ESERCITAZIONE 5: PROBABILITÀ DISCRETA

Documenti analoghi
1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.

Calcolo delle Probabilità

STATISTICA 1 ESERCITAZIONE 8

Probabilità esempi. Aiutiamoci con una rappresentazione grafica:

Metodi quantitativi per i mercati finanziari

ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE

Esercizio 2 Si consideri l esperimento avente come risultati possibili i numeri 1, 2, 3, 4, 5 di probabilità rispettivamente 0.2, 0.4, 0.1, 0.1, 0.2.

Matematica con elementi di statistica ESERCIZI: probabilità

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica

La probabilità matematica

Esercizi. 2. [Conteggio diretto] Due dadi vengono lanciati in successione. a) Qual è la probabilità che la somma dei due risultati faccia 7?

CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari;

Probabilità Condizionale - 1

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità

{ } corrisponde all uscita della faccia i-esima del dado. La distribuzione di probabilità associata ( )

Calcolo delle Probabilità

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.

DIPARTIMENTO SCIENZE POLITICHE E SOCIALI ABILITÀ LOGICO-MATEMATICHE A.A. 2018/2019 PROBABILITÀ

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLA PROBABILITÀ

6.2 La probabilità e gli assiomi della probabilità

P (F E) = P (E) P (F E) = = 25

Calcolo della probabilità

COMPITO n. 1. a) Determinare la distribuzione del numero X di palline nere presenti nell urna.

Soluzioni degli esercizi proposti

PROBABILITÀ. a) 0,04 b) 0,8 c) 0,25 d) 0,64 e) 0,96

Esercitazioni di Statistica Dott.ssa Cristina Mollica niroma1.it. Probabilità

Probabilità. Fulvio Bisi-Anna Torre

SIMULAZIONE TEST INVALSI

Probabilità. Cominciamo dando una definizione operativa di probabilità.

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9

Statistica Inferenziale

Foglio di esercizi 2-14 Marzo 2019 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare

STATISTICA ESERCITAZIONE 9

Leggi di distribuzione

Probabilità delle cause:

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria

Probabilità. . Probabilità condizionata. Esempi di probabilità condizionata

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

incompatibili compatibili complementari eventi composti probabilità composta

MATEMATICA E STATISTICA CORSO B PROF. MARCO ABATE. 23 novembre 2006

Esercitazioni del Corso di Probabilitá e Statistica Lezione 2: Eventi disgiunti, eventi indipendenti e probabilitá condizionata

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Probabilità e Statistica

ISTITUTO D ARTE A.VENTURI PROGRAMMA DI MATEMATICA SVOLTO A.S classe 4^ N grafica professionale

PROBABILITA. Nella costruzione dello spazio degli eventi la difficoltà aumenta notevolmente laddove sia necessario fare uso del prodotto cartesiano.

Matematica e Statistica per STB A.A. 2017/2018. Soluzioni degli esercizi - Foglio 1

SOLUZIONI DEL 2 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1

Probabilità e Statistica Esercitazioni. a.a. 2017/2018. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica.

Matematica con elementi di Informatica

Foglio di Esercizi 10 con Risoluzione 18 dicembre 2017

Esercizi di Calcolo delle Probabilità

1. Si lanciano contemporaneamente una moneta e un dado a 6 facce. 3. Qual è la probabilità di ottenere come risultato almeno 2 croci?

Statistica 1 A.A. 2015/2016

Evento Aleatorio. Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado)

Esercizi su variabili aleatorie discrete

16,67%; P(Ω \ A) = 5 6

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità A.A

Test di preparazione all esame. Attenzione a non confonedere il coefficiente. n(n 1) (n m + 1) m(m 1) 2 1

prima urna seconda urna

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE

Probabilità. Introduzione. Esperimento casuale (o aleatorio): Può venir riproposto infinite volte.

