Risposta in Frequenza



Documenti analoghi
Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Corso di Fondamenti di Telecomunicazioni

Successioni numeriche

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

PROGRAMMA DI RIPASSO ESTIVO

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1.

Studio dei transitori con il metodo delle trasformate di Laplace

Sistemi e Tecnologie della Comunicazione

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007

Capitolo 11 Regressione con variabile dipendente binaria

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse

SOMMARIO. I Motori in Corrente Continua

Esercizi sullo studio di funzione

Funzioni di trasferimento. Lezione 14 2

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città

... a) Lo spettro di un segnale SSB è costituito da... b) Un segnale SSB può essere ottenuto... in una... mediante un... centrato su...

Congelatori Orizzontali in Classe A+, A++ e A -60%

La valutazione finanziaria

La Formazione in Bilancio delle Unità Previsionali di Base

f = B / N, si può dire in prima approssimazione f = 1 / T s, sono ortogonali sull intervallo di tempo T s,

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

Inverter stand-alone Kaco Il nuovo inverter ad onda sinusoidale

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Il ruolo delle aspettative in economia

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

POLITECNICO DI MILANO ANALISI E SPERIMENTAZIONE DEI MODELLI DI SIMULAZIONE DEL TRAFFICO APPLICATI AL CASO DELLA METROTRANVIA MILANO-SEREGNO

Aspettative, produzione e politica economica

3 - Trasformata di Fourier discreta Discrete Fourier Transform ( DFT)

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE CONTINUA

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Minicorso Controllo Statistico di Processo


SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

Tecniche per la ricerca delle primitive delle funzioni continue

Integrazione e Integratori delle Informazioni

Transcript:

Risposta i Frquza Ipdza L ipdza di u bipolo è il uro coplsso dato dal rapporto tra il fasor tsio il fasor corrt: jφ V V V V j( ΦV ΦI ) Z = = I I jφ L attza è il uro coplsso: Z Y soo i gral fuzioi dlla pulsazio ω, cioè Z= Z(, Y= Y(. Copot R I I Ipdza Z R C /jωc = - j/ωc L jωl Y = Z I V Strutazio Elttroica di Misura - V. Frrari

Aalisi di Circuiti i Rgi Siusoidal Tutt la lggi prstat pr circuiti rsistivi (KVL, KCL, Thvi, Norto, ) soo stdibili a circuiti co R, C, L i rgi siusoidal a patto di cosidrar pr ciascu copot la sua ipdza Espio: I s R C V o V O = IS R = jωc R = IS + jωrc Rgi Siusoidal Liarità I circuiti liari cosrvao la fora di sgali siusoidali S all igrsso è applicata ua siusoid a frquza f, all uscita è cssariat prodotta ua siusoid alla stssa frquza Gli uici paratri ch possoo vtualt variar soo apizza fas x(t) = X cos( ωt) circuito liar y(t) = Y cos( ωt + Φ) Strutazio Elttroica di Misura - V. Frrari 2

Aalisi l Doiio dlla Frquza Doiio dl Tpo circuito liar x(t) = X cos( ωt) y(t) = Y cos( ωt + Φ) R [...] R[...] X( = X jωt X Y( = X Y circuito liar Doiio dlla Frquza H jφ jωt Y = X jφ Y ( ( = jφ( X ( Y( = Y jφ X( = H( X( jωt Risposta i Frquza H( Rapprsta il coportato di u circuito liar i rgi siusoidal al variar dlla frquza Fuzio di risposta i frquza (FRF) H(: fuzio coplssa dlla pulsazio ω data dal rapporto Y(/X( tra l uscita Y( l igrsso X( trabi rapprstati i fora coplssa (otazio co fasori) Strutazio Elttroica di Misura - V. Frrari 3

Risposta i Frquza H( L coplicat quazioi itgro-diffrziali ch lgao igrsso uscita l doiio dl tpo si trasforao, l doiio dlla frquza, i u splic prodotto: Y( = H( X( L ipdza Z( è u caso particolar di FRF, i cui igrsso uscita soo corrt tsio dllo stsso bipolo Diagrai di Bod di H( Modalità di graficar H( scodo l sguti rgol: Diagraa dl odulo H( sprsso i dcibl (db) i fuzio di ω (o di f ) i scala logaritica H db= 20log0 H Diagraa dlla fas H( i gradi o radiati i fuzio di ω (o di f ) i scala logaritica Attravrso la covrsio i db, i prodotti si trasforao i so d è possibil tracciar i diagrai di Bod a partir da blocchi splici ch copogoo H( Strutazio Elttroica di Misura - V. Frrari 4

