Geometria 3 A.A Esercizi

Documenti analoghi
Geometria 3 A.A Esercizi

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Esercizi nn.1 4 del libro [Sernesi, Geometria 2] Capitolo 4 13.

Vi prego di segnalare ogni inesattezza o errore tipografico a

Esercizi per il corso di Geometria IV

Esercizi tratti da temi d esame

GEOMETRIA B Esercizi

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi

Geometria Differenziale

Esercizi 5 soluzioni

Geometria Differenziale 2017/18 Esercizi I

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione

1 Rette e piani nello spazio

Esame scritto di Geometria 2

Prova scritta di Geometria differenziale - 27/2/2012

Esercizi su curvatura e torsione.

Appendice A. Temi d esame Topologia. 1. Anno accademico 2011/12.

Geometria Differenziale 2017/18 Esercizi 3

Esercizi per il corso di Geometria 2

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8

ARGOMENTI MATEMATICA PER L INGEGNERIA

Esercizi 2: Curve dello spazio Soluzioni

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso?

LEZIONE 37. x 2 a 2 + y2. b 2 = 2z, x 2. a 2 y2. b 2 = 2z. Esempio Sia S il cilindro luogo dei punti P = (x, y, z) soddisfacenti l equazione

Prima prova scritta di Geometria 3,

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve:

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo Appello 9 Luglio 2014

Curve e integrali curvilinei

CU. Proprietà differenziali delle curve

Anno Accademico 2009/2010

Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2015/2016

Esercizi di ripasso. 17 Dicembre Federico Lastaria. Analisi e Geometria 1. Esercizi di ripasso (1) 1/10

Esercizi I : curve piane

Geometria Differenziale

Geometria 4 (nuovo ordinamento) Esame scritto del 1/4/2004

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni

Corso di Geometria II, canale A-L, a.a Informazioni generali sul corso.

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Prova scritta di Geometria.

Geometria Differenziale: soluzioni test

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n.

Complementi ed Esercizi di Geometria Differenziale - A. Sambusetti 1

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 6 punti.

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A , Esercizi di Geometria analitica

Esercizi complementari

Anno Accademico 2017/2018

ORDINAMENTO 2003 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

Curve e superfici parametrizzate. R. Notari

Prova scritta di Geometria - B

Prof. C.F.U. Immatricolato nell A.A...

GEOMETRIA DIFFERENZIALE - GENNAIO 2012

Soluzioni esercizi complementari

Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2016/2017

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0.

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi su curve e integrali di linea. 1. Si forniscano almeno due parametrizzazioni per la semicirconferenza

Gennaio 17. January 24, 2017

Curve. Hynek Kovarik. Analisi Matematica 2. Università di Brescia. Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Calendario delle lezioni di istituzioni di Geometria - I modulo

1) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: 3x y + 11z = x y + 9z = 2x + y 6z = 0.

Scuola Normale Superiore Ammissione al IV anno del corso ordinario Prova scritta di Algebra e Geometria per matematici

Cognome: Nome: Matricola: Prima parte

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia

REGISTRO DELLE ESERCITAZIONI

Prova scritta di Geometria - A

PROVA SCRITTA DI GEOMETRIA 2 MATEMATICA, 20/09/2011

Capitolo III: Gruppo fondamentale Giulio Del Corso

Geometria e Topologia I - 15 lug 2008 (14:30 - U1-02) 1/10. Cognome:... Nome:... Matricola:...

Geometria analitica pagina 1 di 5

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±.

Piano euclideo. In E 2 (R) fissiamo un riferimento cartesiano ortonormale [O, B], con B = ( e 1, e 2 ).

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1

a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene

Mercoledì 15 ottobre (2 ore):

Curve nel piano ane euclideo e nello spazio ane euclideo

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Negli esercizi che seguono ci sono alcune cose da specificare:

Geometria Algebrica Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Soluzioni dello scritto di Geometria del 28 Maggio 2009

0.1 Arco di curva regolare

SIMULAZIONE DEL 25/5/ Seconda prova

Appunti di geometria analitica dello spazio. di Fabio Maria Antoniali

Geometria I - Canale M-Z

Es. 1 Es. 2 Es. 3 Totale Teoria. Punteggi degli esercizi: Es.1: 12= punti; Es.2: 12=5+5+2 punti; Es.3: 8 punti.

