NUMERICI QUESITI FISICA GENERALE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "NUMERICI QUESITI FISICA GENERALE"

Transcript

1 UMERICI (Aalisi Dimesioale). Utilizzado le iformazioi ricavabili dalla gradezza fisica che ci si aspetta come risultato e dai valori umerici foriti, idividuare, tra le espressioi riportate, quella/e dimesioalmete corrette, precisado la motivazioe per quelle errate. Ove ecessario, per l'accelerazioe ormale di gravità si assuma il valore (espresso co 6 c.s. ) g = m /s 2.

2 N0] La velocità fiale v f di u puto materiale i caduta libera per u tempo =2.5 ms, partedo da fermo, è data da a ) 2 v f =g b) v f =g

3 Svolgimeto: Come si può ricavare dalla tabella delle gradezze fisiche utilizzate i meccaica, le dimesioi di ua velocità soo L T (si legge lughezza per tempo alla meo uo ) e, el SI, si esprime i m/s (si legge metri al secodo ). Quidi, per essere dimesioalmete corretta, ache il secodo membro dell'uguagliaza deve avere tali dimesioi. Dai valori umerici riportati, possiamo dedurre 2 [ g ]=m /s 2, ovvero [ g ]=L T 2 [ ]=s, ovvero [ ]=T Teedo coto che elle operazioi di moltiplicazioe, divisioe, elevameto a poteza le uità di misura (e quidi le dimesioi) seguoo le usuali regole dell'algebra, abbiamo a ) [ g 2 ]=[ g ] [ ] 2 =(L T 2 ) (T ) 2 =L ovvero [ g 2 ]=m b) [2 g ]=[ g ] [ ]=(L T 2 ) (T)=L T ovvero [ g ]=m/s Pertato l'espressioe a ), che da' come risultato ua lughezza, è dimesioalmete errata metre l'espressioe b), che da' come risultato ua lughezza per u tempo alla meo uo è dimesioalmete corretta. L'espressioe a ) è errata perché o è possibile uguagliare ua gradezza fisica espressa i metri al secodo ( v f ) co ua ( g 2 ) espressa i metri. L'espressioe b) è dimesioalmete corretta, ma o è detto che sia corretta. I effetti le'spressioe corretta è v f =2 g. Le dimesioi di ua gradezza fisica NON soo lughezza, larrghezza ed altezza, come pdice qualche studete che ha solo sfogliato distrattamete u testo di fisica e si basa sull'uso di tale termie el liguaggio correte. 2 Per cosuetudie, per idicare le dimesioi di ua gradezza fisica si racchiude il simbolo tra paretesi quadre, per cui l'espressioe [ g ]=L T 2 si legge le dimesioi di g soo ua lughezza per u tempo alla meo 2. Spesso, ache se i maiera impropria, si utilizzao le uità di misura SI al posto delle dimesioi, per cui si scrive [ g ]=m/s 2 l'uità di misura SI di g è metri al secodo al quadrato. che si legge

4 N02] Il tempo di caduta (il tempo impiegato a raggiugere il suolo) di u puto materiale i caduta libera che parta fermo da ua quota H 0 =7.25 i è a ) t c= H 0 2 g b) t c= g 2 H 0