Espio: circuito RC R Vi C Vo R = kω C = 00 F 0-50 SEL>> -00 0d vdb( 2) -90d. 0Hz 0Hz 00Hz. 0KHz 0KHz 00KHz. 0MHz vp( 2) Fr qucy Sgali Aalogici Rapprstazio di Fourir Strutazio Elttroica di Misura - V. Frrari 5

Iforazio Sgali Iforazio: i sso gral è idtificabil co il cotuto di u ssaggio trasfrito da u soggtto ad u altro. Sgal: l voluzio dlla gradzza fisica ch supporta iforazio. Gralt è ua dipdza di ua gradzza dal tpo o da u altra gradzza. Sgali Aalogici Prdoo il o dal fatto ch soo aaloghi alla quatità fisica ch rapprstao. Soo spriibili co fuzioi y(x) dfiit i u itrvallo cotiuo dlla variabil idipdt x, a valori i u itrvallo cotiuo l doiio dlla variabil dipdt y. Tipicat, la variabil idipdt x è il tpo t Pr spio: E u sgal aalogico la tsio fuzio dl tpo grata da u icrofoo. Tal tsio rapprsta l adato cotiuo l tpo dlla prssio soora i igrsso. Strutazio Elttroica di Misura - V. Frrari 6

Elaborazio di Sgali Aalogici Elaborazio liar, pr spio: Aplificazio Filtraggio liar Filtri passa-basso, passa-alto, passa-bada, liia-bada Elaborazio o liar, pr spio: Raddrizzato Covrsio da siusoid a oda quadra Sgali Priodici U sgal l tpo f(t) è priodico s sist u itrvallo di tpo T tal ch pr ogi N itro: f ( t) = f ( t + NT ) L itrvallo T la frquza f 0 =!/T si dicoo priodo frquza fodatal di f(t) f(t) t -T T 2T 3T I sgali siusoidali (so coso) soo casi particolari di sgali priodici. Strutazio Elttroica di Misura - V. Frrari 7

Scoposizio di Fourir U sgal f(t) priodico di priodo T è spriibil co ua soa ifiita (sri) di sgali siusoidali (so coso) avti pulsazio ultipla dlla pulsazio fodatal ω 0 = 2π/T f ( t) = a [ a cos( ω t) + b s(ω t ] 0 + 0 0 ) = La sri si chiaa Sri di Fourir i cofficiti a 0, a, b, si chiaao cofficiti di Fourir rlativi a f(t) Scoposizio di Fourir I cofficiti soo ricavabili da f(t) trait l sguti sprssioi: a a = f t 0 ( ) T T b = 2 dt f ( t) cos(ω t 0 ) T T = 2 f ( t) s(ω t 0 ) T T Tri i cotiua (DC), ovvro valor dio di f(t) su u priodo T dt dt co ω 0 2π = T Strutazio Elttroica di Misura - V. Frrari 8

Scoposizio di Fourir U sprssio altrativa dlla sri di Fourir ch ipiga solo cosi è la sgut: f(t) = a 2 A = a + b 0 + A cos( ω0t + Φ ) = I cofficiti di apizza A di fas Φ soo dati da: 2 Φ b = ar ta a I grafici di A Φ i fuzio dlla frquza soo dtti rispttivat spttro dll apizz dll fasi di f(t) Scoposizio di Fourir Strutazio Elttroica di Misura - V. Frrari 9

Sgali Quasi Priodici U sgal f(t) coposto dalla soa di sgali siusoidali co divrs frquz ch tra di loro stao i rapporti o razioali si dic, i gral, quasi priodico: f(t) = a + A 0 cos( ω t + Φ ) = L pulsazioi ω o soo ultipl di ssua pulsazio ω 0 prtato f(t), pur ssdo coposto da sgali priodici siusoidali, ha u voluzio tporal ch o si ript ai. Spttro a Righ S f(t) rapprsta u sgal priodico o quasi priodico la scoposizio di Fourir di f(t) produc uo spttro a righ: frquz discrt ch, l caso priodico, soo ultipl dlla fodatal Sri di Fourir A A soo i cofficiti dlla sri di Fourir di f(t) f Strutazio Elttroica di Misura - V. Frrari 0

Spttro Cotiuo S f(t) rapprsta u sgal o priodico la scoposizio di Fourir di f(t) produc uo spttro cotiuo : frquz distribuit co cotiuità i u itrvallo (o bada) A (f) Itgral di Fourir A(f) è la trasforata di Fourir di f(t) f Circuiti Liari co Sgali No Siusoidali circuito liar x (t) y(t) Sgali priodici o priodici soo (tra cczioi) spriibili co so di sgali siusoidali (Fourir) Ciascua copot a pulsazio ω ch cotribuisc a forar il sgal di igrsso x(t) vi trattata scodo la H( dl circuito, producdo ua copot i uscita Grazi al pricipio di sovrapposizio dgli fftti, cosguza dlla liarità dl circuito, il sgal di uscita y(t) è spriibil co soa dll suddtt copoti Strutazio Elttroica di Misura - V. Frrari

Covrsio Aalogico/Digital Sgali Digitali (o Nurici) Foriscoo ua rapprstazio discrtizzata l tpo quatizzata i apizza dlla quatità fisica ch rapprstao Soo spriibili co fuzioi y(x) dfiit i u itrvallo discrto dlla variabil idipdt x, a valori i u itrvallo discrto l doiio dlla variabil dipdt y. Equivalgoo a tabll o squz di uri Pr spio: E u sgal digital la squza di valori ottuti isurado la tpratura i ua staza ad itrvalli di tpo rgolari di u ora (discrtizzazio l tpo), arrotodado la lttura a C (quatizzazio ll apizza) Strutazio Elttroica di Misura - V. Frrari 2

Codifica i Biario I lttroica u sgal digital è tipicat sprsso (codificato) i fora biaria, ossia utilizzado solo du siboli: 0 Ciò è dovuto alla rlativa facilità co cui è possibil ralizzar circuiti sisti lttroici ch aipolao i odo vloc affidabil sgali biari U uro N è spriibil i biario co: N = b 2 b = 0, si chiaa cifra biaria, ovvro BIary digit = BIT Covrsio Aalogico-Digital Il procsso di covrsio AD iplica du oprazioi: discrtizzazio l tpo, capioato (saplig) discrtizzazio ll apizza, quatizzazio (quatizig) valor digital...0...00...0...00...00...000 valor aalogico 2 3 4 5 /f s Il sgal capioato l tpo a o quatizzato i apizza (la squza di o ) si dic tpo-discrto t Tpo Valor digital 00 2 00 3 0 4 0 5 0 4 5 Strutazio Elttroica di Misura - V. Frrari 3

Capioato Tora dl Capioato (di Nyquist/Shao): f S > 2 f M f S = frquza di capioato f M = frquza dl sgal Frquza di Nyquist f N : assia frquza dl sgal ch può ssr capioata corrttat f N = f S /2 Frquz dl sgal aggiori di f N causao aliasig f M f S >> 2f M f M f S < 2f M f S Assza di aliasig t f S Prsza di aliasig t Quatizzazio Itrvallo di quatizzazio: apizza dll itrvallo di valori dll igrsso ch vi covrtito i ciascu valor digital i uscita. Dtria la risoluzio di covrsio. Covrsio a 0 bit: risoluzio rifrita al fodo scala di /2 0 = /024 = 9.7X0-4 (Tratto dal catalogo Natioal Istruts) Strutazio Elttroica di Misura - V. Frrari 4

Elaborazio di Sgali Digitali I sgali i fora di dati soo laborati da algoriti, ossia da procdur dscritt da istruzioi ch forao u prograa sguito da u laborator (co vari gradi di coplssità) Espi: Aplificazio Mdia obil Calcolo di DFT (Discrt Fourir Trasfor) FFT (Fast Fourir Trasfor) Elaborazio i tpo ral: il tpo di laborazio è trascurabil ai fii dll applicazio Carattristica fodatal di sisti di laborazio digitali è potr cotar sulla orizzazio di dati/sgali Strutazio Elttroica di Misura - V. Frrari 5