Analisi Matematica I
|
|
|
- Giuliana Martina
- 9 anni fa
- Visualizzazioni
Transcript
1 Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log D) ) si + log ) cos ) π Domada La fuzioe f :, + ) R defiita da f) ta + ) ) ha u asitoto obliquo B) ha miimo assoluto ) ha u asitoto orizzotale e uo verticale D) o è itata iferiormete Domada e cos si log + )) ) 6 B) ) D) + B Domada 4 La successioe a + ) ) ) ha sia massimo che miimo B) ha massimo ma o ha miimo ) o ha é massimo é miimo D) ha miimo ma o ha massimo Domada 5 Sia {e + : N, }. llora ) sup) + B) sup) e ) if) D) if)
2 Domada 6 ) diverge positivamete B) coverge + log + ) cos ) d ) diverge egativamete D) o esiste B Domada 7 + ) diverge egativamete B) o esiste ) arcta + d ) coverge D) diverge positivamete Domada 8 ) B) + e e + log log d ) + log D) e Domada 9 La serie ) + ) + cos ) o coverge B) coverge ma o coverge assolutamete ) coverge assolutamete D) diverge egativamete Domada La serie cos + )π)e 5 log ) 7 ) diverge positivamete B) coverge ma o coverge assolutamete ) coverge assolutamete D) diverge egativamete
3 Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La successioe a + ) ) ) o ha é massimo é miimo B) ha miimo ma o ha massimo ) ha massimo ma o ha miimo D) ha sia massimo che miimo Domada ) + e e + log log d B) e ) + log D) Domada ) B) + e cos si log + )) D ) 6 D) Domada 4 La derivata della fuzioe f) log ) si è ) log ) si cos loglog ) + si ) B) log log )si ) log )cos D) ) si + log ) cos Domada 5 ) o esiste + log + ) cos ) d B) diverge positivamete ) diverge egativamete D) coverge D
4 Domada 6 Sia {e + : N, }. llora ) sup) e B) if) ) if) D) sup) + D Domada 7 ) diverge positivamete + ) arcta + d B) coverge ) diverge egativamete D) o esiste B ) π Domada 8 La fuzioe f :, + ) R defiita da f) ta + ) ) ha u asitoto obliquo B) o è itata iferiormete ) ha u asitoto orizzotale e uo verticale D) ha miimo assoluto Domada 9 La successioe a + e cos ) diverge positivamete B) ha ite fiito ) o ha ite e o è itata D) o ha ite ma è itata Domada log ) si ) B) + ) D)
5 Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio ogome) Nome) Numero di matricola) Esercizio Studiare la fuzioe f) + ) determiadoe isieme di defiizioe, asitoti, estremi superiore e iferiore o massimo e miimo), puti di massimo o di miimo locali e itervalli di covessità. Soluzioe La fuzioe è defiita per ogi. strettamete positivi. Valutiamo i iti. Osserviamo subito che la fuzioe assume solo valori f) f) + f). + La fuzioe preseta quidi u asitoto orizzotale di equazioe y per che tede sia a + che a. Ioltre abbiamo u asitoto verticale di equazioe. Vediamo ora gli itervalli di mootoia calcolado la derivata prima. f ) ) + ) ) ) 4 + ) ). Il umeratore cambia sego per e il deomiatore per. Ne segue che f ) > ), f ) <, ), + ). La fuzioe è quidi decrescete ella semiretta, ], crescete ell itervallo [, ) e di uovo decrescete ella semiretta, + ). Il puto è quidi di miimo locale. No vi soo altri puti di massimo o miimo locali, i quato la fuzioe è derivabile i tutto il suo isieme di defiizioe e la derivata prima o si aulla i altri puti. Dato che la fuzioe è decrescete i, + ) e che f), si ottiee subito che f) per ogi >. Valutado f el puto + di miimo locale si ottiee che f ) <
6 quidi il puto è di miimo assoluto. L estremo superiore di f è + e il miimo è 5. Per valutare la covessità calcoliamo la derivata secoda. Risulta quidi che f ) ) + ) ) ) 6 + ) 4. f ) > >, f ) < <. Ne segue che f è cocava ella semiretta, ], covessa sull itervallo [, ) e sulla semiretta, + ). Il puto è di flesso. Esercizio alcolare l itegrale e log + e + e ) + e d. Soluzioe Eseguedo la sostituzioe t + e, co dt d e e osservado che + e + e + e ), si ottiee e log + e + e ) + e d +e logt ) t dt +e log t t dt [ log t) ] +e log+e )) log ). Esercizio Solo I ao) Studiare la covergeza semplice ed assoluta della serie dove il simbolo idica la parte itera. ) / log + ) Soluzioe Idichiamo co a il termie geerale della serie. Osserviamo che se è pari allora possiamo scrivere k co k N e risulta k k k k quidi a k. La serie quidi è composta solo dai termii di idice dispari cioè co k+, k N. I questo caso abbiamo k + a k+ k + ) k+ k+ logk + + ) ) k k+ logk + ) )k k / k logk + ) ) k logk + ).
7 Quidi dobbiamo valutare la covergeza della serie k ) k logk + ) che è ua serie a segi alterati, essedo > per ogi k N. Ioltre la successioe logk+) b k è decrescete, dato che il logaritmo è ua fuzioe crescete, e ifie b logk+) k. Per k il criterio di Leibiz la serie quidi coverge. Valutiamo ora la covergeza assoluta. e dalla disuguagliaza ) k logk + ) k k logk + ) k + k logk + ) applicado il criterio del cofroto e del cofroto asitotico otteiamo che la serie diverge. La serie data quidi è covergete ma o assolutamete covergete. Esercizio 4 Solo II ao) alcolare il ite )! Soluzioe Il ite si preseta ella forma idetermiata. Dato che la successioe è a termii positivi possiamo applicare il criterio del rapporto. a + a + )+) + ))! )! )! + ) + ) + )! ) + + ) + ) + ) + ) ) e 4 >. + ) + ) + ) Quidi il ite cercato vale +.
SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.
SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....
SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)
SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log
1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;
. Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto
ESERCIZI SULLE SERIE
ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare
1.6 Serie di potenze - Esercizi risolti
6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo
Esercizi di Analisi II
Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare
SUCCESSIONI DI FUNZIONI
SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe
Esercizi sui limiti di successioni
AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε
Esercizi su serie numeriche - svolgimenti
Esercizi su serie umeriche - svolgimeti Osserviamo che vale la doppia diseguagliaza + si, e quidi la serie è a termii positivi Duque la somma della serie esiste fiita o uguale a + Ioltre valgoo le diseguagliaze
POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N
POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k
Svolgimento degli esercizi del Capitolo 4
4. Michiel Bertsch, Roberta Dal Passo, Lorezo Giacomelli Aalisi Matematica 2 a edizioe Svolgimeto degli esercizi del Capitolo 4 Il limite segue dal teorema del cofroto: e / 0 per. 4.2 0
Le successioni: intro
Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!
Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.
Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ
SERIE NUMERICHE. Test di autovalutazione. 1+a 2
SERIE NUMERICHE Test di autovalutazioe. E data la serie: dove a R. Allora: ( ) 3a +a (a) se a = la serie coverge a (b) se a = 3 la somma della serie vale 5 (c) se a = 5 la serie diverge a (d) se a 0 la
1 + 1 ) n ] n. < e nα 1 n
Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e
n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.
Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:
Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni.
Esercizi di Aalisi Matematica. Paola Gervasio Es. Esercizi di Aalisi Matematica utili per la preparazioe all esame scritto. File co soluzioi. a.5.5.5.5 b 4 3.5 3.5.5.5 5 5 Figura 5 5.5 a 3 b 4 5.5 6 5
ANALISI MATEMATICA 1. Funzioni elementari
ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,
5 ln n + ln. 4 ln n + ln. 6 ln n + ln
DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio
Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche
Corso di laurea i Matematica Corso di Aalisi Matematica -2 AA. 0809.. Cooscere. Dott.ssa Sadra Lucete. Successioi umeriche Defiizioe di successioe, isieme degli elemeti della successioe, successioe defiita
Lezioni di Matematica 1 - I modulo
Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti
Esercizi di approfondimento di Analisi IA
Esercizi di approfodimeto di Aalisi IA 4 geaio 017 1 Estremo superiore/iferiore, classi cotigue, archimedeità 1.1. Mostrare che A = {x R : x > 0, x < } ha u estremo superiore ξ, ed è ξ =. 1.. Siao A, B
Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X.
Serie umeriche Paola Rubbioi Deizioe, serie otevoli e primi risultati Deizioe.. Data ua successioe di umeri reali (a ) 2N, si dice serie umerica la successioe delle somme parziali (S ) 2N, ove S = a +
ESERCIZI PER IL CORSO DI ANALISI MATEMATICA A
ESERCIZI PER IL CORSO DI ANALISI MATEMATICA A Igegeria Elettroica e delle Telecomuicazioi ao accademico 005 006 Gli esercizi idicati co presetao maggiori difficoltà teciche. Biomio di Newto. Sviluppare
Serie di Fourier / Esercizi svolti
Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se
Foglio di esercizi N. 1 - Soluzioni
Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >
Algoritmi e Strutture Dati (Elementi)
Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti
ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.
ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità
Serie numeriche: esercizi svolti
Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:
Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1
Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,
1 Esponenziale e logaritmo.
Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a
SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n
SERIE NUMERICHE Esercizi risolti. Applicado la defiizioe di covergeza di ua serie stabilire il carattere delle segueti serie, e, i caso di covergeza, trovare la somma: = + b) = + +. Verificare utilizzado
Analisi Funzionale 1 - a.a. 2012/2013
Secodo appello Esercizio Sia H spazio di Hilbert reale separabile. Aalisi Fuzioale - a.a. 202/203. Si euci il teorema di caratterizzazioe di ua base hilbertiaa per H. 2. Si provi che H ha ua base hilbertiaa
a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k
ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;
SUCCESSIONI NUMERICHE
SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si
Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1)
Sessioe ordiaria all estero caledario australe 005 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 005 Caledario
1 Limiti di successioni
Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite
Studio di funzione. Rappresentazione grafica di una funzione: applicazioni
Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza
Precorso di Matematica, aa , (IV)
Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe
I appello - 29 Giugno 2007
Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (
Cosa vogliamo imparare?
Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come
Richiami sulle potenze
Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle
ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni:
N. Fusco ESERCIZI DI ANALISI I Prof. Nicola Fusco Determiare l isieme i cui soo defiite le segueti fuzioi: ) log/ arctg π ) 4 ) log π 6 arcse ) ) tg log π + ) 4) 4 se se se tg 5) se cos tg 6) [ 6 + 8 π
Teorema 13. Se una sere converge assolutamente, allora converge:
Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 03: Riferimeti: R.Adams, Calcolo Differeziale.- Si cosiglia vivamete di fare gli esercizi del testo. Covergeza assoluta e
Limiti di successioni
Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe
ESERCIZI SULLE SERIE
ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti
Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:
Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,
SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.
Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.
2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)
Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,
