+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =



Documenti analoghi
RETTE, PIANI, SFERE, CIRCONFERENZE

15 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

1. Elementi di Calcolo Combinatorio.

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

Figura 2.1. A sottoinsieme di B

CORSO DI LAUREA IN INGEGNERIA.

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

LE FUNZIONI A DUE VARIABILI

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli Equazioni differenziali lineari omogenee a coefficienti costanti.

Algebra Lineare e Geometria

MOMENTI E CENTRAGGIO DEL VELIVOLO

Equazioni alle differenze finite (cenni).

Modelli di base per la politica economica

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento

LEZIONE 23. Esempio Si consideri la matrice (si veda l Esempio ) A =

Dimensione di uno Spazio vettoriale

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Rette e piani con le matrici e i determinanti

Esercizi su lineare indipendenza e generatori

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ALCUNE OSSERVAZIONI SUI TRIANGOLI

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

LA RETTA. Retta per l'origine, rette orizzontali e verticali

1. PRIME PROPRIETÀ 2

Parte 3. Rango e teorema di Rouché-Capelli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

Lezione del Teoria dei vettori ordinari

Matematica generale CTF

Parte 6. Applicazioni lineari

APPLICAZIONI LINEARI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

Richiami di algebra lineare e geometria di R n

ESERCIZI APPLICAZIONI LINEARI

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

Esame di Geometria - 9 CFU (Appello del 28 gennaio A)

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

Esercizi svolti sui numeri complessi

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

G6. Studio di funzione

Esercizio no.1 soluzione a pag.3

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007

Forze come grandezze vettoriali

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Prova scritta di Geometria 2 Prof. M. Boratynski

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

MINIMI QUADRATI. REGRESSIONE LINEARE

Diagonalizzazione di matrici e applicazioni lineari

Consideriamo due polinomi

2 Argomenti introduttivi e generali

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

GEOMETRIA DELLE MASSE

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

PRINCIPIO BASE DEL CONTEGGIO

1 Applicazioni Lineari tra Spazi Vettoriali

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

4. Proiezioni del piano e dello spazio

13. Campi vettoriali

A.1 Definizione e rappresentazione di un numero complesso

Funzioni. Parte prima. Daniele Serra

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

UNIVERSITÀ DEGLI STUDI DI TERAMO

LE FIBRE DI UNA APPLICAZIONE LINEARE

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 1) 13 Febbraio 2014

DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

LA GEOMETRIA ANALITICA DELLO SPAZIO. Liceo G. GALILEI - Verona Venerdì 10 Aprile 2015 CONVEGNO MATHESIS VERONA

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

MATEMATICA p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

Applicazioni lineari

STRUTTURE ALGEBRICHE

Relazioni statistiche: regressione e correlazione

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

simmetria sferica. L intensità (potenza per unità di superficie) a distanza L vale allora I = P / 4π L

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Esistenza di funzioni continue non differenziabili in alcun punto

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

Rette e curve, piani e superfici

G3. Asintoti e continuità

( x) ( x) 0. Equazioni irrazionali

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

MATEMATICA 5 PERIODI

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano

4. Operazioni elementari per righe e colonne

FUNZIONI CONVESSE. + e x 0

Funzioni. Funzioni /2

Esercizi di Algebra Lineare. Claretta Carrara

0. Piano cartesiano 1

Funzione reale di variabile reale

Parte 2. Determinante e matrice inversa

Transcript:

5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni parametrihe. Cominiamo on le equazioni parametrihe delle rette. La situazione è molto simile a quella in R. Un equazione parametria di una retta in R 3 ha la forma x x = p p v v = p + tv p + tv, t R, x 3 p 3 v 3 p 3 + tv 3 ossia p + tv, t R, ponendo ome al solito x, p = p e v = v. Il vettore v è un vettore parallelo alla x x 3 p p 3 retta e il punto p è un punto sulla retta. Al variare del parametro t R vengono desritti tutti i punti della retta: il punto p orrisponde a t =. Ad esempio, l equazione parametria v v 3 3, t R, definise la retta parallela al vettore v = 3 e passante per il punto p =. Fig.. La retta ( + t ( 3 Per t =, t = e t = /3 troviamo rispettivamente i punti della retta, 4 3, /3. Come nel aso di R due equazioni parametrihe distinte possono desrivere la stessa retta: se p è un altro punto sulla retta e v è un vettore parallelo a v, le equazioni. p + tv, t R p + sv, s R desrivono la stessa retta.

