Diagramma polare e logaritmico
|
|
|
- Timoteo Bondi
- 9 anni fa
- Visualizzazioni
Transcript
1 Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate (il pezzo el caso della toritura, l utesile ella fresatura e foratura). Per otteere ua determiata velocità di taglio, è ecessario quidi scegliere il umero di giri del madrio i fuzioe sia della velocità prescelta sia del diametro dell elemeto rotate. Se la macchia è dotata di u variatore cotiuo del moto di taglio, è possibile otteere tutti i umeri di giri e pertato si può realizzare comuque la velocità di taglio idoea alla lavorazioe. Se, al cotrario, la macchia è dotata di u variatore discotiuo del moto di taglio, o è possibile otteere, per ogi diametro, la velocità di taglio ottimale, ma ci si deve accotetare di u valore prossimo a quello desiderato. È possibile però far sì che tutti i diametri toribili dalla macchia siao comuque lavorabili co ua velocità di taglio compresa etro u itervallo predetermiato; per otteere questa particolarità i umeri di giri devoo assumere valori be precisi. ediamo quidi come si ricavao tali valori. Idichiamo co u geerico umero di giri e co - il umero di giri precedete. U geerico diametro D può essere torito co u umero di giri -, otteedo ua velocità di taglio cmi o co u umero di giri realizzado ua velocità c (figura ). c cmi π D π D L itervallo cmi - c deve rimaere costate quidi, dividedo membro a membro le relazioi precedeti, si ha: c c mi cost. ϕ A. Padolfo, G. Degli Esposti Tecoie meccaiche di processo e di prodotto 202 RCS RCS Libri S.p.A., Milao - Calderii
2 c c 2 c mi - D figura D Da questa relazioe si ha ache: ed essedo e - due umeri geerici, si può osservare che: ogi umero di giri si ottiee moltiplicado il umero di giri precedete per ua costate ϕ. I valori di formao cioè ua progressioe geometrica di ragioe ϕ. I particolare si ha, idicado co il umero di giri più piccolo e co quello più elevato: ϕ 0 2 ϕ 3 2 ϕ ϕ ϕ ϕ ϕ ϕ α- da cui, oti i valori estremi dei umeri di giri e cambio, si può calcolare la ragioe della progressioe: e detto N il umero di rapporti che costituisce il N ϕ () ed è quidi possibile calcolare il valore del umero di giri itermedi. Il frazioameto dei valori di viee fatto seguedo i termii della serie dei umeri ormali di Reard (serie di Reard). I umeri ormali soo valori covezioalmete arrotodati della serie i progressioe geometrica che ha per ragioe R ; 0; 0; 0 Calcolado i valori delle ragioi precedetemete omiate, si ha: 5 0,5849; 0 e vegoo idicati rispettivamete co R5, R0, R20, 0 0,2589; 20 0,220; 40 0,0593 Si può quidi otare che fra due termii cosecutivi della serie si hao icremeti percetuali di circa il 60% per la serie R5, il 25% per la serie R0; il 2% per la serie R20 e 6% per la R40. A. Padolfo, G. Degli Esposti Tecoie meccaiche di processo e di prodotto 202 RCS RCS Libri S.p.A., Milao - Calderii
3 Esempio Si vuole costruire u cambio dotato di 8 velocità di rotazioe da giri/mi a 230 giri/mi i progressioe geometrica. Determiare il umero di giri itermedi. I dati soo quidi: giri/mi 230 giri/mi possibilità di cambio N 8 Dalla relazioe () si ha: ϕ α 7 230,58 i umeri di giri soo pertato: giri/mi 2, giri/mi 3, ,8 25 giri/mi 4, ,2 200 giri/mi 5,58 4 3,6 30 giri/mi 6, giri/mi 7, ,9 780 giri/mi 8, giri/mi Il diagramma polare si preseta come i figura 2: 4 c [m/mi] giri/mi giri/mi giri/mi giri/mi 200 giri/mi 25 giri/mi 80 giri/mi giri/mi D 20 figura 2 A. Padolfo, G. Degli Esposti Tecoie meccaiche di processo e di prodotto 202 RCS RCS Libri S.p.A., Milao - Calderii
4 Diagramma aritmico Il diagramma polare preseta l icoveiete di o essere molto chiaro ella parte vicio all asse delle ordiate, ossia per valori piccoli di D. Per redere la lettura più facile viee usato u diagramma doppio-aritmico. t α π D Trasformado i forma aritmica l'espressioe: si ha: Per ogi valore di si ha: e quidi l'equazioe π D c π c + D π cost. π c + D rappreseta, su u diagramma aritmico c D, ua retta icliata di 45 (perché il coefficiete agolare di D è, e quidi α 45 ), e tale da staccare sull asse delle ordiate u segmeto pari al termie oto π. t - 2 π π D π 2 A. Padolfo, G. Degli Esposti Tecoie meccaiche di processo e di prodotto 202 RCS RCS Libri S.p.A., Milao - Calderii
5 Per ogi valore di si ha ua retta di questo tipo e sul diagramma si ha u fascio di rette parallele, ogua delle quali rappreseta u certo valore di. Il diagramma aritmico dell esempio precedete si preseta come i figura 3. c [m/mi] D [mm] figura 3 Se i valori dei umeri di giri soo i progressioe geometrica, si può otare che le rette icliate a 45 del fascio, soo equidistati. Ifatti, detti u umero di giri geerico e - il precedete, si ha: π π ϕ - π + D + D + D c + ϕ essedo ϕ cost. ache ϕ è costate, per cui le rette che rappresetao i umeri di giri - e distao di ua quatità pari a ϕ. Aaamete per tutti gli altri umeri di giri. A. Padolfo, G. Degli Esposti Tecoie meccaiche di processo e di prodotto 202 RCS RCS Libri S.p.A., Milao - Calderii
Campionamento casuale da popolazione finita (caso senza reinserimento )
Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori
ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI
ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a
Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati
Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli
SUCCESSIONI DI FUNZIONI
SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe
SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.
SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....
1.6 Serie di potenze - Esercizi risolti
6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo
Stima della media di una variabile X definita su una popolazione finita
Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla
IL CALCOLO COMBINATORIO
IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso
2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)
Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,
Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno
Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto
Solidi e volumi Percorso: Il problema della misura
Solidi e volumi Percorso: Il problema della misura Abilità Coosceze Nuclei Collegameti esteri Calcolare perimetri e aree Equivaleza el piao ed Spazio e figure Fisica di poligoi. equiscompoibilità tra Disego
La dinamica dei sistemi - intro
La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali
STUDIO DEL LANCIO DI 3 DADI
Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio
Diottro sferico. Capitolo 2
Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice
Corso di Informatica
Corso di Iformatica Codifica dell Iformazioe Sistemi Numerici Per rappresetare ua certo quatità di oggetti è ecessaria ua covezioe o sistema umerico che faccia corrispodere ad ua sequeza di ua o più cifre,
1 Esponenziale e logaritmo.
Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a
SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)
SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log
Esercitazioni di Statistica
Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai [email protected] Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso
Mole e Numero di Avogadro
Mole e Numero di Avogadro La mole È ua uatità i grammi di ua sostaza che cotiee u umero preciso e be determiato di particelle (atomi o molecole) Numero di Avogadro Ua mole di ua sostaza cotiee u umero
Precorso di Matematica, aa , (IV)
Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe
2. PROBLEMI ISOPERIMETRICI
. ROBLEMI IOERIMETRICI (OLUZIONI roblema isoperimetrico classico : Tra le figure piae di perimetro fissato trovare quella di area massima. ROBLEMA IOERIMETRICO ER I RETTANGOLI: (itra tutti i rettagoli
Esercizi di Calcolo delle Probabilità e Statistica Matematica
Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al
Alcuni concetti di statistica: medie, varianze, covarianze e regressioni
A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè
(1 2 3) (1 2) Lezione 10. I gruppi diedrali.
Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria
Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie
Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo
Lezione 4. Gruppi di permutazioni
Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X
Elementi di Calcolo Combinatorio
Elemeti di Calcolo Combiatorio Alessadro De Gregorio Sapieza Uiversità di Roma [email protected] Idice 1 Premessa 1 2 Permutazioi 2 3 Disposizioi 3 4 Combiazioi 4 5 Il coefficiete multiomiale
Algoritmi e Strutture Dati (Elementi)
Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti
Cosa vogliamo imparare?
Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come
ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo
Il centro di pressione C risulta esterno al nocciolo (e > GX ) (grande eccentricità)
Il cemeto armato: metodo alle tesioi ammissibili Uità 5 Flessioe semplice retta e sforzo ormale Il cetro di pressioe risulta estero al occiolo (e > X ) (grade eccetricità) 0L asse eutro taglia la sezioe,
Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1)
Sessioe ordiaria all estero caledario australe 005 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 005 Caledario
Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09
Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006
ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato
Lezioni di Matematica 1 - I modulo
Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti
Principio di induzione: esempi ed esercizi
Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se
1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;
. Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto
1.2 IL PRINCIPIO FONDAMENTALE DEL CALCOLO COMBINATORIO
Aalisi combiatoria CAPITOLO 1 1.1 INTRODUZIONE Quello che segue è u tipico problema pratico che coivolge le probabilità. U sistema di comuicazioe cosiste di atee apparetemete idetiche che vegoo allieate
MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica
MEDIE STATISTICHE La raccolta dei dati e la successiva loro elaborazioe permettoo di trarre alcue coclusioi su u dato feomeo oggetto di studio. A questo fie si assume che u valore calcolato a partire dai
Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.
Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ
Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008
Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u
Distribuzioni di probabilità
Itroduzioe Distribuzioi di robabilità Fio ad ora abbiamo studiato ua secifica fuzioe desità di robabilità, la fuzioe di Gauss, che descrive variabili date dalla somma di molti termii idiedeti es. ua misura
SUCCESSIONI NUMERICHE
SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si
Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X.
Serie umeriche Paola Rubbioi Deizioe, serie otevoli e primi risultati Deizioe.. Data ua successioe di umeri reali (a ) 2N, si dice serie umerica la successioe delle somme parziali (S ) 2N, ove S = a +
Ricerca di un elemento in una matrice
Ricerca di u elemeto i ua matrice Sia data ua matrice xm, i cui gli elemeti di ogi riga e di ogi coloa soo ordiati i ordie crescete. Si vuole u algoritmo che determii se u elemeto x è presete ella matrice
NUMERICI QUESITI FISICA GENERALE
UMERICI (Aalisi Dimesioale). Utilizzado le iformazioi ricavabili dalla gradezza fisica che ci si aspetta come risultato e dai valori umerici foriti, idividuare, tra le espressioi riportate, quella/e dimesioalmete
CONCETTI BASE DI STATISTICA
CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto
= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);
La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi
