Seconda parte Teorie atomiche. Configurazione elettronica. Il legame chimico. Prof. Stefano Piotto Università di Salerno

Documenti analoghi
La struttura dell atomo

Riassunto modelli atomici.

Capitolo 8 La struttura dell atomo

Esploriamo la chimica

the power of ten Prof.ssa Patrizia Gallucci

Struttura Elettronica degli Atomi Meccanica quantistica

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

ATOMO. Avogadro (1811) Volumi uguali di gas diversi contengono un ugual numero di MOLECOLE (N A =6,022*10 23 )

L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo

1 3 STRUTTURA ATOMICA

Atomo. Evoluzione del modello: Modello di Rutherford Modello di Bohr Modello quantomeccanico (attuale)

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

Generalità delle onde elettromagnetiche

L atomo di Bohr. Argomenti. Al tempo di Bohr. Spettri atomici 19/03/2010

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2

Teoria Atomica di Dalton

COMPETENZE ABILITÀ CONOSCENZE. descrivere la. Comprendere ed applicare analogie relative ai concetti presi in analisi. struttura.

GLI ORBITALI ATOMICI

n l c = velocità di propagazione nel vuoto = m/s l = lunghezza d onda [cm]

Il principio di indeterminazione di Heisenberg

La Struttura degli Atomi

Lavoisier (1770) Legge della conservazione della massa in una trasf. chimica es. C + O 2 CO 2 Dalton (1808) Teoria atomica

Modelli atomici Modello atomico di Rutheford Per t s d u i diare la t s rutt ttura t a omica Ruth th f or (

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

COMPORTAMENTO DUALISTICO della MATERIA

Particelle Subatomiche

STRUTTURA DELL'ATOMO

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno:

Comune ordine di riempimento degli orbitali di un atomo

Modello atomico ad orbitali e numeri quantici

Rappresentazione dell atomo. Rutherford (1911) : modello planetario con il nucleo al centro e gli elettroni che ruotano.

CHIMICA E SCIENZA E TECNOLOGIA DEI MATERIALI ELETTRICI

Le Caratteristiche della Luce

La Teoria dei Quanti e la Struttura Elettronica degli Atomi. Capitolo 7

Teoria atomica. Dr. Lucia Tonucci Ingegneria delle Costruzioni

STRUTTURA ATOMICA. tutti gli atomi hanno un nucleo carico positivamente che possiede quasi tutta la massa atomica

mvr = n h e 2 r = m v 2 e m r v = La configurazione elettronica r = e 2 m v 2 (1) Quantizzazione del momento angolare (2) 4 πε.

Quarta unità didattica. Disposizione degli elettroni nell atomo

A Z. L'atomo Entità subatomiche Carica elettrica Massa (u.m.a) Protone Neutrone elettrone. +1e e.

La struttura degli atomi

E. SCHRODINGER ( )

GLI ORBITALI ATOMICI

STRUTTURA ATOMICA. Per lo studio della struttura dell atomo ci si avvale della Spettroscopia.

ATOMI E PARTICELLE SUBATOMICHE

CORSO DI LAUREA IN OTTICA E OPTOMETRIA

Struttura atomica, configurazione elettronica e periodicità chimica

Nel 1926 Erwin Schrödinger propose un equazione celebre e mai abbandonata per il calcolo delle proprietà degli atomi e delle molecole

Gli argomenti trattati

Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti).

Sommario della lezione 2. Materia e definizioni. Struttura dell atomo

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA

I 4 NUMERI QUANTICI. I numeri quantici consentono di definire forma, dimensioni ed energia degli orbitali.

