SOLLECITAZIONI SEMPLICI
|
|
|
- Armando Deluca
- 9 anni fa
- Visualizzazioni
Transcript
1 Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SOLLECITAZIONI SEPLICI AGGIORNAENTO 04/10/2011
2 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SFORZO NORALE CENTRATO Lo sforzo ormale si defiisce cetrato quado ua forza, o u sistema di forze, agisce lugo l'asse baricetrico logitudiale dell'elemeto strutturale. Può essere di due tipi: TRAZIONE (allugameto) COPRESSIONE (accorciameto) y COPRESSIONE z TRAZIONE 2
3 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì La sollecitazioe produce diagrammi di tesioe e deformazioe etrambi uiformi. y -N/EA ε σ -N/A 0 0 N z y N<0 CG y -N/EA -N/A ε σ N/EA 0 0 N/A N C z y σ ε N A N EA N>0 CG N/EA N/A C σ ε N A N EA
4 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì FLESSIONE RETTA U elemeto strutturale è soggetto a flessioe retta quado il sistema di forze estere si riduce ad ua coppia di mometo che agisce su u piao di sollecitazioe, coteete l asse logitudiale della trave. La traccia del piao di sollecitazioe sul piao della sezioe è ache asse pricipale di ierzia per la sezioe stessa. La deformazioe subita dall elemeto è u icurvameto secodo u arco di circofereza. Le fibre superiori all asse logitudiale subirao u accorciameto metre le fibre iferiori subirao u allugameto ( o viceversa i base al sego del mometo flettete). 4
5 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì Le fibre apparteeti allo strato compredete l asse logitudiale o subirao é allugameto é accorciameto (strato eutro). L itersezioe tra lo strato eutro ed ua qualsiasi sezioe della trave viee defiito asse eutro. Durate la deformazioe, la sezioe RUOTA attoro all asse eutro. Trazioe Compressioe 5
6 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì (1) y Il rapporto 1/R si chiama curvatura. Poiché ε FORULA DI NAVIER L L o si ricava σ E ε E y R Le tesioi e le deformazioi avrao adameto lieare lugo l asse verticale della sezioe. Esamiiamo l equilibrio alla rotazioe di ua geerica sezioe S. Il mometo flettete estero deve essere equilibrato dal mometo itero geerato dalle sigole forze elemetari σ a ciascua moltiplicata per il relativo braccio y. E 2 EJ σ a y a y R R Poiché, dalla (1) R y/ε si ricava: ε y EJ pertato: σ y J (2) 6
7 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì I valori di massima trazioe e massima compressioe si hao i corrispodeza delle fibre estreme della sezioe, poste ad ua distaza y ma dall asse eutro. W J y ma ODULO DI RESISTENZA per flessioe della sezioe. y -/EW ε -/W σ 0 0 G /EW /W 7
8 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì 8
9 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì ESEPIO N 1 E assegata la seguete sezioe a doppio T sottoposta all azioe di u mometo flettete estero Nmm. Calcolare la tesioe massima a cui la sezioe è sottoposta. 70 y Calcoliamo il mometo di ierzia baricetrico orizzotale della sezioe come differeza tra il mometo di ierzia del rettagolo e i mometi di ierzia dei rettagoli iteri J ( ) 27 mm Calcoliamo il modulo di resisteza a flessioe della sezioe: J 27 W mm y 50 ma Calcoliamo la tesioe massima: σ N W mm 2 Tracciamo il diagramma delle tesioi: Pa Pa σ Pa 9
10 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì ESEPIO N 2 E assegata la seguete sezioe a T rovescia sottoposta all azioe di u mometo flettete estero Nmm. Calcolare la tesioe massima a cui la sezioe è sottoposta. Suddividiamo la figura ei rettagoli elemetari 8010 e Calcoliamo l ordiata del baricetro e quidi la posizioe dell asse eutro: y G ( ) + ( ) ( ) + ( ) S 5500 yg mm A 1700 tot Calcoliamo il mometo d ierzia baricetrico della sezioe: J mm Calcoliamo il moduli di resisteza delle fibre estreme della sezioe: s J W mm ( h yg ) 68.5 i J W mm Pa y 1.47 Calcoliamo la tesioe massima e miima: G 4 s W Pa σ s (trazioe) i σ.76 Pa i (compressioe) W Pa 10
11 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì TAGLIO Si ha sollecitazioe di taglio quado sulla struttura soo applicate forze co direzioe perpedicolare al suo asse, giaceti sul piao della sezioe e passati per il suo baricetro. Le tesioi itere, dovedo opporsi a tale deformazioe, giaccioo sul piao della sezioe, quidi soo delle tesioi tageziali τ. T Per l equilibrio alla traslazioe verticale: τ a T Si dimostra che: τ b τ T S b J * FORULA DI JOURAWSKI a G S * mometo statico (rispetto all'asse baricetrico) di ua delle due parti di sezioe idividuate dalla dividete parallela all'asse baricetrico el puto di calcolo J mometo d ierzia della sezioe b larghezza della sezioe i corrispodeza della puto di calcolo 11
12 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì CASI PARTICOLARI τ ma T 2A τ media T A τ ma 4T A τ media T A 12
13 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì ESEPIO N E assegata la seguete sezioe a doppio T sottoposta all azioe di u mometo flettete estero 400 knm e uo sforzo di taglio verticale T90 kn. Valutare lo stato tesioale della sezioe. T Y 2 0 Calcoliamo il mometo di ierzia baricetrico orizzotale della sezioe come differeza tra il mometo di ierzia del rettagolo e i mometi di ierzia dei rettagoli iteri J mm Calcoliamo il modulo di resisteza a flessioe della sezioe: 6 J W mm y 150 ma Calcoliamo la tesioe massima: σ W Pa Pa σ 0 X Tracciamo il diagramma delle tesioi ormali: Pa 1
14 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì Per il calcolo delle tesioi tageziali co riferimeto alle ali e all aima della trave applichiamo la formula di Jourawski i corrispodeza dei vari puti di calcolo τ τ ( ) z Pa ( ) τ zy 1. 2 Pa ( ) τ zy Pa τ ( ) ma Pa 14
15 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì TORSIONE U solido è soggetto a torsioe quado su di esso soo applicati, alle estremità, mometi uguali e opposti attoro al suo asse logitudiale e quidi giaceti sul piao della sezioe. 15
16 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì Le sezioi ruotao ua rispetto all altra attoro all asse logitudiale dell agolo di torsioe Θ metre ogi fibra si deforma secodo u tratto di elica. Dovedo opporsi a deformazioi di scorrimeto, le tesioi giaccioo sul piao della sezioe, quidi soo delle tesioi tageziali τ e poiché le deformazioi crescoo dal cetro alla periferia, le tesioi sarao massima lugo il bordo della sezioe e ulle sul cetro della sezioe. 16
17 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì Foti Stefao Catasta ateriale didattico Nazzareo Corigliao ateriali didattico Gaetao Carboaro ateriale didattico Luigi Coppola ateriale didattico 17
= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);
La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi
SOLLECITAZIONI COMPOSTE
Sussidi didattici per il corso di COSTRUZIOI EDILI Prof. Ig. Fracesco Zaghì SOLLECITZIOI COPOSTE GGIORETO 8/10/011 Corso di COSTRUZIOI EDILI Prof. Ig. Fracesco Zaghì FLESSIOE DEVIT Si ha flessioe deviata
Il centro di pressione C risulta esterno al nocciolo (e > GX ) (grande eccentricità)
Il cemeto armato: metodo alle tesioi ammissibili Uità 5 Flessioe semplice retta e sforzo ormale Il cetro di pressioe risulta estero al occiolo (e > X ) (grade eccetricità) 0L asse eutro taglia la sezioe,
Cerchi di Mohr - approfondimenti
Comportameto meccaico dei materiali Cerchi di Mohr - approfodimeti Stato di tesioe e di deformazioe Cerchi di Mohr - approfodimeti L algebra dei cerchi di Mohr Proprietà di estremo dei cerchi di Mohr Costruzioe
(1 2 3) (1 2) Lezione 10. I gruppi diedrali.
Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria
Statica e Sismica. delle Costruzioni Murarie. Cerchio di Mohr
Uiversità degli Studi di Messia Facoltà di Igegeria A.A. 006/007 Statica e Sisica delle Costruzioi Murarie Docete: Ig. Alessadro Paleri Lezioe. 3: Circofereze di Mohr τ t P Sia P u puto geerico del cotiuo
1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 -
ISTITUTO TECNICO INDUSTRIALE STATALE G. Marcoi PONTEDERA Prof. Pierluigi D Amico - Apputi su FIBRE OTTICHE - Classi QUARTE LICEO TECNICO A.S. 005/006 - Pagia. 1 di 5 1. LEGGE DI SNELL FIBRE OTTICHE si
ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo
C. P. Mengoni tel. 0554796339 [email protected]
E. Fuaioli, A. Maggiore, U. Meeghetti Lezioi di MECCANICA APPLICAA ALLE MACCHINE, vol. I e II Pàtro Editore C. P. Megoi tel. 554796339 [email protected] Meccaismi co orgai flessibili I meccaismi co orgai
LEZIONE 3. PROGETTO DI COSTRUZIONI IN ACCIAIO Parte II. Progetto degli elementi strutturali
Corso di TECICA DELLE COSTRUZIOI Chiara CALDERII A.A. 2007-2008 Facoltà di Architettura Università degli Studi di Genova LEZIOE 3 PROGETTO DI COSTRUZIOI I ACCIAIO Parte II. Progetto degli elementi strutturali
Progetto di elementi strutturali per solaio: trave secondaria, trave principale, giunto trave secondaria-principale, giunto trave-trave
Progetto di elemeti strutturali per solaio: trave secodaria, trave pricipale, giuto trave secodaria-pricipale, giuto trave-trave Giuto trave secodaria-trave pricipale: soluzioe ulloata La progettazioe
Diottro sferico. Capitolo 2
Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice
La dinamica dei sistemi - intro
La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali
Cosa vogliamo imparare?
Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come
Giacomo Sacco Appunti di Costruzioni Edili
Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono
Inflessione nelle travi
Ifessioe ee travi Caso dea trave icastrata ad u estremità Data a trave a mesoa AB di ughezza, sottoposta a azioe de carico cocetrato F appicato a estremo ibero B, questa risuta soecitata, i ogi sezioe,
2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)
Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,
Viti prigioniere. Barre filettate. Dadi. Bulloni (vite + dado)
omeclatura: Vite: Viti mordeti Viti prigioiere (prigioieri) Madrevite: Barre ilettate Dadi Bulloi (vite + dado) 1 ipologie delle ilettature: h/8 60 madrevite IO h riagolari UI Whitworth h/4 vite Gas (cilidriche
Alcuni concetti di statistica: medie, varianze, covarianze e regressioni
A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè
SUCCESSIONI DI FUNZIONI
SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe
Sollecitazioni delle strutture
Sollecitazioni delle strutture I pilastri e i muri portanti sono tipicamente sollecitati a compressione Le travi e i solai sono sollecitati a flessione L indeformabilità di questi elementi costruttivi
BSI. Scarpe metalliche ad ali interne Piastra forata tridimensionale in acciaio al carbonio con zincatura galvanica BSI - 01 EFFICACE
SI Scarpe metalliche ad ali itere Piastra forata tridimesioale i acciaio al carboio co zicatura galvaica EFFICACE Sistema stadardizzato, certificato, rapido ed ecoomico CAMPI DI IMPIEGO Giuzioi a taglio
Statistica 1 A.A. 2015/2016
Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere
PROGETTAZIONE DI EDIFICI IN MURATURA
Uiversità degli Studi di Napoli Federico II Dipartimeto di Aalisi e Progettazioe Strutturale LA NUOVA NORMATIVA TECNICA PER LE STRUTTURE IN ZONA SISMICA Nicola Augeti PROGETTAZIONE DI EDIFICI IN MURATURA
Precorso di Matematica, aa , (IV)
Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe
DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE
DIDTTIC DI DISEGNO E DI ROGETTZIONE DELLE COSTRUZIONI ROF. CRELO JORN ING. LUR SGRBOSS ODULO DUE IL ROBLE DELL TRVE DI DE SINT VENNT (RTE B) TERILE DIDTTICO D UTILIZZRE IN UL (SCUOL SUERIORE) Esempio di
Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale:
Esercizio N.1 Il tubo rettangolare mostrato è estruso da una lega di alluminio per la quale σ sn = 280 MPa e σ U = 420 Mpa e E = 74 GPa. Trascurando l effetto dei raccordi, determinare (a) il momento flettente
1 Previsione matematica
Giorata di studio per doceti Esercitazioe pratica sulla telefoia mobile Calcolo della previsioe matematica delle Radiazioi No Ioizzati (RNI) Caobbio, 12 ottobre 2005 Ig. Mario Della Vecchia, SUPSI, TTHF
Studio di funzione. Rappresentazione grafica di una funzione: applicazioni
Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza
BSA. Scarpe metalliche ad ali esterne Piastra forata tridimensionale in acciaio al carbonio con zincatura galvanica BSA - 01 EFFICACE
SA Scarpe metalliche ad ali estere Piastra forata tridimesioale i acciaio al carboio co zicatura galvaica EFFICACE Sistema stadardizzato, certificato, rapido ed ecoomico CAMPI DI IMPIEGO Giuzioi a taglio
ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI
ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla
D T 1.5d. Viti prigioniere. Barre filettate. Dadi. Bulloni (vite + dado)
omeclatura: Vite: Viti mordeti D T 1.5d d Viti prigioiere (prigioieri) l Madreite: Barre ilettate Dadi Bulloi (ite + dado) 1 Tipologie delle ilettature: h/8 60 madreite ISO h Triagolari UI h/4 Whitworth
Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno
Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto
Viene imposto uno spostamento alla traversa e si misura il carico applicato (F) Si misura l allungamento in un tratto del provino ( L)
Prova di trazioe UNI 55/86 556/79 Macchia di prova coloe traversa mobile provio cella di carico morsetti basameto Viee imposto uo spostameto alla traversa e si misura il carico applicato (F) Si misura
CORSO DI STATISTICA I (Prof.ssa S. Terzi)
CORSO DI STATISTICA I (Prof.ssa S. Terzi) STUDIO DELLE DISTRIBUZIONI SEMPLICI Esercitazioe. Data la segete distribzioe di freqeza: X 0- -2 2-3 3-5 5-0 0-5 5-25 N 44 35 22 58 60 06 02 a) calcolare le freqeze
Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi
Chiorri, C. (201). Fodameti di psicometria - Approfodimeto. 1 Approfodimeto. Calcolare gli idici di posizioe co dati metrici sigoli e raggruppati i classi 1. Dati metrici sigoli Quado l iformazioe è a
CARATTERISTICHE DELLA SOLLECITAZIONE
Sussidi didattici per il corso di PROGETTZIONE, OSTRUZIONI E IPINTI Prof. Ing. Francesco Zanghì RTTERISTIHE DELL SOLLEITZIONE GGIORNENTO DEL 5/0/0 orso di PROGETTZIONE, OSTRUZIONI E IPINTI Prof. Ing. Francesco
1.6 Serie di potenze - Esercizi risolti
6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo
RELAZIONE DI CALCOLO DEL SOLAIO
RELAZIONE DI CALCOLO DEL SOLAIO I soaio, da reaizzare ea tipoogia ista i profiati di acciaio e aterizi, è progettato per u carico accidetae pari a 600 kg/q essedo i ocae destiato ad archivio. Esso è costituito
PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1
PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/1/011 Esercizio n 1 Sia data una sezione di c.a. avente dimensioni 40 x 60 cm. I materiali impiegati sono: a) calcestruzzo Rck=0 N/, b) acciaio tipo B450C.
Solidi e volumi Percorso: Il problema della misura
Solidi e volumi Percorso: Il problema della misura Abilità Coosceze Nuclei Collegameti esteri Calcolare perimetri e aree Equivaleza el piao ed Spazio e figure Fisica di poligoi. equiscompoibilità tra Disego
1 Equilibrio statico nei corpi deformabili
Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)
Lezione 4. Gruppi di permutazioni
Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X
Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie
Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo
La correlazione e la regressione. Antonello Maruotti
La correlazioe e la regressioe Atoello Maruotti Outlie 1 Correlazioe 2 Associazioe tra caratteri quatitativi Date due distribuzioi uitarie secodo caratteri quatitativi X e Y x 1 x 2 x y 1 y 2 y associate
Campionamento casuale da popolazione finita (caso senza reinserimento )
Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori
NUMERICI QUESITI FISICA GENERALE
UMERICI (Aalisi Dimesioale). Utilizzado le iformazioi ricavabili dalla gradezza fisica che ci si aspetta come risultato e dai valori umerici foriti, idividuare, tra le espressioi riportate, quella/e dimesioalmete
4 SOLLECITAZIONI INDOTTE. 4.1 Generalità
4 SOLLECITAZIONI INDOTTE 4.1 Generalità Le azioni viste inducono uno stato pensionale interno alla struttura e all edificio che dipende dalla modalità con cui le azioni si esplicano. Le sollecitazioni
Preparazione al corso di statistica Prof.ssa Cerbara
Preparazioe al corso di statistica Prof.ssa Cerbara Esistoo molti isiemi umerici, ciascuo co caratteristiche be precise. Alcui importatissimi isiemi umerici soo: N: isieme dei umeri aturali, cioè tutti
Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1)
Sessioe ordiaria all estero caledario australe 005 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 005 Caledario
a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k
ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;
Esercitazioni di Statistica Dott.ssa Cristina Mollica [email protected]
Esercitazioi di Statistica Dott.ssa Cristia Mollica [email protected] Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:
Stima della media di una variabile X definita su una popolazione finita
Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe
c n OTTICA GEOMETRICA RIFLESSIONE E RIFRAZIONE INDICE DI RIFRAZIONE
OTTICA GEOMETRICA U oda e.m. si propaga rettilieamete i u mezzo omogeeo ed isotropo co velocità c v = > si chiama idice di rifrazioe e dipede sia dal mezzo sia dalla lughezza d oda della radiazioe RIFLESSIONE
Diagramma polare e logaritmico
Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate
Algoritmi e Strutture Dati (Elementi)
Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti
Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008
Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u