Similmente si hanno equazioni parametrihe per i piani in R 3. Un equazione parametria di un piano in R 3 ha la forma x x = p p v v w w = p + tv + sw p + tv + sw, t, s R, x 3 p 3 v 3 w 3 p 3 + tv 3 + sw 3 ossia p + tv + sw, t, s R, ponendo ome al solito x, p = p, v = v, w = w. Il punto p è un punto del piano, x x 3 p p 3 i vettori v e w sono vettori paralleli al piano. Per ottenere effettivamente un piano è neessario he v e w, oltre ad essere non nulli, non siano uno multiplo dell altro, ioè v λw. Al variare dei parametri t ed s R vengono desritti tutti i punti del piano: il punto p orrisponde a t = s =. Ad esempio, l equazione parametria definise il piano parallelo ai vettori v = 3 3 e w = v v 3 w w 3, t, s R,, e passante per il punto p =. Fig.. Il piano ( + t ( 3 + s (. Assegnando ai parametri i valori t = s =, oppure t =, s =, oppure t = /3, s = si trovano rispettivamente i punti del piano, 4 3, /3. Anhe in questo aso, due equazioni parametrihe distinte possono desrivere lo stesso piano: se p è un altro punto del piano e v, w sono vettori tali he spanv, w } = spanv, w}, allora p + t v + s w, t, s R è un altra equazione dello stesso piano.

Le rette ed i piani nello spazio si possono anhe rappresentare mediante equazioni artesiane. I punti x R 3 he soddisfano un equazione lineare ax + bx + x 3 = d, ( dove a, b,, d R ed a, b, non sono tutti nulli, formano un piano. Questo si vede failmente risolvendo il sistema lineare di una sola equazione in tre inognite (*. Le soluzioni dipendono da due parametri liberi. Per esempio, risolvendo l equazione x + x 3 = 4 possiamo segliere ome parametri liberi x e x 3. Se hiamiamo x = s ed x 3 = t, allora x = 4 x 3 = 4 t e troviamo il piano di equazione parametria x x = s 4 t = 4. x 3 t L equazione artesiana di un piano non è unia. Se λ è un numero reale non nullo, le equazioni ax + bx + x 3 = d e λax + λbx + λx 3 = λd definisono lo stesso piano. Definizione. Un vettore normale ad un piano è un vettore n he è perpendiolare al piano. Proposizione 5.. Sia π il piano di equazione artesiana ax + bx + x 3 = d. Allora, il vettore n = è un vettore normale a π. Dimostrazione. Notiamo he n = non è zero perhè a, b, non sono tutti nulli. Controlliamo he n è perpendiolare al piano. Dati due punti distinti x e y del piano, il vettore x y è parallelo al piano. Calolando (x y n = x y x y a b = (x y a + (x y b + (x 3 y 3 x 3 y 3 = (ax + bx + x 3 (ay + by + y 3 = d d = troviamo he, per ogni x, y π, il prodotto salare (x y n è zero. Poihé tutti i vettori paralleli al piano π sono di questa forma, si ha he n è perpendiolare a π, ome rihiesto. 3

x y Osservazione. Se Fig.. x y è parallelo al piano. ax + by + z = d e p + tv + sw, t, s R sono rispettivamente un equazione artesiana ed un equazione parametria dello stesso piano, allora il vettore normale n = è perpendiolare ai vettori v e w. I punti di R 3 he soddisfano un sistema lineare di due equazioni in tre inognite ax + bx + x 3 = d a x + b x + x 3 = d, ( ove le terne a, b, e a, b, sono entrambe non nulle, sono preisamente i punti ontenuti sia nel piano di equazione ax + bx + x 3 = d he nel piano di equazione a x + b x + x 3 = d. Quando l intersezione dei due piani è una retta, si die he le equazioni del sistema sono equazioni artesiane per la retta. Per esempio, i punti x R 3 tali he x x + 3x 3 = x + x 3 = 4 formano una retta in R 3. Poihé il sistema è già a sala, ponendo x 3 = s ome parametro libero, riaviamo x = (4 x 3 / = s/ ed x = 3s + ( s/ = 5 4s. Troviamo osì la retta 5 4s s/ = 5 4 /, t R. s Come si intuise failmente, le equazioni artesiane di una retta non sono unihe: i sono infatti infinite oppie di piani he si inontrano in una data retta. 4