ATOMI MONOELETTRONICI

L atomo di Bohr. Per spiegare il mistero delle righe spettrali, Bohr propose un Modello Atomico dell Atomo di Idrogeno (1913)

Corso di CHIMICA LEZIONE 2

Tabella periodica degli elementi

numeri quantici orbitale spin

Unità 2. La teoria quantistica

LUCE E ONDE ELETTROMAGNETICHE

I NUMERI QUANTICI. per l = orbitale: s p d f

J.J. Thomson (1897): dimostra l esistenza dell elettrone E. Ruthenford (1911): dimostra l esistenza del nucleo

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Come si può definire la chimica? Quella scienza che studia la composizione, la struttura e le trasformazioni della materia. Cosa si intende per

2bis. I modelli atomici

L atomo di Bohr e i raggi X

LEGAME COVALENTE: TEORIA DEGLI ORBITALI MOLECOLARI

ATOMO POLIELETTRONICO. Numero quantico di spin m s

1. La struttura atomica Le particelle subatomiche L atomo, per molti secoli ritenuto indivisibile, è formato da particelle più piccole.

Atomo e particelle atomiche

Il modello di Bohr. Lezioni d'autore di Giorgio Benedetti

Dispense CHIMICA GENERALE E ORGANICA (STAL) 2012/13 Prof. P. Carloni GLI ATOMI

STRUTTURA ATOMICA E CONFIGURAZIONE ELETTRONICA

6) Modello atomico a ORBITALI

Come sono disposti gli elettroni intorno al nucleo in un atomo?

Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà.

Lezioni di Meccanica Quantistica

CHIMICA: studio della struttura e delle trasformazioni della materia

λν = c, ove c velocità della luce.

Struttura dell atomo atomo particelle sub-atomiche - protoni positiva - neutroni } nucleoni - elettroni negativa elemento

IL LEGAME COVALENTE SECONDO LA MECCANICA ONDULATORIA L

MODELLO ATOMICO DI BOHR - ULTERIORI APPROFONDIMENTI

2.1 (p. 37) Bohr descrisse un orbitale atomico come una traiettoria circolare seguita dall elettrone. Un orbitale è una

ESERCIZI W X Y Z. Numero di massa Neutroni nel nucleo Soluzione

La teoria atomistica

CHIMICA E BIOCHIMICA

La struttura dell atomo

Per poter descrivere la struttura elettronica degli atomi è quindi prima necessario considerare la natura delle radiazioni elettromagnetiche

LA FISICA QUANTISTICA

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1

Testi Consigliati. I. Bertini, C. Luchinat, F. Mani CHIMICA, Zanichelli. Qualsiasi altro testo che tratti gli argomenti elencati nel programma

I numeri quantici. Numero quantico principale, n: numero intero Caratterizza l energia dell elettrone

Bagatti, Corradi, Desco, Ropa. Chimica. seconda edizione

L evoluzione del modello di atomo

Il modello atomico fino all Ottocento

Transcript:

Seconda parte Teorie atomiche. Configurazione elettronica. Il legame chimico Prof. Stefano Piotto Università di Salerno

Seconda parte 1. Teoria atomica 2. Esperimenti di Thompson e Millikan 3. Modello di Thompson, Rutheford 4. Effetto fotoelettrico 5. Quantizzazione dell energia 6. Modello di Bohr 7. Il dualismo onda-particella. 8. Il principio di indeterminazione di Heisenberg. 9. Il modello quantomeccanico dell atomo 10. Atomi polielettronici 11. Orbitali atomici 12. Carica nucleare efficace 13. Aufbau Principi di Pauli e Hund 14. Configurazioni elettroniche 15. AUFBAU 16. Simboli di Lewis 17. Introduzione al legame chimico 18. Teoria di Lewis regola dell ottetto 19. Teoria VSEPR 20. Il legame chimico 21. Legame covalente - Valence Bond 22. Legami e 23. Legami multipli 24. Sovrapposizione di orbitali atomici 25. Correzione alla geometria molecolare: Ibridazione 26. Ibridi sp, sp 2 ed sp 3 27. Esempi di molecole 28. Ibridi sp 3 d ed sp 3 d 2 29. Esempi di molecole e previsione della geometria 30. Delocalizzazione elettronica e risonanza

