Statistica 1 A.A. 2015/2016
|
|
|
- Fabia Fedele
- 9 anni fa
- Visualizzazioni
Transcript
1 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21
2 Misura della dipedeza di u carattere quatitativo L idipedeza i media Esempio. U gruppo di studiosi è iteressato a valutare l ipotesi che la variabile reddito auo delle famiglie italiae sia ifluezata dal umero di compoeti della famiglia. Di seguito viee riportata la distribuzioe doppia di frequeza otteuta mediate u campioe di 500 famiglie italiae Numero Reddito compoeti Tot Tot Note. Sebbee l idice X 2 possa essere utilizzato per valutare l evetuale allotaameto dall ipotesi di idipedeza i distribuzioe, esso o tiee coto della atura asimmetrica dello studio. 2 / 21
3 Nel caso i esame i due caratteri o soo sullo stesso piao logico poiché siamo iteressati allo studio della dipedeza del carattere Y (reddito auo) dal carattere X (ripartizioe geografica). Come defiito i precedeza, il carattere Y è idipedete i distribuzioe dal carattere X quado le distribuzioi di frequeza relative codizioate di Y soo uguali tra loro e uguali alla distribuzioe di frequeza relativa margiale di Y. Sebbee la defiizioe precedete mostra che lo studio dovrebbe essere fodato sulla variazioe che subiscoo le distribuzioi di frequeze relative codizioate di Y per effetto di X, i questa parte del corso studieremo ua forma più debole di dipedeza basata sulla variazioe che subiscoo le medie codizioate di Y per effetto del carattere X. 3 / 21
4 Defiizioe Diremo che Y è idipedete i media da X quado tutte le medie codizioate M a(y X = x i ) soo uguali tra loro e uguali alla media margiale M a(y ), formalmete M a(y X = x 1 ) = M a(y X = x 2 ) =... = M a(y X = x i ) =... = M a(y X = x r ) = M a(y ). Nel caso i cui ache X è ua variabile quatitativa cotiua possiamo defiire l idipedeza i media di X da Y i maiera aaloga a quato fatto i precedeza. Defiizioe Diremo che X è idipedete i media da Y quado tutte le medie codizioate M a(x y = y j ) soo uguali tra loro e uguali alla media margiale M a(x ), formalmete M a(x Y = y 1 ) = M a(x Y = y 2 ) =... = M a(x Y = y j ) =... = M a(x Y = y c) = M a(x ). Note: dalla atura asimmetrica dell idipedeza i media discede che o esiste alcua relazioe tra l idipedeza i media di Y da X e l idipedeza i media di X da Y. I altri termii se Y è idipedete i media da X o è detto che X sia idipedete i media da Y. 4 / 21
5 Come detto i precedeza l idipedeza i media è u cocetto più debole dell idipedeza i distribuzioe dato che si foda sullo studio della variazioe delle sole misure di tedeza cetrale (l idipedeza i distribuzioe si foda sullo studio della variazioe delle distribuzioi di frequeza relative codizioate). Teorema Data ua distribuzioe doppia di frequeze dove Y è ua variabile quatitativa cotiua ed X è u geerico carattere statistico, si dimostra che: se X e Y soo idipedeti i distribuzioe allora Y è idipedete i media da X. Note: Il teorema precedete, oltre a cofermare quato detto i precedeza (ovvero che l idipedeza i distribuzioe è u cocetto più forte dell idipedeza i media), afferma che l idipedeza i distribuzioe implica l idipedeza i media di Y da X. 5 / 21
6 Dimostrazioe Per dimostrare il teorema precedete è sufficiete dimostrare che, se è vera l ipotesi di idipedeza i distribuzioe di X ed Y allora tutte le medie codizioate di Y soo uguali tra loro e uguali alla media margiale di Y, ovvero: M a (Y X = x i ) = M a (Y ) per ogi i = 1,..., r. Cosideriamo la formula di M a (Y X = x i ), ovvero c j=1 M a (Y X = x i ) = y j ij, i. ed osserviamo che se è vera l ipotesi di idipedeza i distribuzioe allora ij = i..j /; quidi l espressioe precedete può essere scritta come c j=1 M a (Y X = x i ) = y c j ij j=1 = y j( i..j /) = i. i. = c i. j=1 y c j.j j=1 = y j.j = M a (Y ), i. la quale dimostra che l idipedeza i distribuzioe implica l idipedeza i media. 6 / 21
7 Esempio. U gruppo di studiosi è iteressato a valutare l ipotesi che la variabile reddito auo delle famiglie italiae sia ifluezata dal umero di compoeti della famiglia. Di seguito viee riportata la distribuzioe doppia di frequeza otteuta mediate u campioe di 500 famiglie italiae Reddito Tot Tot Da quato detto i precedeza discede che siamo iteressati a studiare quato le medie codizioate di Y dato X soo diverse dalla media margiale di Y. Per questo motivo procediamo al calcolo delle quatità di iteresse. 7 / 21
8 Calcoliamo le quattro medie codizioate di Y dato X mediate le segueti tabelle. Media codizioata di Y dato X = x 1 Classi 1j yj c yj c 1j Tot M a(y X = x 1 ) = cj=1 y c j 1j 1. = Media codizioata di Y dato X = x 2 Classi 2j yj c yj c 2j Tot M a(y X = x 2 ) = cj=1 y c j 2j 2. = / 21