Proposizione 5.. Siano ax + bx + x 3 = d a x + b x + x 3 = d, equazioni artesiane di una retta r in R 3. Allora i vettori n = perpendiolare ad r. ed n = a b generano un piano ν Dimostrazione. Poihé la retta r è ontenuta sia nel piano di equazione ax + bx + x 3 = d he in quello di equazione a x + b x + x 3 = d, essa è ortogonale sia ad n he a n. Sia x un generio punto di r. Poihé x (tn + sn = tx n + sx n =, per ogni s, t R si ha he la retta r è perpendiolare a ν ome rihiesto. Osservazione. Come onseguenza della Proposizione 5., il prodotto vettoriale n n definise un vettore parallelo ad r. Abbiamo visto i due modi per desrivere rette e piani in R 3. Abbiamo spiegato ome passare da equazioni artesiane ad equazioni parametrihe. Vediamo adesso, mediante esempi espliiti, ome passare da equazioni parametrihe ad equazioni artesiane. Esempio 5.3. Sia l la retta data da, s R. Per trovare delle equazioni artesiane di l, eliminiamo il parametro s dal sistema x = + s x = + s x 3 = s. Il parametro s si può eliminare in diversi modi. Riavando ad esempio s dalla seonda equazione, troviamo s = x +, he sostituito nelle altre due equazioni, i dà: Queste sono delle equazioni artesiane della retta l. + (x + = x + 3 x 3 = (x + = x. Esempio 5.4. Sia π il piano di equazione parametria, s, t R. Per srivere un equazione artesiana ax + bx + x 3 = d 5

di π abbiamo bisogno innanzitutto di un vettore n = v = e w = ortogonale a π ed, in partiolare, ortogonale a. Le oordinate di n devono dunque soddisfare le ondizioni n v =. = a + b =, n w =. = b + =, ossia il sistema lineare a + b = b + =. Poihé il sistema è a sala, possiamo riavare b = ed a = ( b/ = ( + / = in funzione del parametro libero, osihé =, R. = Ponendo ad esempio =, troviamo n =. Determiniamo infine il termine noto d sostituendo nell equazione un punto del piano. Usando per esempio il punto p = troviamo ( + = d e quindi d = 4. L equazione erata è x x + x 3 = 4. dell equazione parametria, Osservazione. Un altro modo per ottenere il vettore n è quello di alolare il prodotto vettoriale dei vettori v e w n = v w = = 4 4. Esempio 5.5. (piano per 3 punti Come determinare il piano π passante per tre punti dati in R 3? C è da osservare he il piano è unio se e solo se i tre punti non stanno sulla stessa retta. Siano dati, per esempio, p =, q = Allora i vettori v = p q e w = p r dati da v = =, r =. 3, w = = 3 6 3 4

sono linearmente indipendenti e paralleli al piano π erato. Un equazione parametria di π è data dunque da p + tv + sw, per s, t R, ossia 3, s, t R. 4 Esempio 5.6 (Intersezioni. Siano dati due piani π e π. Come alolare l intersezione π π? Se π e π sono dati mediante equazioni artesiane, è da risolvere un sistema lineare di due equazioni nelle tre inognite x, x, x 3. Se l intersezione di due piani non è una retta, i sono due possibilità: i due piani sono paralleli. Questo orrisponde al aso in ui il sistema orrispondente non ha soluzioni. Ad esempio, il sistema x x + x 3 = x 4x + x 3 = 3 è inompatibile e i due piani x x + x 3 = e x 4x + x 3 = 3 sono paralleli. I due piani oinidono. Questo orrisponde al aso in ui le equazioni del sistema orrispondente hanno esattamente le stesse soluzioni, dipendenti da due parametri liberi. Per esempio, il sistema è equivalente al sistema a sala x x + x 3 = x 4x + x 3 = x x + x 3 = = le ui soluzioni hanno x ed x 3 ome parametri liberi. Se uno dei due piani è dato in forma parametria, i si può riondurre al aso di due equazioni artesiane on i metodi sopra esposti. Per esempio, sia π il piano di equazione x + x 3 = e sia π il piano dato da, s, t R. Allora un vettore normale a π è dato da, per ui un equazione artesiana di π è x + x + x 3 =. Per alolare l intersezione dei due piani, risolviamo il sistema lineare x + + x 3 = x + x + x 3 =. Sommando due volte la prima equazione alla seonda, troviamo il sistema a sala x + + x 3 = x + 5x 3 = 3. 7

Ponendo x 3 = s ome parametro libero, riaviamo x = (3 5s/ = 3/ 5s/ ed x = s. In onlusione, l intersezione è una retta di equazione parametria s 3/ 5/ s = s 3/ 5/, s R.. Sia π un piano in R 3 dato in forma artesiana e sia l una retta in forma parametria. La loro intersezione onsiste nei punti della retta l he soddisfano l equazione di π. Per esempio, sia π il piano di equazione x 3x 3 = e sia l la retta data da, s R. Allora un punto x della retta l è ontenuto in π se e soltanto se ( + s + ( + 5 3( + s =, ioè se e solo se s = 4. Questo valore di s orrisponde all unio punto di intersezione 7 3. Può 5 suedere he la retta sia paralella a π oppure ontenuta in π. Nel primo aso nessun punto della retta soddisfa l equazione del piano, nel seondo la soddisfano tutti. 3. Siano l ed m due rette in R 3. Ci sono tre possibilità: le rette si interseano in un punto, le rette oinidono, le rette sono parallele oppure sono sghembe. Due rette sono sghembe se non hanno punti in omune e non sono parallele. Fig.3. Due rette sghembe. Consideriamo, ad esempio, le rette l ed m di equazioni parametrihe, s R,, t R. Le rette l ed m non sono parallele. Per trovare l intersezione di l ed m poniamo 8 =

e risolviamo il sistema lineare di tre equazioni nelle inognite s e t. Si verifia failmente he il sistema non ha soluzioni e le due rette sono sghembe. Lasiamo al lettore il ompito di trovare metodi per alolare l intersezione di due rette l ed m quando non sono date entrambe in forma parametria. Il prinipio è sempre quello di trovare i punti he soddisfano sia le equazioni di l he quelle di m. Alla fine i si riondue sempre a risolvere un sistema lineare. Teorema 5.7. Sia p un punto in R 3 e sia π il piano di equazione Allora, la distanza di p dal piano π è data da ax + bx + x 3 + d =. ap + bp + p 3 + d a + b +. Dimostrazione. Poihé n = p ha equazione parametria è un vettore normale a π, la retta l perpendiolare a π e passante per p p a b, s R. p 3 Per alolare il punto di intersezione q fra l e π, sostituiamo il punto generio di l nell equazione del piano e riaviamo s Il punto q orrispondente è: a(p + sa + b(p + sb + (p 3 + s + d = s = ap + bp + p 3 + d a + b +. q = p p ap + bp + p 3 + d a p + b + 3 La distanza fra p e il piano π è uguale alla distanza fra p e q d(p, π = d(p, q = ap + bp + p 3 + d a + b + ome rihiesto.. = ap + bp + p 3 + d a + b + Esempio 5.8. (distanza fra due rette sghembe Come alolare la distanza fra due rette sghembe l ed m in R 3? Un metodo è quello di alolare un equazione artesiana di un piano π he passa per una delle due rette ed è parallelo all altra. Dopodihé la distanza d(l, m è uguale alla distanza fra π e un qualsiasi punto dell altra retta. Per esempio, siano l ed m le rette date da l : x x = x + x x 3 = m :, s R. Per trovare un equazione parametria del piano π ontenente m e parallelo ad l, aloliamo innanzitutto un equazione parametria di l: l :, t R. 5 9

Il piano π ha vettore normale n = e ontiene il punto ; dunque un equazione artesiana di π è data da x + x =. Prendiamo infine il punto p = uguale alla distanza fra π e p, ioè d(l, m = d(p, π = + + + = 3 5. sulla retta l. Allora la distanza d(l, m è l m Fig.4. La distanza fra l ed m. Definizione. Una sfera in R 3 di entro e raggio r è l insieme dei punti he ha distanza uguale ad r da. Siome i punti x sulla sfera di entro e raggio r sono i punti he soddisfano x = r, l equazione della sfera è data da (x + (x + (x 3 3 = r. Proposizione 5.9. Sia (x + (x + (x 3 3 = r una sfera S in R 3 di entro e raggio r. Un equazione del piano tangente alla sfera nel punto q S è data da (q (x q + (q (x q + (q 3 3 (x 3 q 3 =. Dimostrazione. Sia x un punto arbitrario su detta tangente. Poihé il piano tangente in q è perpendiolare alla retta passante per q ed il entro della sfera, si ha he: ome rihiesto. (q (x q =

q Fig.5. Il piano tangente alla sfera nel punto q. Esempio 5.. (Intersezione fra una retta e una sfera Tramite un esempio espliito, onsideriamo ora il problema di alolare l intersezione fra una retta ed una sfera. Sia S la sfera di equazione (x + (x + (x 3 = 9 e sia l la retta di equazione parametria 3, t R. Per alolare l intersezione S l sostituiamo il punto generio della retta l nell equazione della sfera S: (( + t + ((3 + t + (( + t = 9. L equazione diventa 6t + t 4 =. Risolvendo troviamo t = oppure t = /3, orrispondenti ai punti di intersezione e y = 5/3 /3. 7/3 In generale, a seonda he l equazione quadratia in t ammetta due, una o nessuna soluzione reale, si ha rispettivamente he la retta intersea la sfera in due punti, un punto (in questo aso la retta è tangente alla sfera o nessun punto. Analogamente, l intersezione di una sfera on un piano può essere una ironferenza in R 3, un punto (aso di un piano tangente, o può essere vuota. Osserviamo he è impossibile desrivere una ironferenza in R 3 tramite una sola equazione di grado. Esempio 5.. Dati un piano π ed una sfera S in R 3, ome alolare il raggio della ironferenza π S? Basterà alolare la distanza d fra il entro della sfera ed il piano π e poi appliare il Teorema di Pitagora ome nella Figura 6.

π S Fig.6. Il raggio della ironferenza π S. Per esempio, onsideriamo π il piano di equazione x x +x 3 = e la sfera S di equazione x +(x +x 3 = 5. La distanza d fra il entro della sfera ed il piano π è d = + + + = 3. Il raggio della sfera è uguala a 5. Il raggio r della ironferenza π S soddisfa ( r + 3 = ( 5, da ui si riava r = /3. Eserizi. ( (5.A Sia x il vettore 4 ( (5.B Siano e y =. Trovare altri tre punti sulla retta r passante per ed x. ( due vettori in R 3. (i Calolare il punto medio fra x e y. (ii Trovare altri tre punti sul piano he passa per, x e y. (iii Trovare un equazione parametria della retta passante per x ed y. (5.C Siano π e π due piani in R 3 di equazioni artesiane x 3x + =, 3x + x 3 =. (i Trovare equazioni parametrihe per π e π. (ii Calolare un equazione parametria per la retta intersezione π π. (5.D Siano π e π due piani in R 3 di equazioni parametrihe e ( ( + s ( + u ( + t ( + v (, s, t R, u, v R.

(i Calolare un equazione artesiana dell intersezione π π. (ii Calolare un equazione parametria dell intersezione π π. (5.E Siano l e m le rette in R 3 di equazioni parametrihe ( + t ( 3 (i Calolare l intersezione l m. (ii Trovare una retta he inontra sia l he m. (5.F Sia π il piano in R 3 di equazione x x 3 = 3. (i Trovare un vettore normale a π. (ii Trovare un altro vettore normale a π. (iii Calolare un equazione parametria per π. (iv Calolare un altra equazione parametria per π., t R, ( 3 + s (, s R. (5.G Sia l la retta di equazioni artesiane x + x = x + x 3 = Sia m la retta di equazione parametria (i Calolare l intersezione di l ed m. (ii Calolare l angolo fra l ed m. ( (5.H Sia π il piano di equazione x + x x 3 + 3 =. Sia p = + t (, t R. ( (i Calolare un equazione artesiana per il piano π he passa per p ed è parallelo a π. (ii Calolare un equazione parametria per la retta l he passa per p ed è ortogonale a π. (iii Trovare i punti di intersezione π l e π l. (iv Calolare la distanza fra i due punti nella parte (iii. (5.I Sia q = ( 3 e sia π il piano di equazione parametria ( 3 ( ( + t + s, t, s R. (i Calolare la proiezione ortogonale del punto q sul piano π (ii Calolare la distanza fra q e π. (5.J Sia p R 3 il punto di oordinate ( e sia π il piano di equazione parametria ( ( ( + t + s, t, s R. (i Calolare la distanza fra p e π. (ii Calolare la proiezione ortogonale di p su π. (iii Calolare le oordinate del punto q simmetrio di p rispetto a π. (5.K Sia S la sfera di equazione (x + + x + (x 3 + = 4. (i Far vedere he p = ( sta sulla sfera S. Trovare un altro punto sulla sfera. 3.

(ii Calolare il piano π tangente ad S nel punto p. (iii Calolare il piano π tangente ad S nel punto q. (5.L Sia S la sfera di equazione (x + (x + (x 3 + = 4. Sia π il piano di equazione x + x + x 3 =. (i Calolare la distanza fra π e il entro di S. (ii Far vedere he l intersezione S π è una ironferenza. Calolarne il raggio. (5.M Sia p R 3 il punto di oordinate ( e sia m la retta di equazione parametria ( + s (, s R. (i Calolare un equazione artesiana del piano he passa per m e p. (ii Calolare un equazione parametria della retta l passante per p e perpendiolare ad m. (iii Calolare il punto di intersezione l m. (iv Calolare la distanza fra p e la retta m. 4