La struttura dell atomo 10-10 m 10-14 m

Proprietà delle tre particelle subatomiche fondamentali Carica Massa Nome (simbolo) relativ a assoluta (C) relativa (uma)* Assoluta (g) Posizione nell atomo Protone (p + ) 1 + + 1.602 x 10-19 1.00727 1.67262 x 10-24 nucleo Neutrone (n 0 ) 0 0 1.00866 1.67493 x 10-24 nucleo Elettrone (e - ) 1 - -1.602 x 10-19 0.00054858 9.10939 x 10-28 all esterno del nucleo * l unità di massa atomica (simbolo: uma) è uguale a 1.660540 x 10-24 g.

Primi esperimenti - Thomson Thomson (1898-1903) determino il rapporto carica/massa dell elettrone studiando le scariche elettriche in tubi di vetro in cui era stato fatto un moderato vuoto.

Primi esperimenti - Millikan Esperimento di Millikan http://www.youtube.com/watch?v=ufipwv03f6g http://www.youtube.com/watch?v=ajqevtge0m0 Millikan (1909) ha determinato la carica di un elettrone e indirettamente la sua massa: 9.11*10-31 Kg

Primi esperimenti - Rutheford http://www.youtube.com/watch?v=khar2rsfnhg Produzione di particelle alfa http://www.youtube.com/watch?v=5pzj0u_xmbc Esperimento di Rutheford Rutheford (1911) realizzo un esperimento che spazzò via il modello atomico di Thomson. La maggior parte dello spazio di un atomo e vuoto! Modello di Rutheford

Struttura dell atomo riassunto dei primi esperimenti Thomson (1898-1903) determino il rapporto carica/massa dell elettrone studiando le scariche elettriche in tubi di vetro in cui era stato fatto un moderato vuoto. Millikan (1909) determinò la carica di un elettrone (1.602 10-19 C) e indirettamente la sua massa (9.11 10-31 Kg) Rutheford (1911) realizzo un esperimento che spazzo via il modello atomico di Thomson. La maggior parte dello spazio di un atomo è vuoto! Rutheford calcolò la carica nucleare con notevole accuratezza, ma non riuscì a spiegare tutta la massa dell atomo.

Onde elettromagnetiche

Radiazione Elettromagnetica La radiazione elettromagnetica è un campo elettrico oscillante con le caratteristiche di un onda. La lunghezza d onda l è la distanza tra due creste dell onda. La frequenza n della radiazione è il numero di cicli dell onda per secondo. L ampiezza A è l altezza dell onda. Nel vuoto la radiazione elettromagnetica si propaga alla velocità della luce (c = 2.998 10 8 m/s), qualunque siano i suoi valori di lunghezza d onda l e frequenza n. l n = c poiché m 1/s = m/s Perciò una radiazione con frequenza alta ha una lunghezza d onda piccola e viceversa.

Regioni dello spettro elettromagnetico La radiazione elettromagnetica ha un intervallo di lunghezze d onda. L intero intervallo viene definito come spettro elettromagnetico

Spettri di righe atomici Gli oggetti solidi emettono radiazione elettromagnetiche in un intervallo di lunghezze d onda, producendo uno spettro continuo di luce emessa. Gli atomi in fase gassosa emettono radiazioni elettromagnetiche a solo poche specifiche lunghezze d onda, producendo uno spettro di righe di luce emessa. Ciascun elemento in fase gassosa emette luce a particolari lunghezze d onda producendo uno spettro di linee caratteristico.

Spettro di emissione e di assorbimento dell idrogeno atomico

Primi esperimenti - Bohr Spettro di assorbimento dell idrogeno

Equazione di Planck Gli oggetti emettono continuamente radiazioni elettromagnetiche in un ampio intervallo di lunghezze d onda L energia della luce è in piccoli pacchetti chiamati fotoni. L equazione di Planck correla l energia di un fotone alla frequenza della luce E quanto = h n radiazione h = costante di Planck = 6.626 10-34 J. s In termini di lunghezza d onda E quanto = hc/l Perciò onde di minore lunghezza d onda hanno maggiore energia.

Il modello di Bohr per l atomo di idrogeno Il fatto che gli atomi emettono luce solo di definite lunghezze d onda implica che: L atomo ha soltanto certi livelli energetici permessi, chiamati stati stazionari. L energia è quantizzata. L atomo non irraggia energia mentre è in uno dei suoi stati stazionari. L atomo compie una transizione da uno stato stazionario ad un altro (l elettrone si trasferisce in un altra orbita) soltanto assorbendo o emettendo un fotone la cui energia uguale alla differenza di energia tra i due stati. Quando l elettrone dell atomo cambia livello energetico (da n iniziale a n finale ), l energia della luce assorbita o emessa è data da: La lunghezza d onda della radiazione assorbita o emessa 1 1 E fotone = Rhc n 2 - finale n 2 1 iniziale l = R 1 1 - R =1.0974. 10 7 m -1 n 2 fin n 2 iniz

Esempio con l atomo di idrogeno

Il modello di Bohr. Riepilogo L energia dell atomo è quantizzata, perché il moto dell elettrone è limitato ad orbite fisse. L elettrone può trasferirsi da un orbita all altra solo se l atomo assume o emette un fotone la cui energia è uguale alla differenza di energia tra i due livelli energetici (orbite). Si generano spettri di righe perché queste variazioni di energia corrispondono a fotoni di specifiche lunghezze d onda. Il modello di Bohr è essenzialmente un modello a un solo elettrone.

Emissione-assorbimento Elemento Colore fiamma Lunghezza d onda in nm litio sodio potassio rosso giallo Rosso-violetto 671 (rosso); 610 (arancio) 590 (giallo), 589 (giallo) 770 (rosso), 766 (rosso); 405 (violetto), 404 (violetto) cesio Blue-violetto 459 (blue), 455 (blue) Spettro di assorbimento dell idrogeno

Dualismo onda-particella: equazione di de Broglie Combinando le due relazioni seguenti E = m c 2 E = h n = h c / l de Broglie dedusse l equazione: lunghezza d'onda l = h mv massa costante di Planck velocità Poiché la lunghezza d onda è inversamente proporzionale alla massa, i corpi di massa elevata hanno lunghezze d onda più piccole del corpo stesso.

Proprietà ondulatorie dell elettrone Il comportamento degli elettroni negli atomi polielettronici è in accordo con il principio che l elettrone abbia sia proprietà corpuscolari che ondulatorie. L equazione d onda di ogni particella in movimento è data dall equazione di debroglie La lunghezza d onda di oggetti macroscopici, osservabili, è troppo piccola per essere misurata. La lunghezza d onda dell elettrone è simile al diametro dell atomo. lunghezza d'onda costante di Planck l = h mv massa velocità

Werner Heisenberg (1901-1976) Natural science, does not simply describe and explain nature; it is part of the interplay between nature and ourselves.

Principio di indeterminazione di Heisemberg Non è possibile conoscere simultaneamente la posizione e l energia dell elettrone. L incertezza nella posizione dell elettrone è data da: Incertezza nella posizione dell'elettrone Incertezza nel momento dell'elettrone x. mv > h/4 costante di Planck La costante di Planck è molto piccola percio l incertezza nella posizione è molto grande. Perciò l elettrone non si muove in un orbita ad una distanza fissa dal nucleo.

Principio di indeterminazione

La quantizzazione dell energia non è più un postulato ma una conseguenza della natura ondulatoria dell elettrone

L equazione di Schrödinger e la funzione d onda L equazione di Schrödinger è il modello matematico degli elettroni di un onda tridimensionale. Le soluzioni dell equazione di Schrödinger sono una serie di relazioni matematiche conosciute come funzioni d onda (y) che descrivono il comportamento di un elettrone in un atomo di H. L energia dell elettrone è data da E n = -Rhc/n 2. n è un numero positivo intero associato con y. y 2 descrive la probabilità di trovare l elettrone in una posizione intorno al nucleo. Un orbitale è la regione dove è massima la probabilità di trovare l elettrone (compresa tra il 90 e il 95%).

L equazione di Schrödinger e la funzione d onda L equazione di Schrödinger è il modello matematico degli elettroni di un onda tridimensionale. In forma semplificata l equazione di Schrödinger si scrive: in cui: E = energia dell atomo. H Y = E Y Y = funzione d onda, descrizione matematica del moto della materia-onda associata all elettrone in termini di tempo e di posizione. H = operatore hamiltoniano, un insieme di operazioni matematiche che, effettuate su una funzione Y, dà uno stato energetico permesso.

Funzione d onda orbitale. Probabilità che l elettrone sia in un punto Distribuzione di probabilità radiale: probabilità che l elettrone sia in un guscio sferico Diagramma della densità elettronica Per un dato livello energetico, la probabilità di trovare l elettrone entro un certo volume di spazio si può rappresentare mediante i diagrammi della densità elettronica. La densità elettronica diminuisce all aumentare della distanza dal nucleo lungo una semiretta r uscente dal nucleo. Y, Y 2 SY 2 r r

Numeri quantici Ci sono alcune soluzioni valide per l equazione di Schrödinger e molte funzioni d onda, ciascuna delle quali descrive un differente orbitale. Un orbitale atomico è specificato da tre numeri quantici. n numero quantico principale Valori consentiti: interi positivi 1, 2, 3, 4,, n è in relazione con il livello energetico dell orbitale l m numero quantico momento angolare Valori consentiti: interi positivi da 0 fino ad n-1 l è anche designato da una lettera (0 = s, 1 = p, 2 = d, 3 = f) ed è in relazione con la forma dell orbitale n limita l e il numero di valori possibili di l è uguale ad n numero quantico magnetico Valori consentiti: interi da l a + l incluso lo 0 (0, ±1, ±2,, ± l) m è in relazione con l orientamento dell orbitale nello spazio

Osservazione dell effetto dello spin dell elettrone Un campo magnetico non uniforme, generato da magneti con espansioni di differenti forme, separa in due parti un fascio di atomi di idrogeno. La separazione (splitting) del fascio è dovuta ai due possibili orientamenti dello spin dell'elettrone in ciascun atomo.

Numeri quantici e orbitali guscio elettronico 3p x sottoguscio orbitale individuale Il numero totale di orbitali per un dato valore di n è n 2. Gli stati energetici e gli orbitali dell atomo sono descritti con termini specifici e sono associati ad uno o più numeri quantici: Livello. È dato dal valore di n. Minore è n, più basso è il livello energetico e maggiore è la probabilità che l elettrone sia vicino al nucleo. Sottolivello. I livelli dell atomo contengono sottolivelli (o sottogusci) che designano la forma dell orbitale. Ciascun sottolivello è indicato con una lettera (s, p, d, f) Orbitale. Ciascuna combinazione permessa di n, l e m specifica uno degli orbitali dell atomo. Perciò, i tre numeri quantici che descrivono un orbitale ne esprimono la dimensione (l energia), la forma e l orientamento spaziale.

Numeri quantici ed orbitali n = 1 l = 0 m = 0 1 orbitale 1s n = 2 l = 0 m = 0 1 orbitale 2s l = 1 m = 0,±1 3 orbitali 2p n = 3 l = 0 m = 0 1 orbitale 3s l = 1 m = 0,±1 3 orbitali 3p l = 2 m = 0,±1,±2 5 orbitali 3d n = 4 l = 0 m = 0 1 orbitale 4s l = 1 m = 0,±1 3 orbitali 4p l = 2 m = 0,±1,±2 5 orbitali 4d l = 3 m = 0,±1,±2,±3 7 orbitali 4f

Schema degli orbitali atomici

Livelli energetici degli orbitali atomici dell idrogeno

Forme degli orbitali atomici La probabilità di trovare l elettrone in punti differenti intorno al nucleo definisce la distribuzione di densità elettronica. Questo definisce la forma degli orbitali. Gli orbitali possono possedere più di un lobo e le loro dimensioni crescono al crescere di n. Un nodo è la regione dove è 0 (zero) la probabilità di trovare l elettrone. L energia degli orbitali cresce al crescere di n.