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

Esercizi sulle funzioni f : R 2 R. Soluzioni

GEOMETRIA 4 PROVE D ESAME

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

Transcript:

Geometria 3 A.A. 2014 2015 Esercizi Equivalenza omo- Omotopia di applicazioni contiue. topica. Si dimostri che lo spazio X = {x R 2 : x 1} è connesso. Si dimostri che lo spazio topologico è connesso. X = {(x, y, z) R 3 x 2 + y 2 z 2 = 1, z 1}. Si dimostri che l intervallo X = (a, b) R 1 non è omeomorfo al disco aperto D 2 = {(x, y) R 2 x 2 + y 2 < 1}. Siano x, y punti di uno spazio topologico X. Si dimostri che le applicazioni costanti c x : I X e c y : I X sono omotope se e solo se x e y appartengono alla stessa componente connessa per archi. Dimostrare che uno spazio X è contraibile se e solo se l applicazione id X è omotopa a un applicazione costante di X in se stesso. Dimostrare che un sotospazio convesso di R n è contraibile. In particolare D n, D n, I n sono contraibili. Dimostrare che uno spazio contraibile è connesso per archi. Si dimostri che R n \{0}, D n \{0} e D n \{0} sono spazi topologici omotopicamente equivalenti alla sfera S n 1. 1

Un sottospazio topologico X R n si dice stellato se esiste un punto p X tale che per ogni q X il segmento pq è contenuto in X. Si dimostri che ogni insieme stellato è contraibile. Sia X R n un aperto convesso. Sia p X. Si dimostri che X\{p} è omotopicamente equivalente alla sfera S n 1. Sia l R 3 una retta. Si dimostri che R 3 \l è omotopicamente equivalente alla circonferenza S 1. Sia E R n un sottospazio affine di dimensione k. Si dimostri che R n \E è omotopicamente equivalente alla sfera S n k 1. Sia B R n un sottoinsieme convesso. Sia X uno spazio topologico e sia A X un suo sottospazio. Siano f : X B e g : X B due applicazioni continue, tali che f(a) = g(a) per a. Si dimostri che f è omotopicamente equivalente a g relativamente ad A. 2

Gruppo fondamentale. Nelle esercizi dove si richiede il calcolo del gruppo fondamentale bisogna dare una presentazione tramite generatori e relazioni ed esplicitamente descrivere i generatori. Si dimostri che il gruppo è isomorfo a Z n Z m. < x, y xyx 1 y 1 = 1, x n = 1, y m = 1 > Si dimostri che il gruppo < a, b, c aba 1 b 1 c = 1 > è isomorfo al gruppo libero F < a, b >. Dimostrare che l insieme x D 2 tale che D 2 \{x} è semplicemente connesso coincide con S 1. Dedurre che se f : D 2 D 2 è un omeomorfismo, allora f(s 1 ) = S 1, f(d 2 ) = D 2. Esiste uno spazio topologico Y, tale che S 1 Y è omeomorfo a S 2, oppure a RP 2? Siano (T 1, x 1 ) e (T 2, x 2 ) due tori. Si consideri il bouquet X = T 1 T 2 /x 1 x 2. Sia x 0 il punto identificato. Calcolare π 1 (X, x 0 ). Siano x, y D 2. Calcolare π 1 (D 2 \{x, y}, x 0 ). Sia M una sfera con g manici e sia x M. Calcolare π 1 (M\{x}, x 0 ). Nell esercizio precedente siano x, y M. Calcolare π 1 (M\{x, y}, x 0 ). 3

Siano x, y RP 2. Calcolare π 1 (RP 2 \{x, y}, x 0 ). Calcolare il gruppo fondamentale di R 3 privato di due rette parallele. Calcolare il gruppo fondamentale della sfera S 2 privata di tre puni distinti. Siano L 1, L 2, L 3 le tre assi coordinate di R 3. Calcolare π 1 (R 3 \L 1 L 2 L 3, x 0 ). Suggerimento. Ridurre il problema ad un sottospazio di S 2. Calcolare il gruppo fondamentale di R 3 privato di due rette passanti per l origine. Sia M una varietà topologica connessa di dimensione n 3. Si dimostri che per ogni q M si ha un isomorfismo π 1 (M\{q}, x 0 ) = π1 (M, x 0 ) indotto dall inclusione M\{q} M. Sia M una varietà topologica connessa di dimensione n 3. Siano q 1,..., q m punti di M. Si dimostri che si ha un isomorfismo π 1 (M\{q 1,..., q m }, x 0 ) = π1 (M, x 0 ) indotto dall inclusione M\{q 1,..., q m } M. Sia X R 3 l unione di S 2 con il segmento {(0, 0, z) 1 z 1}. Si calcoli π 1 (X, N), dove N è il polo nord. Descrivere esplicitamente il/i generatore/i del gruppo. Si calcoli il gruppo fondamentale del manico. Si calcoli il gruppo fondamentale del nastro di Moebius. 4

Rivestimenti. Si dimostri che l applicazione p : S n RP n data di p((x 0, x 1,..., x n )) = (x 0 : x 1 : : x n ) è un rivestimento di grado 2. Si dimostri che se p 1 : R 1 X 1 e p 2 : R 2 X 2 sono rivestimenti, allora p 1 p 2 : R 1 R 2 X 1 X 2 è un rivestimento. Se p 1 e p 2 sono rivestimenti finiti di gradi d 1 e d 2 rispettivamente, quanto è il grado di p 1 p 2? Sia p : R X un rivestimento finito di grado n. Si dimostri che R è compatto se e solo se X è compatto. Esistono rivestimenti infiniti con R compatto? Negli esercizi seguenti si assume, se non scritto al contrario, che i rivestimenti sono applicazioni tra spazi topologici connessi e localmente connessi per archi. Si dimostri che se p : R X è un rivestimento di grado n, allora il sottogruppo p π 1 (R, r 0 ) ha indice n in π 1 (X, x 0 ), dove r 0 R è punto arbitrario e x 0 = p(r 0 ). Costruire un rivestimento connesso di grado 3 del toro T 2, oppure dimostrare che tale rivestimento non esiste. Costruire un rivestimento connesso di grado 3 del piano proiettivo RP 2, oppure dimostrare che tale rivestimento non esiste. Si calcolino i grupppi fondamentali degli spazi proiettivi RP n, n 1. 5

Sia p : R X un rivestimento finito di grado n. Supponiamo π 1 (X, x 0 ) = Z. Calcolare il gruppo fondamentale di R. Dimostrare che un rivestimento di spazi connessi per archi p : R X è omeomorfismo se e solo se p π 1 (R, x 0 ) = π 1 (X, x 0 ). Quanti rivestimenti connessi non equivalenti possiede lo spazio topologico RP 2 RP 2? Classificare i rivestimenti connessi di grado 3 dello spazio topologico S 1 RP 2. Siano x, y RP 3 due punti. Classificare i rivestimenti connessi dello spazio topologico X = RP 3 \ {x, y}. 6

Curve nel piano e nello spazio. 1 La lunghezza, da t = 0 a t = 9, dell arco di curva di equazioni parametriche: x = 3t e y = 2t 2 è: A) 81 0 9 16t2 dt B) 9 0 9 + 16t2 dt C) 9 0 9t2 4t 4 dt D) 9 0 9t2 + 4t 4 dt La lunghezza, da t = 0 a t = 2, dell arco di curva di equazioni parametriche: x = 1 2 t2, y = 1 9 (6t + 9) 3 2 è uguale a: A) 12 B) 14 C) 8 D) 10 La lunghezza dell arco di catenaria y = cosh x da x = 0 a x = ln 2 è A) 1/4 B) 2/3 C) 3/4 D) 1 1 Gli esercizi segnalati con sono stati proposti alle prove di ammissione al TFA a.a.2011/2012. 7