5 Svolgimeto: Il risultato deve essre u tempo, ovvero deve essere espresso i secodi: [t c ]=T, ovvero [t c ]=s A parte l'accelerazioe di gravità g = m /s 2 [ g ]=m /s 2, ovvero [ g ]=L T 2 compare H 0 =7.25 i che è espressa i ich (pollici). Ache se è espressa i ua uità di misura del sistema aglosassoe, si tratta di ua lughezza per cui possiamo scrivere [ H 0 ]=L, ovvero [ H 0 ]=m ma teiamo presete che se fossimo iteressati ai valori umerici (che per il mometo o stiamo prededo i cosiderazioe) dovremmo covertire il valore i pollici el valore i metri. Il 2 che compare i etrambe le espressioi è u umero puro ed è quidi adimesioale per cui possiamo igorarlo ell'eseguire l'aalisi dimesioale. La radice quadrata equivale ad elevare alla poteza /2=0.5 a ) [ H 0 2 g ] = [ H 0 g ] = [ H ]/2 0 g =( m m /s 2)/2 =( m )/2 s2 m =(s 2 ) /2 =s dimesioalmete corretta [ b) g ] [ 2 H = g 0] 0 H = [ g ]/2 H 0 =( m )/2 /s2 m =( m m s 2)/2 =(/s 2 ) /2 =/s dimesioalmete errata L'espressioe a ) è dimesioalmete corretta metre l'espressioe b) è dimesiomalmete errata poiché forisce come risultato u tempo alla meo uo ivece di u tempo. Si oti che, ache i questo caso l'espressioee dimesioalmete corretta è comuque errata, poiché dalla studio della ciematica si vedrà che t c = 2 H 0 / g.

6 N03] Al termie dello svolgimeto di u esercizio, due studeti trovao che l'altezza da cui è stato laciato u palloe è =( a ) H 0 2 g v 0z ) =( b) H v 0z 0 g ) 2 dove v 0z, è la compoete verticale della velocità iiziale, espressa i m/s, è la durata della caduta, espressa i s e g è l'accelerazioe di gravità che è, ovviamete, espressa i m/s 2. Determiare se le espressioi riportate soo dimesioalmete corrette. Test i aula: a ) matricole pari b) matricole dispari

7 Note: =( a ) H 0 2 g v 0z ) =( b) H v 0z 0 g ) 2 I valori umerici o soo foriti ma ciò o ha alcua importaza ai fii dell'aalisi dimesioale Il risultato deve essre ua lughezza che, el SI, deve essere espresso i metri. Si dovrà quidi verificare che il risultato sia espresso i metri. Tuttavia, i queste espressioi, compaioo moltiplicazioi / divisioi ed ua sottrazioe per cui si dovrà verificare ache che gli addedi (ua sottrazioe può essere vista come u'addizioe i cui uo degli addedi è stato cambiato di sego) abbiao le stesse dimesioi: o è, ifatti, possibile sommare o sottrarre quatità espresse i uità di misura differeti! Procediamo quidi così:. verifichiamo se gli addedi hao le stesse dimesioi 2. i caso di risposta affermativa, verifichiamo se l'espressioe complessiva ha le dimesioi di ua lughezza

8 Svolgimeto: Passo : poiché [ 2 g ] = [ g ] =L T 2 a ) =( H 0 2 g v 0z ) metre [v 0z ] =[v 0z ][ ] =L T T =L hao dimesioi differeti (il primo si esprime i metri al secodo al quadrato metre il secodo i metri) l'espressioe a ) è dimesioalmete errata ed è iutile procedere co il passo 2. [ Passo : v ] 0z t = [ v 0z ] f [ ] = m /s s dimesioi di etrambi gli addedi [ v 0z g Passo 2: [( v 0z g 2 ) ] risultato o è espresso i metri) I coclusioe: =( b) H v 0z 0 g ) 2 =m /s 2 e [ g 2 ] = [ g ] =m /s 2 è possibile eseguire la differeza ed il risultato ha le ] =m /s2 2 = [( v 0z g 2 )] [ ] =(m /s 2 )s =m /s per cui l'espressioe è dimesioalmete errata (il Sia l'espressioe a ) che l'espressioe b) soo dimesioalmete errate: la prima perché o è possibile eseguire la sottrazioe, la secoda perché il risultato è i metri al secodo ivece che i metri.

