La correlazione e la regressione. Antonello Maruotti
|
|
|
- Riccardo Casati
- 9 anni fa
- Visualizzazioni
Transcript
1 La correlazioe e la regressioe Atoello Maruotti
2 Outlie 1 Correlazioe 2
3 Associazioe tra caratteri quatitativi Date due distribuzioi uitarie secodo caratteri quatitativi X e Y x 1 x 2 x y 1 y 2 y associate i modeo che ell uità i-esima il carattere X è presete co la modalità x i ed il carattere Y co la modalità y i, per valutare l associazioe fra i due caratteri X e Y ricorriamo alla coviariaza alla correlazioe
4 La covariaza Defiizioe La covariaza è ua misura del legame lieare tra due caratteri quatitativi X e Y. E data dalla media aritmetica del prodotto degli scarti di due caratteri dalle loro rispettive medie. σ XY = 1 (x i µ X )(y i µ Y ) = 1 x i y i µ X µ Y i=1 i=1
5 La covariaza: osservazioi Osservazioi: quado scarti positivi (egativi) del carattere X tedoo ad associarsi a scarti positivi (egativi) del carattere Y, allora i loro prodotti sarao positivi e la covariaza risulterà positiva; quado scarti positivi del carattere X tedoo ad associarsi a scarti egativi del carattere Y (o viceversa), allora i loro prodotti sarao egativi e la covariaza risulterà egativa. Miimo e massimo: o è u idice relativo σ X σ Y σ XY σ X σ Y
6 La correlazioe Defiizioe Il coefficiete di correlazioe lieare è u idice che misura la relazioe lieare tra due caratteri quatitativi X e Y. E espresso dal rapporto tra la covariaza tra i due caratteri X e Y ed il prodotto dei rispettivi scarti quadratici medi. r XY = σ XY σ X σ Y = 1 1 i=1 (x i µ X )(y i µ Y ) i=1 (x i µ X ) 2 1 i=1 (y i µ Y ) 2
7 La correlazioe: proprietà Il coefficiete di correlazioe è compreso tra -1 e 1. 1 r XY 1 Se r XY = 0, allora o vi è relazioe di tipo lieare tra i due caratteri. Si oti che l icorrelazioe tra due caratteri implica correlazioe ulla, ma o è vero il cotrario. Se r XY = ±1, allora esiste u legame lieare perfetto positivo (r XY = 1) o egativo r XY = 1 Il coefficiete di correlazioe è ivariate per trasformazioi lieari, a meo del sego.
8 La correlazioe: fissiamo le idee Date due variabili quatitative, diremo che soo correlate positivamete se variao i modo cocorde, ossia all aumetare [dimiuire] dell ua aumeta [dimiuisce] ache l altra; correlate egativamete se variao i modo discorde, ossia all aumetare [dimiuire] dell ua, l altra dimiuisce [aumeta] Osserviamo che due caratteri risultao cocordi se gli scarti dalla media tedoo ad essere dello stesso sego metre risultao discordi se tali scarti tedoo ad essere di sego opposto.
9 Obiettivo della regressioe Obiettivo dell aalisi di regressioe è studiare il legame che itercorre tra due variabili quatitative X e Y. Correlazioe = Cosumo Reddito
10 Fuzioi lieari Il legame tra due variabili viee espresso mediate ua fuzioe del tipo y = f (x) Ua delle fuzioi più semplici è quella lieare y = β 0 + β 1 x β 0 : valore di y per x = 0 β 1 : variazioe di y per u aumeto uitario di x
11 Modello di regressioe lieare semplice Nella realtà difficilmete due variabili soo legate da ua relazioe esatta. Per ovviare a questo icoveiete adottiamo il modello y i = β 0 + β 1 x i + ϵ i dove β 0 = iterecetta β 1 = coefficiete di regressio (pedeza) y i = variabile risposta (dipedete) x i = variabile esplicativa (idipedete) ϵ i = residuo o errore (riflette le imperfezioi della relazioe lieare ed evetuali variabili esplicative omesse)
12 Stima dei parametri: metodo dei miimi quadrati Ipotizziamo che il termie residuale sia di miima etità. Determiiamo quidi la retta (ossia β 0 e β 1 ) i modo da redere miima la somma (y i β o β 1 x i ) 2 i=1
13 Soluzioe del problema dei miimi quadrati Coefficiete di regressioe b 1 = i=1 (x i µ x )(y i µ y ) i=1 (x i µ x ) 2 Itercetta b 0 = µ y b 1 µ x La retta dei miimi quadrati passa per il baricetro (alla media di x corrispode la media di y) ŷ i = b 0 + b 1 x i
14 Adattameto del modello ai dati Variaza totale Variaza spiegata Variaza residua Scomposizioe della variaza totale (y i µ y ) 2 = σy 2 i=1 (ŷ i µ y ) 2 = σŷ 2 i=1 (y i ŷ i ) 2 = 1 ˆϵ 2 i = σ 2ˆϵ i=1 i=1 σ 2 y = σ 2 ŷ + σ 2ˆϵ
15 Coefficiete di determiazioe Per avere u idice della botà di adattameto del modello ai dati calcoliamo il rapporto tra variabilità spiegata dalla regressioe e variabilità totale r 2 = 1 1 i=1 (ŷ i µ y ) 2 i=1 (y i µ y ) = σ2 ŷ 2 σy 2 La decomposizioe della deviaza totale garatisce che r 2 varia tra 0 (pessimo adattameto) e 1 (ottimo adattameto, la relazioe è perfettamete lieare).
Alcuni concetti di statistica: medie, varianze, covarianze e regressioni
A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè
Statistica 1 A.A. 2015/2016
Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere
Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli
Esercitazioi di Statistica Dott. Dailo Alui Fegatelli [email protected] Esercizio. Su 0 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M
Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C
Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che
Regressione e correlazione
Regressioe e correlazioe Regressioe e correlazioe I molti casi si osservao gradezze che tedoo a covariare, ma () Se c è ua relazioe di dipedeza fra due variabili, ovvero se il valore di ua variabile (dipedete)
Esercitazioni di Statistica Dott.ssa Cristina Mollica [email protected]
Esercitazioi di Statistica Dott.ssa Cristia Mollica [email protected] Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:
Esercitazioni di Statistica
Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai [email protected] Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi
Campionamento casuale da popolazione finita (caso senza reinserimento )
Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori
Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno
Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto
Statistica 1 A.A. 2015/2016
Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative
Pompa di calore a celle di Peltier. ( 3 ) Analisi dei dati
Pompa di calore a celle di Peltier ( 3 ) Aalisi dei dati Scuola estiva di Geova 2 6 settembre 2008 1 Primo esperimeto : riscaldameto per effetto Joule Come descritto ella guida, misuriamo tesioe di alimetazioe
Esercitazioni di Statistica
Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai [email protected] Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso
Esame di Statistica A-Di Prof. M. Romanazzi
1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa
Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati
Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli
Stima della media di una variabile X definita su una popolazione finita
Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe
Appunti di Probabilità e Statistica. a.a. 2014/2015 C.d.L. Informatica Bioinformatica I. Oliva. 1 Indici statistici. Lezione 2
Apputi di Probabilità e Statistica a.a. 2014/2015 C.d.L. Iformatica Bioiformatica I. Oliva Lezioe 2 1 Idici statistici Idici statistici Idici di posizioe Idici di variabilità Idici di forma medie aalitiche
Esame di Statistica A-Di Prof. M. Romanazzi
1 Uiversità di Veezia Esame di tatistica A-Di Prof. M. Romaazzi 27 Geaio 2015 ogome e Nome..................................... N. Matricola.......... Valutazioe l puteggio massimo teorico di questa prova
Analisi Matematica I
Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log
Prof.ssa Paola Vicard
Statistica Computazioale Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa
a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k
ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;
STATISTICA - Prof.ssa Mary Fraire Modulo Base
Prove scritte co soluzioi, date i vari aa.aa., dalla Prof.ssa Mary Fraire per gli esami di profitto degli studeti del STATISTICA - Prof.ssa Mary Fraire Modulo Base 0) Data la seguete distribuzioe statistica
Studio di funzione. Rappresentazione grafica di una funzione: applicazioni
Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza
Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica
6/0/0 Corso di Statistica per l impresa Prof. A. D Agostio Ifereza statistica Per fare ifereza statistica si utilizzao le iformazioi raccolte su u campioe per cooscere parametri icogiti della popolazioe
Principio di induzione: esempi ed esercizi
Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se
DIFFUSIONE DELL AIDS. ( Modello di Ho )
DIFFUSIONE DELL AIDS ( Modello di Ho - 1994 ) Matematica applicata alla Biologia- Lucia Della Croce Il virus HIV (Huma Immuodeficiec Virus) provoca lo sviluppo dell AIDS (Acquired ImmuoDeficiec Sidrome)
Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame
Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale
ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1
ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO Agela Doatiello 1 Esercizio. E stato tabulato il peso di ua certa popolazioe
STUDIO DEL LANCIO DI 3 DADI
Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio
RENDIMENTO DEI TRASFORMATORI
RENDIMENTO DEI TRASFORMATORI Il redimeto di u trasformatore è defiito come rapporto tra poteza resa e poteza assorbita: poteza resa redimeto poteza assorbita poteza resa poteza resa perdite Sebbee il redimeto
Elettronica Funzionamento del transistore MOS
Elettroica Fuzioameto del trasistore MOS Valetio Liberali Dipartimeto di Fisica Uiversità degli Studi di Milao [email protected] Elettroica Fuzioameto del trasistore MOS 13 maggio 2015 Valetio Liberali
SUCCESSIONI DI FUNZIONI
SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe
LA VERIFICA DELLE IPOTESI SUI PARAMETRI
LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività
La dipendenza. Antonello Maruotti
La dipendenza Antonello Maruotti Outline 1 Distribuzioni doppie 2 Medie e varianze condizionate 3 Indici di associazione Distribuzione doppia Definizione Una distribuzione doppia si ha quando su di uno
1.6 Serie di potenze - Esercizi risolti
6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo
2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)
Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,
TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0
TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si
Algoritmi e Strutture Dati (Elementi)
Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla
Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi
Chiorri, C. (201). Fodameti di psicometria - Approfodimeto. 1 Approfodimeto. Calcolare gli idici di posizioe co dati metrici sigoli e raggruppati i classi 1. Dati metrici sigoli Quado l iformazioe è a
Lezioni di Statistica del 15 e 18 aprile Docente: Massimo Cristallo
UIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECOOMIA Corso di laurea in Economia Aziendale anno accademico 2012/2013 Lezioni di Statistica del 15 e 18 aprile 2013 Docente: Massimo Cristallo LA RELAZIOE
Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008
Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u
INFERENZA o STATISTICA INFERENTE
INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe
Lezioni di Matematica 1 - I modulo
Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti
Esercitazioni di Biostatistica. In collaborazione con la Dott.ssa Antonella Zambon
Esercitazioi di Biostatistica I collaborazioe co la Dott.ssa Atoella Zambo ESERCIZIO Nome Geere Età (ai compiuti) Livello istruzioe Distaza (km) Atoio M 8.0 Claudio M 7. Lucia F.0 Aa F 6. Marco M Giuseppe
Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale
Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la
Approfondimenti di statistica e geostatistica
Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La
SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)
SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log
Principi base di Ingegneria della Sicurezza
Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il
SOLLECITAZIONI SEMPLICI
Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SOLLECITAZIONI SEPLICI AGGIORNAENTO 04/10/2011 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SFORZO NORALE CENTRATO Lo
Precorso di Matematica, aa , (IV)
Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe
Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie
Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo
CONCETTI BASE DI STATISTICA
CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto
Soluzioni esercizi Capitolo 7
Soluzioi esercizi Capitolo 7 Quado si valuta la relazioe fra due variabili, occorre prestare particolare attezioe al fatto che i modelli statistici specifici per ogi scala di misura siao applicabili: i
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è