9 Media codizioata di Y dato X = x 3 Classi 3j yj c yj c 3j Tot M a(y X = x 3 ) = cj=1 y c j 3j 3. = 19.1 Media codizioata di Y dato X = x 4 Classi 4j yj c yj c 4j Tot Madia margiale di Y Classi.j yj c y c j.j Tot M a(y X = x 4 ) = M a(y ) = cj=1 y c j 4j 4. = cj=1 y c j.j = / 21
10 Quado il carattere codizioate (el ostro caso il carattere X ) è ua variabile quatitativa discreta, è possibile studiare l adameto delle medie codizioate tramite u opportua rappresetazioe grafica chiamata spezzata di regressioe. L aalisi di questo grafico può forire iformazioe sulla dipedeza i media di Y da X. Defiizioe Si cosideri u diagramma cartesiao dove si riportao i ascissa i valori della variabile X e i ordiata le corrispodeti medie codizioate di Y dato X. La spezzata otteuta cogiugedo i puti di coordiate (x i, M a (Y X = x i )) prede il ome di spezzata di regressioe. 10 / 21
11 Spezzata di Regressioe Spezzata di Regressioe M a(y) M a(y X=xi) Dalla spezzata di regressioe sembra evicersi che il livello medio di reddito delle famiglie italiae è ifluezato positivamete dal umero di compoeti della famiglia. X 11 / 21
12 Quado è vera l ipotesi di idipedeza i distribuzioe, le medie codizioate soo tutte uguali alla media margiale, quidi la spezzata di regressioe è parallela alla retta di equazioe y = 0. Al crescere della dipedeza i media di Y da X cresce la variabilità delle medie codizioate di Y dato X. Da quato detto si ricava che u idice per valutare il grado di dipedeza i media di Y da X può essere basato sulla variaza delle medie codizioate di Y dato X. Prima di defiire la variaza delle medie codizioate osserviamo che esse soddisfao la seguete proprietà. Proprietà La media aritmetica poderata delle medie codizioate di Y dato X è uguale alla media margiale di Y, ovvero r i=1 Ma(Y X = x c i ) i. j=1 = M a(y ) = y j.j. Dimostrazioe r i=1 Ma(Y X = x i ) i. = = ( cj=1 ) r y j ij i=1 i. r c i. i=1 j=1 = y j ij = c j=1 y j ( r i=1 ij ) c j=1 = y j.j = M a(y ). 12 / 21
13 Utilizzado la precedete proprietà delle medie codizioate, possiamo defiire la variaza delle medie codizioate di Y dato X el seguete modo σ 2 M a(y X ) = r i=1 [Ma(Y X = x i ) M a(y )] 2 i. Dalle proprietà degli idici di variabilità assoluta discede che: i. σm 2 = 0 se è solo se tutte le medie codizioate di Y dato X soo uguali alla media a(y X ) margiale di Y. I altri termii σm 2 = 0 se e solo se è vera l ipotesi di idipedeza i a(y X ) media di Y da X ; ii. σm 2 cresce al crescere della diversità delle medie codizioate di Y dalla media margiale a(y X ) di Y. I altri termii, σm 2 cresce al crescere dell effetto di X sulle medie codizioate a(y X ) di Y. Sebbee le precedeti osservazioi mostrao che σm 2 può essere utilizzato per quatificare a(y X ) l effetto di X sulle medie codizioate di Y, la sua applicazioe è ridotta a causa delle segueti limitazioi: i. σm 2 o è u idice adimesioale poiché ha u uità di misura che è uguale al quadrato a(y X ) dell uità di misura di Y ; ii. il valore massimo che può assumere l idice σm 2 è diverso da uo. a(y X ) difficoltà iterpretativa del valore umerico forito dall idice σm 2 a(y X ). Ne cosegue la 13 / 21
14 La costruzioe di u idice per valutare la dipedeza i media di Y da X che soddisfa le segueti codizioi: i. è compreso tra 0 e 1; assume valore 0 quado Y è idipedete i media da X e assume valore 1 i caso di perfetta dipedeza i media, ii. o dipede dall uità di misura dei dati, è fodata sulla seguete formula di decomposizioe della variaza margiale di Y σ 2 Y = σ2 M a(y X ) + Ma(σ2 Y X ) ovvero la variaza margiale di Y è uguale alla somma della variaza delle medie codizioate e alla media delle variaze codizioate. Sulla base della precedete espressioe si ricava il seguete idice η 2 Y X = σ2 M a(y X ) σ 2 Y costituisce lo strumeto foda- oto i letteratura come rapporto di correlazioe. L idice ηy 2 X metale per l aalisi della dipedeza i media di Y da X. 14 / 21
15 Dalla defiizioe di rapporto di correlazioe si ricava che: η 2 Y X = σ2 M a(y X ) σ 2 Y i. il rapporto di correlazioe è ua quatità compresa tra zero ed uo, ovvero ηy 2 X [0, 1]; ii. Y è idipedete i media da X se e solo se σ 2 M a(y X ) = 0 quidi η2 Y X = 0; iii. al crescere della dipedeza i media di Y da X cresce la variabilità delle medie codizioate e quidi il rapporto di correlazioe tede a 1; iv. quado Y è perfettamete dipedete i distribuzioe da X il rapporto di cocetrazioe è uguale ad uo; Osservazioe. Se X ed Y soo due variabili quatitative cotiue allora possiamo calcolare ηy 2 X e η2 X Y. La atura asimmetrica su cui si foda l aalisi della dipedeza i media implica che, i geerale, ηy 2 X η2 X Y. 15 / 21
16 Co riferimeto all esempio precedete, dalla seguete tabella Classi.j y c j y c j.j (y c j )2 (y c j )2.j Tot si ricava M a(y ) = c j=1 y c j.j = σ 2 Y = c j=1 (y c ) 2 j.j M a(y ) 2 = / 21