9 Eseguire la verifica dimesioale delle segueti espressioi: N04] *) D f = v 2 0 si 2g (ϑ 0) N05] *) W = p v (V 2 V ) f N06 ] *) D f = v 2 0 si (2 ϑ g 0 ) N07 ] *) Δ h=( p p 2 ρ + v 2 2 v 2 ) 2 g N08] *) H f = ( v 0 si (ϑ 0 ) 2 g ) 2 N09] *) W = p v (V 2 V )/ f N0] *) Δ h=( p p 2 ρ + v 2 2 v 2 ) 2 g dove D : lughezza, f : frequeza, g : accelerazioe, h : lughezza, H : lughezza, p: pressioe, t : tempo, v : velocità, V : volume, ϑ: agolo piao, ρ: desità

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel: UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Doatella Siepi [email protected] tel: 075 5853525 05 dicembre 2014 6 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazioe dei

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: [email protected] Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

La dinamica dei sistemi - intro

La dinamica dei sistemi - intro La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali

Dettagli

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X.

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X. Serie umeriche Paola Rubbioi Deizioe, serie otevoli e primi risultati Deizioe.. Data ua successioe di umeri reali (a ) 2N, si dice serie umerica la successioe delle somme parziali (S ) 2N, ove S = a +

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione); La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Corso di Informatica

Corso di Informatica Corso di Iformatica Codifica dell Iformazioe Sistemi Numerici Per rappresetare ua certo quatità di oggetti è ecessaria ua covezioe o sistema umerico che faccia corrispodere ad ua sequeza di ua o più cifre,

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Le perdite meccaniche per attrito e ventilazione si possono ritenere costanti e pari a 400 W.

Le perdite meccaniche per attrito e ventilazione si possono ritenere costanti e pari a 400 W. Corso di Macchie e azioameti elettrici A.A. 003-004 rova i itiere del ovembre 003 Esercizio. Le caratteristiche omiali di u motore asicroo trifase co rotore a gabbia soo le segueti: = 7,46 kw; =0, 50 Hz,

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza [email protected] Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

D1. La tabella seguente riporta alcune informazioni nutrizionali stampate su tre confezioni di cereali per la prima colazione:

D1. La tabella seguente riporta alcune informazioni nutrizionali stampate su tre confezioni di cereali per la prima colazione: D1. La tabella seguete riporta alcue iformazioi utrizioali stampate su tre cofezioi di cereali per la prima colazioe: Cofezioe 1 Cofezioe 2 Cofezioe 3 grammi di cereali 100 200 70 percetuale di zucchero

Dettagli

Preparazione al corso di statistica Prof.ssa Cerbara

Preparazione al corso di statistica Prof.ssa Cerbara Preparazioe al corso di statistica Prof.ssa Cerbara Esistoo molti isiemi umerici, ciascuo co caratteristiche be precise. Alcui importatissimi isiemi umerici soo: N: isieme dei umeri aturali, cioè tutti

Dettagli

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 -

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 - ISTITUTO TECNICO INDUSTRIALE STATALE G. Marcoi PONTEDERA Prof. Pierluigi D Amico - Apputi su FIBRE OTTICHE - Classi QUARTE LICEO TECNICO A.S. 005/006 - Pagia. 1 di 5 1. LEGGE DI SNELL FIBRE OTTICHE si

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,

Dettagli

Elettrotecnica II. 1 Materiale didattico

Elettrotecnica II. 1 Materiale didattico Politecico di Torio Elettrotecica Materiale didattico Trasformatore Si cosideri il seguete circuito magetico: Sia S la sezioe del materiale ferromagetico. Si facciao le segueti ipotesi: ) asseza di flussi

Dettagli

Cerchi di Mohr - approfondimenti

Cerchi di Mohr - approfondimenti Comportameto meccaico dei materiali Cerchi di Mohr - approfodimeti Stato di tesioe e di deformazioe Cerchi di Mohr - approfodimeti L algebra dei cerchi di Mohr Proprietà di estremo dei cerchi di Mohr Costruzioe

Dettagli

Serie di Fourier / Esercizi svolti

Serie di Fourier / Esercizi svolti Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se

Dettagli