Una particella si muove lungo il percorso descritto dalla curva di equazioni parametriche: x = cos 3 t, y = sin 3 t. La distanza percorsa per t compreso tra 0 e π/2 e uguale a: A) 0,75 B) 0 C) 1,50 D) -3,50 Sia α : I R 2 una curva avente curvatura costante κ 0. Dimostrare che il sostegno α(i) è contenuto in una circonferenza di raggio 1 κ. Sia α : I R 3 una curva regolare avente curvatura non nulla in ogni punto. Supponiamo che la sua immagine sia contenuta in una sfera di raggio r. Dimostrare che κ(t) 1 r per ogni t I. Calcolare la curvatura della catenaria y = a cosh( x a ), a > 0. Per ciascuna delle seguenti due curve parametrizzate rispondere se il loro supporto è contenuto in una retta o no. Motivare la risposta. a) α(t) = (t 2 t, 3t 2 3t 2, 2t 2 2t + 1) b) β(t) = (t 2 1, 3t 2 5, 2t 2 t) Determinare il raggio del cerchio osculatore della curva α(t) = (2t, 1 t, 2t) in (2, 1, 2). Determinare il raggio del cerchio osculatore della curva α(t) = (t 3, t 2, t) nel punto in cui t = 1. 8

Calcolare l apparato di Frenet, l equazione del piano osculatore, il raggio e il centro del cerchio osculatore della seguente curva nel punto indicato: α(t) = (cos(t) 2, cos(t), sin(t)) nel punto in cui t = 0. Calcolare l apparato di Frenet, l equazione del piano osculatore, il raggio e il centro del cerchio osculatore della seguente curva nel punto indicato: α(t) = (t, te t, t 2 e t ) nel punto in cui t = 0. Calcolare l apparato di Frenet, l equazione del piano osculatore, il raggio e il centro del cerchio osculatore della seguente curva nel punto indicato: α(t) = ( t2 2, t3, ln(t)) nel punto in cui t = 1. 3 Calcolare l apparato di Frenet della seguente curva in un punto generico: α(t) = (t, t2 2, t3 3 ). Calcolare l apparato di Frenet della seguente curva in un punto generico: α(t) = t(cos t, sin t, 1). 9

Data la curva nello spazio α(t) = (at t 3, 3t 2, 3t + t 3 ): (a) stabilire per quale valore di a R la curva è piana. Assegnato ad a tale valore, trovare l equazione del piano che contiene la curva; (b) posto a = 3, determinare la curvatura, la torsione e il triedro di Frenet in un generico punto di α; (c) dimostrare che la curva della parte (b) è un elica generalizzata e trovare il suo asse. Data la curva nello spazio α(t) = (3t 2, 1 + 3t, at 3 ): (a) stabilire per quale valore di a R la curva α è rispettivamente: i) piana, ii) un elica generalizzata. (b) trovati i valori di a per i quali la curva è piana, per ciascun tale valore trovare l equazione del piano corrispondente che contiene la curva; (c) posto a = 2, determinare la curvatura, la torsione e il triedro di Frenet in un generico punto di α. (d) Calcolare la lunghezza dell arco di curva compreso tra i punti A(0, 1, 0) e B(3, 2, 2). Data la curva nello spazio α(t) = (cos t, sin t, cos at) stabilire per quali valori di a la curva è piana. Quali curve si trovano in questo caso? Data la curva nello spazio α(t) = (e at, e t, 2t) (a) stabilire per quali valori di a R la curva è piana. (b) Posto a = 1 determinare la curvatura e la torsione di α in un punto generico. Di che curva si tratta? 10