17 Dalla seguete tabella M a(y X = x i ) i. M a(y X = x i ) i. M a(y X = x i ) 2 M a(y X = x i ) 2 i Tot si ricava r i=1 Ma(Y X = x i ) i. ed ioltre = = = Ma(Y ) r σm 2 a(y X ) = i=1 Ma(Y X = x i ) 2 i. M a(y ) 2 = Utilizzado i risultati precedeti si ricava η 2 Y X = σ2 M a(y X ) σ 2 Y = = Dal risultato precedete si ricava che il livello medio di reddito delle famiglie italiae dipede debolmete dal umero di compoete dalla famiglia. 17 / 21
18 Esempio. Su u campioe di 69 dipedeti di u ete di ricerca è stato rilevato il carattere posizioe professioale e il umero di ore di lavoro effettuate. Posizioe Ore lavorative lavorativa Tot. Ricercatore Ricercatore Dirigete Tot Valutare se il livello medio di ore lavorative effettuate dipede i media dalla posizioe professioale. 18 / 21
19 Media codizioata di Y dato X = x 1 Classi 1j yj c yj c 1j Tot M a(y X = x 1 ) = = Media codizioata di Y dato X = x 2 Classi 2j yj c yj c 2j Tot M a(y X = x 2 ) = = / 21
20 Media codizioata di Y dato X = x 3 Classi 3j yj c yj c 3j Tot M a(y X = x 3 ) = = 210 da cui si ricava M a(y ) = Media e variaza margiale di Y Classi.j yj c y c j.j (y c j )2 (y c j )2.j Tot r = σy 2 = i=1 (y j c)2.j M a(y ) 2 = / 21
21 Variaza delle medie codizioate di Y M a(y X = x i ) i. M a(y X = x i ) 2 M a(y X = x i ) 2 i Tot da cui si ricava la variaza delle medie codizioate Il rapporto di correlazioe σ 2 M a(y X ) = r i=1 Ma(Y X = x i ) 2 i. η 2 Y X = σ2 M a(y X ) σ 2 Y M a(y ) 2 = = = 0.03 mostra che il umero di ore di lavoro effettuate o dipede i media dalla posizioe professioale. 21 / 21
Statistica 1 A.A. 2015/2016
Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative
Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli
Esercitazioi di Statistica Dott. Dailo Alui Fegatelli [email protected] Esercizio. Su 0 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M
Esercitazioni di Statistica Dott.ssa Cristina Mollica [email protected]
Esercitazioi di Statistica Dott.ssa Cristia Mollica [email protected] Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:
Alcuni concetti di statistica: medie, varianze, covarianze e regressioni
A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè
La correlazione e la regressione. Antonello Maruotti
La correlazioe e la regressioe Atoello Maruotti Outlie 1 Correlazioe 2 Associazioe tra caratteri quatitativi Date due distribuzioi uitarie secodo caratteri quatitativi X e Y x 1 x 2 x y 1 y 2 y associate
Campionamento casuale da popolazione finita (caso senza reinserimento )
Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori
Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati
Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli
Stima della media di una variabile X definita su una popolazione finita
Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe
Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C
Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che
Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno
Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto
Prof.ssa Paola Vicard
Statistica Computazioale Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa
SUCCESSIONI DI FUNZIONI
SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe
STUDIO DEL LANCIO DI 3 DADI
Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio
Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi
Chiorri, C. (201). Fodameti di psicometria - Approfodimeto. 1 Approfodimeto. Calcolare gli idici di posizioe co dati metrici sigoli e raggruppati i classi 1. Dati metrici sigoli Quado l iformazioe è a
Esercitazioni di Statistica
Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai [email protected] Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso
Esame di Statistica A-Di Prof. M. Romanazzi
1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa
ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015
ELEMENTI DI STATISTICA Giacarlo Zacaella 2015 2 Itroduzioe I termii statistici soo molto utilizzati el liguaggio correte 3 Cos è la STATISTICA STATISTICA = scieza che studia i feomei collettivi o di massa
Lezioni di Matematica 1 - I modulo
Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti
1.6 Serie di potenze - Esercizi risolti
6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo
2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)
Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,
La dinamica dei sistemi - intro
La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali
Principi base di Ingegneria della Sicurezza
Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il
SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)
SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log
Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione
Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile
SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.
SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....
Precorso di Matematica, aa , (IV)
Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe
Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008
Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u
Appunti di Probabilità e Statistica. a.a. 2014/2015 C.d.L. Informatica Bioinformatica I. Oliva. 1 Indici statistici. Lezione 2
Apputi di Probabilità e Statistica a.a. 2014/2015 C.d.L. Iformatica Bioiformatica I. Oliva Lezioe 2 1 Idici statistici Idici statistici Idici di posizioe Idici di variabilità Idici di forma medie aalitiche
Pompa di calore a celle di Peltier. ( 3 ) Analisi dei dati
Pompa di calore a celle di Peltier ( 3 ) Aalisi dei dati Scuola estiva di Geova 2 6 settembre 2008 1 Primo esperimeto : riscaldameto per effetto Joule Come descritto ella guida, misuriamo tesioe di alimetazioe
DISTRIBUZIONI DOPPIE
DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad
Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale
Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la
NUMERICI QUESITI FISICA GENERALE
UMERICI (Aalisi Dimesioale). Utilizzado le iformazioi ricavabili dalla gradezza fisica che ci si aspetta come risultato e dai valori umerici foriti, idividuare, tra le espressioi riportate, quella/e dimesioalmete
Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.
Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ
Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09
Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,
1 Esponenziale e logaritmo.
Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a
Esame di Statistica A-Di Prof. M. Romanazzi
1 Uiversità di Veezia Esame di tatistica A-Di Prof. M. Romaazzi 27 Geaio 2015 ogome e Nome..................................... N. Matricola.......... Valutazioe l puteggio massimo teorico di questa prova
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla
INFERENZA o STATISTICA INFERENTE
INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe
Regressione e correlazione
Regressioe e correlazioe Regressioe e correlazioe I molti casi si osservao gradezze che tedoo a covariare, ma () Se c è ua relazioe di dipedeza fra due variabili, ovvero se il valore di ua variabile (dipedete)
Capitolo uno STATISTICA DESCRITTIVA BIVARIATA
Capitolo uo STATISTICA DESCRITTIVA BIVARIATA La statistica bidimesioale o bivariata si occupa dello studio del grado di dipedeza di due caratteri distiti della stessa uità statistica. E possibile, ad esempio,
Laboratorio di R - 2 a lezione Prof. Mauro Gasparini
Laboratorio di R - 2 a lezioe Prof. Mauro Gasparii. Distribuzioi i R R può essere usato come ua calcolatrice delle segueti distribuzioi: geom pois chisq t gamma lorm weibull f uif orm biom hyper exp geometrica
Richiami sulle potenze
Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle
(1 2 3) (1 2) Lezione 10. I gruppi diedrali.
Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria
Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni
Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia http://users.dma.uipi.it/barsati/statistica_2011/idex.html.
CAPITOLO 5 TEORIA DELLA SIMILITUDINE
CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia
Diottro sferico. Capitolo 2
Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice
MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica
MEDIE STATISTICHE La raccolta dei dati e la successiva loro elaborazioe permettoo di trarre alcue coclusioi su u dato feomeo oggetto di studio. A questo fie si assume che u valore calcolato a partire dai
Preparazione al corso di statistica Prof.ssa Cerbara
Preparazioe al corso di statistica Prof.ssa Cerbara Esistoo molti isiemi umerici, ciascuo co caratteristiche be precise. Alcui importatissimi isiemi umerici soo: N: isieme dei umeri aturali, cioè tutti
CONCETTI BASE DI STATISTICA
CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto
Metodi statistici per l analisi dei dati
Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo