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 3: Variabili aleatorie discrete notevoli

PROBABILITÀ. P ( E ) = f n

Esercizi - Fascicolo III

P (CjB m )P (B m ja) = p:

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti:

Esercizi di calcolo delle probabilita

Foglio di esercizi 3-29 Marzo 2019 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012

Esercitazione 7 del corso di Statistica (parte 1)

Foglio di esercizi 1-7 Marzo 2019 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella

ES Calcolo elementare delle probabilità

P (A) = P (B) = P (A ^ B) = P (A _ B) = P (A _ A c B)= P ([A _ B] ^ [A c _ B c ]) =

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti

Il calcolo della probabilità matematica

Probabilità: esercizi vari

PROBABILITA. ESERCIZIO: In un urna ci sono 2 biglie rosse, 2 biglie bianche ed 1 biglia gialla.

Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4.

QLaprobabilità dell'evento intersezione

DOMANDA 1: mettere una croce sulla affermazione esatta (90 89)

PROVE SCRITTE, A.A. 2012/2013 P (Z = 2) = P (B 1 R 2 ) + P (R 1 B 2 ) = P (B 1 )P (R 2 B 1 ) = P (R 1 )P (B 2 R 1 ) =

Matematica e Statistica per STB A.A. 2017/2018. Foglio 1

Probabilità. 2) Vengono estratte 5 carte; quale è la probabilità che ci siano esattamente 2 denari? ª 0,278. k fattori. n - k +1 ) k!

Esercizi su variabili discrete: binomiali e ipergeometriche

ESERCIZI SULLA PROBABILITA

Esercitazione del 13/03/2018 Istituzioni di Calcolo delle Probabilità

PROBLEMI DI PROBABILITÀ

ESERCIZI DI PROBABILITA

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta

Corso di Fondamenti di TLC Esercizi di Probabilitá

f(1, C) = 1; f(2, C) = 1; f(3, C) = 3; f(4, C) = 2; f(5, C) = 5; f(6, C) = V ar(x) = E[X 2 ] (E[X]) 2 =

Statistica Inferenziale

Fondamenti di Statistica. Prof. V. Simoncini. Orario di Lezione: Mar Gio

Transcript:

ESERCITAZIONE 5: PROBABILITÀ DISCRETA e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 6 Novembre 2012

Esercizi 1-2 All esame di Matematica puoi prendere un voto compreso tra 18 e 30 (con lode o senza), oppure essere respinto. a) Qual è lo spazio degli eventi? b) Come rappresenti l evento promosso? c) Qual è l evento complementare all evento voto maggiore di 24? d) Fra gli eventi voto minore di 22, voto maggiore di 22, voto minore di 28, voto maggiore di 28, quali sono incompatibili? Un esperimento aleatorio consiste nel lanciare una moneta non truccata e due dadi a sei facce non truccate. a) Qual è lo spazio degli eventi? b) Cosa cambia se la moneta e il dado sono truccati?

Esercizio 3 Possono esistere due eventi A e B di uno spazio degli eventi Ω tali che P (A) = 1/4, P (B) = 2/7 e P (A B) = 9/14? Si ha da cui e sostituendo i valori del testo P (A B) = P (A) + P (B) P (A B) P (A B) = P (A) + P (B) P (A B) P (A B) = 1 4 + 2 7 9 14 = 7 + 8 18 28 = 3 28 si ottiene una probabilità negativa per l intersezione: non possono quindi esistere i due eventi con le probabilità date.

Esercizio 3 Possono esistere due eventi A e B di uno spazio degli eventi Ω tali che P (A) = 1/4, P (B) = 2/7 e P (A B) = 9/14? Si ha da cui e sostituendo i valori del testo P (A B) = P (A) + P (B) P (A B) P (A B) = P (A) + P (B) P (A B) P (A B) = 1 4 + 2 7 9 14 = 7 + 8 18 28 = 3 28 si ottiene una probabilità negativa per l intersezione: non possono quindi esistere i due eventi con le probabilità date.

Esercizio 4 Siano A e B due eventi con probabilità P (A) = 0.4 e P (B) = 0.1. Determina: a) la probabilità che B non si verifichi; b) la probabilità che A e B si verifichino contemporaneamente sapendo che P (A B) = 0.3; c) la probabilità che si verifichi almeno uno dei due eventi. a) La probabilità che B non si verifichi è la probabilità dell evento B c (complementare di B) quindi P (B c ) = 1 P (B) = 1 0.1 = 0.9 b) La probabilità che A e B si verifichino contemporaneamente è la probabilità dell evento A B quindi, ricordando la formula della probabilità condizionale P (A B) = P (B) P (A B) = 0.1 0.3 = 0.03 c) La probabilità che si verifichi almeno uno dei due eventi è la probabilità dell evento A B quindi P (A B) = P (A) + P (B) P (A B) = 0.4 + 0.1 0.03 = 0.47

Esercizio 4 Siano A e B due eventi con probabilità P (A) = 0.4 e P (B) = 0.1. Determina: a) la probabilità che B non si verifichi; b) la probabilità che A e B si verifichino contemporaneamente sapendo che P (A B) = 0.3; c) la probabilità che si verifichi almeno uno dei due eventi. a) La probabilità che B non si verifichi è la probabilità dell evento B c (complementare di B) quindi P (B c ) = 1 P (B) = 1 0.1 = 0.9 b) La probabilità che A e B si verifichino contemporaneamente è la probabilità dell evento A B quindi, ricordando la formula della probabilità condizionale P (A B) = P (B) P (A B) = 0.1 0.3 = 0.03 c) La probabilità che si verifichi almeno uno dei due eventi è la probabilità dell evento A B quindi P (A B) = P (A) + P (B) P (A B) = 0.4 + 0.1 0.03 = 0.47

Esercizi 5-6 - 7 Sia Ω lo spazio degli eventi di un esperimento probabilistico. Sia B Ω un sottoinsieme dello spazio degli eventi. Gli insiemi B e B C sono incompatibili? E indipendenti? Dati due eventi A e B incompatibili, possono essere indipendenti? Ed il viceversa? Sia Ω = {1, 2, 3, 4, 5, 6} lo spazio degli eventi del lancio di un dado a 6 facce non truccato. Gli eventi A= risultato pari e B= risultato divisibile per 3 sono indipendenti?

Esercizio 8 Un codice di accesso è costituito da 5 cifre che possono essere ripetute. Sia A l evento il codice inizia per 3 e B l evento il codice è un numero pari. Determina se i due eventi A e B sono indipendenti. La probabilità dell evento A è P (A) = 1/10, ovvero corrisponde alla probabilità di scegliere la cifra 3 tra le dieci possibili. La probabilità dell evento B è P (B) = 1/2, ovvero corrisponde a scegliere cinque cifre (quelle che rappresentano numeri pari) tra dieci possibili da piazzare nel posto delle unità (ti ricordo che per identificare un numero pari è sufficiente vedere se è pari il numero delle unità). Calcoliamo la probabilità dell evento intersezione di A e B ( il codice inizia per 3 ed è un numero pari) come rapporto tra numero di codici che soddisfano la condizione e numero di codici possibili: P (A B) = 5 102 10 4 = 1 = P (A) P (B) 20 I due eventi sono quindi indipendenti. Si poteva anche ragionare pensando che il fatto che il codice inizi per 3 non influenza l essere pari o dispari, così come l essere pari o dispari non influisce sul fatto di avere il 3 come cifra iniziale: P (A B) = P (A), P (B A) = P (B).

Esercizio 8 Un codice di accesso è costituito da 5 cifre che possono essere ripetute. Sia A l evento il codice inizia per 3 e B l evento il codice è un numero pari. Determina se i due eventi A e B sono indipendenti. La probabilità dell evento A è P (A) = 1/10, ovvero corrisponde alla probabilità di scegliere la cifra 3 tra le dieci possibili. La probabilità dell evento B è P (B) = 1/2, ovvero corrisponde a scegliere cinque cifre (quelle che rappresentano numeri pari) tra dieci possibili da piazzare nel posto delle unità (ti ricordo che per identificare un numero pari è sufficiente vedere se è pari il numero delle unità). Calcoliamo la probabilità dell evento intersezione di A e B ( il codice inizia per 3 ed è un numero pari) come rapporto tra numero di codici che soddisfano la condizione e numero di codici possibili: P (A B) = 5 102 10 4 = 1 = P (A) P (B) 20 I due eventi sono quindi indipendenti. Si poteva anche ragionare pensando che il fatto che il codice inizi per 3 non influenza l essere pari o dispari, così come l essere pari o dispari non influisce sul fatto di avere il 3 come cifra iniziale: P (A B) = P (A), P (B A) = P (B).

Esercizio 9 Per procedere all acquisto on line di un biglietto aereo è necessaria una password composta da 4 simboli che possono essere cifre (da 1 a 9, lo 0 è escluso) o lettere (di un alfabeto di 21 lettere). a) Quanti sono i possibili codici? b) Qual è la probabilità che tutti i simboli di un codice preso a caso siano lettere? E che tutti i simboli siano cifre? c) Qual è la probabilità che un codice preso a caso contenga esattamente due cifre e due lettere? Abbiamo a disposizione 9 cifre e 21 lettere per un totale di 30 simboli. a) I possibili codici, essendo un codice formato da 4 simboli (non necessariamente distinti) sono 30 4. b) La probabilità che tutti i simboli di un codice preso a caso siano lettere vale ( ) 21 4 ( ) 30 = 710 4. ( ) La probabilità che tutti i simboli siano cifre vale 930 4 ( ) = 310 4. c) Una sequenza con due lettere e due cifre ha probabilità ( 4 questo tipo ne possiamo costruire 2 ( ) 21 2 ( ) 30 930 2. Di sequenze di ) = 6 quindi la probabilità cercata è ( ) 21 2 ( ) 9 2 6 30 30

Esercizio 9 Per procedere all acquisto on line di un biglietto aereo è necessaria una password composta da 4 simboli che possono essere cifre (da 1 a 9, lo 0 è escluso) o lettere (di un alfabeto di 21 lettere). a) Quanti sono i possibili codici? b) Qual è la probabilità che tutti i simboli di un codice preso a caso siano lettere? E che tutti i simboli siano cifre? c) Qual è la probabilità che un codice preso a caso contenga esattamente due cifre e due lettere? Abbiamo a disposizione 9 cifre e 21 lettere per un totale di 30 simboli. a) I possibili codici, essendo un codice formato da 4 simboli (non necessariamente distinti) sono 30 4. b) La probabilità che tutti i simboli di un codice preso a caso siano lettere vale ( ) 21 4 ( ) 30 = 710 4. ( ) La probabilità che tutti i simboli siano cifre vale 930 4 ( ) = 310 4. ( ) 21 2 ( ) 30 930 2. Di sequenze di c) Una sequenza con due lettere e due cifre ha probabilità ( 4 questo tipo ne possiamo costruire 2 ) = 6 quindi la probabilità cercata è ( ) 21 2 ( ) 9 2 6 30 30

Esercizio 10 Un sacchetto contiene 15 palline, etichettate con i numeri da 1 a 15. Ne scegli 4 a caso. Calcola la probabilità che: a) le palline scelte siano la 2,3,5,8; b) tutte le palline scelte abbiano etichette minori o uguali a 8; c) tutte le palline scelte abbiano etichette minori o uguali a 8, sapendo che la pallina col numero 2 è stata scelta. a) Dato che le palline sono scelte a caso, tutte le possibili selezioni di 4 palline hanno la stessa probabilità di verificarsi. Quindi la probabilità cercata sarà 1/C, dove C è il numero delle possibili selezioni di 4 palline e vale ( ) 15 C = C 15,4 = = 1365 4 b) Il numero di possibili selezioni di 4 palline tra le prime 8 vale ( ) 8 C 8,4 = = 70 4 quindi la probabilità cercata è 70/1365 c) Si deve calcolare una probabilità condizionata. Indicando con A l evento la selezione contiene la pallina etichettata col numero 2 e con B l evento la selezione contiene solo palline con etichette minori o uguali a 8, dobbiamo calcolare P (B A) = P (B A)/P (A). Poiché stiamo usando una distribuzione di probabilità uniforme, la probabilità P (E) di un qualsiasi evento E è data da P (E) = #E/1365, dove #E indica il numero di elementi di E. Quindi P (B A) = #(B A)/#A = C 7,3 /C 14,3 = 35/364.

Esercizio 10 Un sacchetto contiene 15 palline, etichettate con i numeri da 1 a 15. Ne scegli 4 a caso. Calcola la probabilità che: a) le palline scelte siano la 2,3,5,8; b) tutte le palline scelte abbiano etichette minori o uguali a 8; c) tutte le palline scelte abbiano etichette minori o uguali a 8, sapendo che la pallina col numero 2 è stata scelta. a) Dato che le palline sono scelte a caso, tutte le possibili selezioni di 4 palline hanno la stessa probabilità di verificarsi. Quindi la probabilità cercata sarà 1/C, dove C è il numero delle possibili selezioni di 4 palline e vale ( ) 15 C = C 15,4 = = 1365 4 b) Il numero di possibili selezioni di 4 palline tra le prime 8 vale ( ) 8 C 8,4 = = 70 4 quindi la probabilità cercata è 70/1365 c) Si deve calcolare una probabilità condizionata. Indicando con A l evento la selezione contiene la pallina etichettata col numero 2 e con B l evento la selezione contiene solo palline con etichette minori o uguali a 8, dobbiamo calcolare P (B A) = P (B A)/P (A). Poiché stiamo usando una distribuzione di probabilità uniforme, la probabilità P (E) di un qualsiasi evento E è data da P (E) = #E/1365, dove #E indica il numero di elementi di E. Quindi P (B A) = #(B A)/#A = C 7,3 /C 14,3 = 35/364.

Esercizio 11 In un sacchetto ci sono 3 palline rosse, 4 nere e 2 gialle. Si eseguono cinque estrazioni con rimessa. Calcola: a) la probabilità di estrarre esattamente tre gialle; b) la probabilità di estrarre almeno una gialla. P (R) = 3 9 P (N) = 4 9 P (G) = 2 9 a) La probabilità di estrarre esattamente 3 gialle è data da ( 5 P (3 G) = 3 ) ( ) 2 3 ( ) 7 2 = 3920 9 9 59049 b) P (almeno 1 G) = P (G) + P (2G) + P (3G) + P (4G) + P (5G) ( ) 7 5 P (almeno 1 G) = 1 p(5 G) = 1 9

Esercizio 11 In un sacchetto ci sono 3 palline rosse, 4 nere e 2 gialle. Si eseguono cinque estrazioni con rimessa. Calcola: a) la probabilità di estrarre esattamente tre gialle; b) la probabilità di estrarre almeno una gialla. P (R) = 3 9 P (N) = 4 9 P (G) = 2 9 a) La probabilità di estrarre esattamente 3 gialle è data da ( 5 P (3 G) = 3 ) ( ) 2 3 ( ) 7 2 = 3920 9 9 59049 b) P (almeno 1 G) = P (G) + P (2G) + P (3G) + P (4G) + P (5G) ( ) 7 5 P (almeno 1 G) = 1 p(5 G) = 1 9

Esercizio 12 Nel sacchetto A ci sono 6 palline Rosse e 3 Blu, mentre nel sacchetto B ce ne sono 4 Rosse e 5 Blu. Si estrae una pallina dal sacchetto A con probabilità 2/3 e dal sacchetto B con probabilità 1/3. a) Se si estrae una pallina Rossa calcola la probabilità di aver scelto il sacchetto A. b) Si sceglie un sacchetto e da questo si fanno due estrazioni con rimessa. Calcola la probabilità di ottenere 2 palline Blu. c) Si sceglie un sacchetto e da questo si fanno due estrazioni con rimessa ottenendo 2 palline Blu. Calcola la probabilità di aver scelto il sacchetto B.

Esercizio 12 Siano P (A) la probabilità di scegliere il sacchetto A, P (B) la probabilità di scegliere il sacchetto B, P (Ro) la probabilità di pescare una pallina Rossa e P (Bl) la probabilità di pescare una pallina Blu: P (A) = 2 3 P (B) = 1 3 P (Ro A) = 6 9 P (Bl A) = 3 9 P (Ro B) = 4 9 P (Bl B) = 5 9 a) Stiamo cercando P (A Ro), ma per poter applicare la formula di Bayes (o della probabilità condizionale) dobbiamo per prima cosa calcolare la probabilità di estrarre una pallina Rossa: P (Ro) = P (A) P (Ro A) + P (B) P (Ro B) = 2 6 3 9 + 1 4 3 9 = 16 27 Adesso possiamo calcolare P (A Ro): P (A) P (Ro A) P (A Ro) = P (Ro) = 12 27 27 16 = 3 4

Esercizio 12 b) Si estrae con rimessa, quindi la probabilità di estrarre una pallina di un certo colore non cambia da un estrazione all altra: P (2Bl) = P (A) P (2Bl A) + P (B) P (2Bl B) ma P (2Bl A) = P (Bl A) 2 quindi P (2Bl) = P (A) P (Bl A) 2 + P (B) P (Bl B) 2 ( ) 3 2 + 1 ( ) 5 2 = 43 = 2 3 9 3 9 243 c) In questo caso si utilizza la formula di Bayes sfruttando la probabilità calcolata precedentemente: P (B) P (2Bl B) P (B 2Bl) = P (2Bl) = 25 243 243 43 = 25 43

Esercizio 13 Una casa automobilistica rileva che per un suo modello di macchina in produzione si possono presentare due difetti, uno nella carburazione (difetto C) e l altro nell impianto elettrico (difetto E). Il 3% delle macchine presenta il difetto C, e il 7% il difetto E. Dallo studio della procedura di produzione, si riscontra che la presenza di un difetto è indipendente dalla presenza dell altro. a) Qual è la probabilità che una macchina presenti entrambi i difetti? b) Qual è la probabilità che una macchina abbia un difetto? c) Qual è la probabilità che una macchina difettosa presenti il difetto C? d) Qual è la probabilità che una macchina difettosa presenti uno solo dei due difetti? e) Qual è la probabilità che una macchina presenti il difetto E sapendo che ha il difetto C? f) Un analisi più accurata rivela che il difetto E è legato alla presenza nella macchina dell optional O. Per l esattezza, la probabili`ta che una macchina accessoriata con O presenti il difetto E è del 21%, e la probabilità che una macchina con il difetto E sia fornita dell optional O è del 30%. Quale percentuale delle macchine prodotte dalla casa automobilistica sono fornite dell optional O?

Esercizi vari 14) Una moneta truccata realizza Croce con probabilità 1/4. Calcola la probabilità di fare almeno 3 Croci in 5 lanci. 15) In un sacchetto ci sono 3 palline Blu e 3 Rosse. Si fanno quattro estrazioni senza rimessa. Calcola la probabilità di ottenere almeno 2 palline Blu. 16) Indichiamo con P (A) la probabilità di un evento A, con P (B) la probabilità di un evento B, infine con P (A B) la probabilità della loro unione. Se P (A) = 2/15, P (B) = 1/5, P (A B) = 4/15, A e B sono incompatibili?