Rappresentazioni orbitaliche: 1s

Rappresentazioni orbitaliche: 2s

Rappresentazioni orbitaliche: 3s

Rappresentazioni orbitaliche: 2p Un elettrone occupa in uguale misura entrambe le regioni di un orbitale 2p e trascorre il 90% del suo tempo in questo volume. Sul piano nodale, che passa per il nucleo, la probabilità di trovare l elettrone è nulla

Orbitali s e p

Orbitali d

Rappresentazioni orbitaliche: 4f L orbitale 4f xyz ha otto lobi e tre piani nodali. Anche gli altri sei orbitali 4f hanno superfici di contorno multilobate.

Superfici a y 2 costante e loro e sezioni

Atomi polielettronici

Livelli energetici negli atomi polielettronici

Livelli energetici negli atomi polielettronici

Carica nucleare efficace

Effetto della carica nucleare e di un elettrone addizionale nello stesso orbitale Ciascuno dei due elettroni scherma parzialmente l altro nei confronti della carica nucleare completa e aumenta l energia dell orbitale. L aumento della carica nucleare fa diminuire l energia dell orbitale.

Effetto di altri elettroni negli orbitali interni Gli elettroni interni schermano molto efficacemente gli elettroni esterni e aumentano notevolmente l energia dell orbitale.

Effetto della forma dell orbitale un elettrone 2s trascorre la maggior parte del suo tempo più lontano dal nucleo rispetto a un elettrone 2p, ma penetra in prossimità del nucleo. l'energia dell orbitale 2s è più bassa di quella del 2p

Numeri quantici

Regola dell AUFBAU Gli orbitali si riempiono in ordine di energia crescente

Forma degli orbitali atomici Un semplice programma di visualizzazione: Orbital Viewer (lo trovate sul sito del corso) Esercitatevi a visualizzare: Tutti gli orbitali con n=4 dell atomo di H Gli orbitali corrispondenti per l atomo di O Usando isosuperfici Usando pseudo volume rendering Fare il clamping Creare una semplice animazione

Numeri quantici

Regola dell AUFBAU (costruzione) Gli orbitali si riempiono in ordine di energia crescente

Principio di Pauli In un atomo non possono esistere due o più elettroni con i quattro numeri quantici uguali Su uno stesso orbitale (stessi n, l e m) potranno trovarsi al massimo due elettroni, con spin antiparalleli

Regola di HUND Configurazioni elettroniche degli elementi

Configurazioni elettroniche degli atomi 1 periodo

2 periodo

3 periodo

Livelli energetici negli atomi polielettronici

Un trucco mnemonico per ricordare la successione degli orbitali. Scriveteli come vedete a fianco e poi tracciate una freccia 2p 3s Tutte le altre frecce saranno parallele a questa. Basta seguire le frecce per avere 1s 2s -2p -3s -3p -4s- 3d 4p - 5s 4d 5p 6s -----

Configurazioni elettroniche di atomi appartenenti allo stesso gruppo

Relazione tra riempimento degli orbitali e tavola periodica

http://www.ptable.com/

Gruppo e periodo di appartenenza di un atomo Periodo = corrisponde al più alto livello energetico raggiunto dalla configurazione elettronica, quindi al valore numero quantico principale dell ultimo orbitale occupato da elettroni. Gruppo = corrisponde alla somma degli elettroni di valenza, cioè quelli che riempiono il sottoguscio più esterno. Valenza = corrisponde al numero di elettroni spaiati presenti su un atomo

Esempi: Periodo 2 Gruppo 4

Lab 22 23 24 26