Geometria differenziale delle superfici. Sia M l elicoide ϕ(u, v) = (u cos v, u sin v, bv), u > 0, v R. (a) Calcolare la prima forma fondamentale di M. (b) Calcolare l area della porzione dell elicoide 1 < u < 3, 0 v 2π. Dimostrare che l area della porzione della sfera compresa tra due paralleli dipende solo dalla distanza tra i piani che contengono i paralleli. Sia x = a cosh( z a ) la curva catenaria nel piano Oxz, a > 0. Sia M la superficie di rotazione attorno all asse delle z. (a) Trovare una parametrizzazione regolare di M. Disegnare la superficie. (b) Calcolare la prima forma fondamentale di M; (c) Calcolare l area della porzione del catenoide compresa tra i piani z = 1 e z = 1. Suggerimento. Utilizare l identità cosh 2 (u) = 1 2 (1 + cosh 2u). Nello spazio R 3 sia S la superficie sferica di centro O e di raggio 1. Le rette nella geometria sferica sono per definizione le circonferenze di raggio massimo (quindi, le intersezioni di S con i piani che passano per O). Sia ABC un triangolo sferico non degenere su S. Se α, β, γ denotano gli angoli rispettivamente in A, B e C allora (indicare la risposta corretta tra (A),(B),(C) e (D)): (A) α + β + γ = π (B) α + β + γ non è un multiplo di π, ma è una costante indipendente della scelta del triangolo ABC (C) α + β + γ è uguale all area del triangolo ABC (D) α + β + γ è sempre maggiore di π 11

Sia D = {(u, v) R 2 x 2 + y 2 < 3} e ϕ : D \ {(0, 0)} R 3, l applicazione cosi definita: ϕ(u, v) = (u, v, u 2 + v 2 ). Dimostrare che ϕ è una parametrizzazione regolare e in ϕ(1, 1) calcolare curvatura media, curvatura gaussiana, curvature principali e piano tangente affine. Sia U = {(s, t) R 2 π 2 < s, t < π 2 } e ϕ : U R 3, ϕ(s, t) = (sin(t), cos(t) cos(s), sin(s)). Dimostrare che ϕ è una parametrizzazione regolare e calcolare in ϕ(0, 0) curvatura media, curvatura gaussiana, curvature principali e piano tangente affine. Sia M la superficie descritta dalla parametrizzazione ϕ(u, v) = (cos u v sin u, sin u+v cos u, v), (u, v) ( π 2, π 2 ) R. (a) Dimostrare che ϕ è una parametrizzazione regolare. Di che superficie si tratta? (b) Trovare le curvature Gaussiana e media in un punto qualsiasi di M. (c) Determinare le curvature principali e le direzioni principali di curvatura nel punto P 0 = ϕ(0, 0). (d) Se α H e la sezione normale determinata dal punto P 0 = ϕ(0, 0) e dal versore e = 1 2 ( j + 3k) calcolare la curvatura di α H nel punto P 0. 12

Sia M la superficie descritta dalla parametrizzazione ϕ(u, v) = (u, e u cos v, e u sin v) (u, v) (, + ) (0, 2π). (a) Dimostrare che ϕ è una parametrizzazione regolare. Di che superficie si tratta? (b) Calcolare la curvatura Gaussiana e media in un punto qualsiasi di M. (c) Determinare le curvature principali e le direzioni principali di curvatura nel punto P 0 = ϕ(0, 0). (d) Se α H e la sezione normale determinata dal punto P 0 = ϕ(0, 0) e dal versore e = 3 3 (i + j k) calcolare la curvatura di α H nel punto P 0. Sia M la superficie descritta dalla parametrizzazione locale ϕ(u, v) = (u, v2 2, u2 2 v3 ) (u, v) D. 3 (a) Dopo aver determinato D in modo tale che la superficie sia regolare, calcolare le curvature Gaussiana e media in un generico punto di M. Classificare i punti di M. (b) Se α H e la sezione normale determinata dal punto P 0 = ϕ(1, 1) e dal versore 2 2 (i + j) calcolare la curvatura di α H nel punto P 0. 13