dettagli

Unità Didattica N 33 L algebra dei vettori

Unità Didattica N 33 L algebra dei vettori Uità Didattica N 33 Uità Didattica N 33 0) La ozioe di vettore 02) Immagie geometrica di u vettore umerico 03) Somma algebrica di vettori 04) Prodotto di u umero reale per u vettore 05) Prodotto scalare

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

Confronto di due misure Campioni indipendenti

Confronto di due misure Campioni indipendenti Statistica7 /11/015 Cofroto di due misure Campioi idipedeti o meglio.. rispodere al quesito Due serie di misure soo state estratte dalla stessa popolazioe (popolazioe comue o idetica) o soo state estratte

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli