La struttura stellare (I)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La struttura stellare (I)"

Transcript

1 La struttura stellare (I)

2 Richiami sul diagramma HR Ripasso

3 Il diagramma HR Come già visto ad Astronomia ricordiamo brevemente alcune proprietà del diagramma HR. Le superfici delle stelle si possono approssimare come corpi neri di temperatura T allora Ripasso L =4 r 2? T 4? nel diagramma HR in figura si ha logl vs logt ovvero log L = [log(4 ) + 2 log r? ] + 4 log T cioè le linee a raggio stellare costante sono delle rette con pendenza 4. Tutte le stelle sono in parti ben definite del diagramma: 80-90% delle stelle sono nella striscia diagonale detta Sequenza Principale (Main Sequence, MS) che corrisponde ad una relazione L T 8 e (Sequenza Principale) data la relazione di corpo nero sulla MS r ~ T 2 ovvero stelle più calde sono più grandi. Il Sole è una stella di MS. Stelle più fredde hanno T~ 0.5 T ovvero r ~ 1/4 r ; Stelle più calde hanno T~ 5 T ovvero r ~ 25 r. 3

4 Il diagramma HR Esistono altri luoghi occupati nel diagramma HR. In alto a destra rispetto alla MS esiste una concentrazione di stelle fredde (più rosse) dette Giganti Rosse; L alcuni ordini di grandezza più grande rispetto alle stelle di MS con la stessa T; per L = 4πr 2 σt 4 queste stelle devono avere raggi più grandi fino a 100 r ~ 1 AU. Nella parte bassa del diagramma c è una sequenza di punti corrispondente alle stelle Nane Bianche; L alcuni ordini di grandezza più piccola rispetto alle stelle di MS con la stessa queste stelle hanno raggi ~ 10-2 r ~ 10 4 km. Inizialmente fu ipotizzato che la MS fosse una sequenza di raffreddamento da cui il nome Early Types per O-B e Late Types per F-G-K-M. Quando le masse divennero disponibili (dalle binarie) ci si rese conto che alte T corrispondevano a alte M e viceversa. Sulla MS si ha M ~ M e la relazione L-M è L ~ M α con α 3 per M > M e α 5 per stelle meno massicce; Le nane bianche hanno masse ~M ma sempre < 1.4 M. Ripasso 4

5 La struttura stellare Una stella è una sfera di gas tenuta insieme dall auto gravità ed il cui collasso è impedito dalla presenza di gradienti di pressione. Con ottima approssimazione una stella è un sistema a simmetria sferica, ovvero le grandezze fisiche sono funzione soltanto della distanza r dal centro della stella. Prima di procedere vediamo alcuni cenni di teoria del campo gravitazionale. Il campo gravitazionale in P generato da una massa puntiforme in P è ( x) = GM x x 0 pertanto il campo generato da una distribuzione di massa è ( x) = G Z V ( x 0 )dv x x 0 dv = d 3 x 0 dm = ( x 0 )dv 5

6 La struttura stellare Vediamo ora di ottenere l energia gravitazionale. Data una distribuzione di massa l elemento di massa in i è soggetto al campo gravitazionale generato dall elemento di massa in j ovvero l energia gravitazionale associata sarà W ij = m i j ( x i )= ( x i ) j ( x i ) V i W = 1 2 dove ϕj(xi) è il potenziale gravitazionale generato dalla massa j in i ed il fattore 1/2 è necessario per non contare due volte l energia gravitazionale dell interazione ij ovvero ΔWij e ΔWji sono la stessa cosa e devono contribuire una sola volta a W. Infine, passando al limite per elementi di volume infinitesimi W = 1 2 Z V ( x) ( x) dv X che esprime l energia potenziale di una distribuzione di massa. i6=j ( x i ) j ( x i ) V i 6

7 La struttura stellare sostituiamo ora l espressione del potenziale in W W = 1 2 Z V = 1 2 G Z d 3 x ( x) V 1 2 x x0 2 = 1 2 = 1 2 = 1 2 d 3 x Z " Z V V G ( x 0 )d 3 x 0 x x 0 # d 3 x 0 ( x) ( x 0 ) x x 0 3 x x0 2 X (x i x 0 i)(x i x 0 i) i X i X i x i (x i x 0 i) 1 2 x i (x i x 0 i)+ 1 2 X j x 0 j(x j x 0 j) X x 0 j(x 0 j x j ) j 7

8 La struttura stellare ma siccome nell integrale le variabili x e x sono perfettamente interscambiabili allora posso scrivere (sempre e solo ai fini dell integrale) 1 2 x x0 2 = X i x i (x i x 0 i)=x (x x 0 ) ovvero W = W = Z Z G d 3 x V V Z d 3 x ( x) x V d 3 x 0 ( x) ( x 0 ) x x 0 3 x ( x x0 ) apple Z d 3 x 0 G ( x 0 ) x x 0 3 ( x x0 ) V ma l espressione tra le parentesi quadre è quella del campo gravitazionale generato dalla stessa distribuzione di massa g( x) = Z V G ( x 0 )d 3 x 0 x x 0 3 ( x x0 ) 8

9 Introduzione alla struttura stellare per cui si ottiene un altra espressione per l energia potenziale gravitazionale W = Z V ( x) x gdv Per calcolare W si può adesso utilizzare una proprietà notevole della forza gravitazionale ovvero il teorema di Gauss secondo cui, data una superficie chiusa S, si ha Z S g nds = 4 GM dove n è la normale all elemento di superficie ds, ed M è la massa contenuta all interno di S. Questo teorema è l analogo di quello visto nel corso di Fisica II per il campo elettrostatico. 9

10 Introduzione alla struttura stellare Con una distribuzione sferica di massa M(r), se S è superficie sferica di raggio r si ha ovvero g = g(r)u r n = u r Z Z Z 4 GM(r) = g nds = g(r) ds = g(r) S S pertanto g a distanza r dal centro dipende soltanto nella massa contenuta all'interno della sfera di raggio r ed è la stessa che si avrebbe se questa massa fosse concentrata nel centro della sfera stessa. Allora l energia potenziale di una distribuzione sferica di massa è W = W = Z V Z g(r) = V GM(r) r 2 ( x) x gdv = GM(r) r Z V (r) dv (r) r u r S GM(r) r 2 ds = g(r)4 r 2 u r dv 10

11 Il tempo di free fall Vedremo come questa relazione sarà utile tra poco, ma per adesso consideriamo solo la massa dm contenuta nell elemento di volume dv a distanza r0 dal centro (shell sferica), la sua energia potenziale gravitazionale è dw = GM(r 0) r 0 dm = (r 0 )dv dm Supponiamo che questo elemento di massa sia in caduta libera allora dalla conservazione dell energia meccanica, al raggio r si avrà 1 2 dm dr dt 2 GM(r) r dm = 1 2 dm dr dt 2 GM(r 0 ) r=r 0 r 0 Se tutta la massa è in caduta libera partendo da ferma si ha M(r) = M(r0) e dr/dt = 0 per r = r0. r0 dm 11

12 Il tempo di free fall Si ottiene 1 2 dr dt dr dt = 2 = GM(r 0) s r 2GM(r 0 ) 1 r GM(r 0 ) r 0 1 r 0 il segno - è stato scelto dal fatto che il gas deve cadere verso il centro ( r=0 ) per cui dr/dt < 0. Separando le variabili ed integrando membro a membro si ottiene il tempo che la distribuzione di massa impiega a collassare nel centro Z 0 ff dt = Z 0 r 0 apple 2GM(r 0 ) 1 r 1 r 0 1/2 dr 12

13 Il tempo di free fall Ponendo x = r/r0, dr = r0 dx si ottiene infine ff = apple 2GM(r0 ) r 3 0 1/2 Z 1 l integrale definito si calcola ponendo 0 x 1 x 1/2 dx x =sin 2 dx =2sin cos d Z 1 1/2 Z x /2 sin 2 dx = 1 x cos /2 2 sin cos d = Z /2 0 2 sin 2 d = 2 Definendo la densità media = M(r 0) 4 3 r3 0 13

14 Il tempo di free fall si può esprimere M(r0)/r0 3 in funzione di ρ ottenendo alla fine ff = 1/2 3 32G nel caso del Sole ff = cgs 1.4 g cm 3 1/2 = 1800 s quindi, in assenza di supporto, il Sole collasserebbe nell arco di mezz ora. Questo non avviene perché il Sole è in equilibrio idrostatico. 14

15 L equilibrio idrostatico Nel caso di equilibrio idrostatico, si è visto nel corso di Fluidi che rp = g dove P è la pressione del gas, ρ la densità e g l accelerazione di gravità (il campo gravitazionale). Nel caso semplificato di simmetria sferica che si applica alle stelle, solo la componente radiale di quella equazione vettoriale non è identicamente nulla per cui si ha dp (r) dr = GM(r) r 2 (r) questa è l equazione dell equilibrio idrostatico ed è la prima equazione utilizzata per determinare la struttura delle stelle. Si noti come il gradiente di pressione è negativo, poiché la pressione deve aumentare verso l interno per bilanciare la forza di gravità che tenderebbe a far collassare gli strati esterni. 15

16 Il teorema del viriale Dall equazione dell equilibrio idrostatico è possibile imparare molte cose. Moltiplicando membro a membro per 4π r 3 dr ed integrando tra r =0 e r =r Z r? 0 4 r 3 dp dr dr = Z r? 0 GM(r) (r) r 4 r 2 dr ricordando che l elemento di volume è dv = 4πr 2 dr e l espressione per l energia potenziale gravitazionale W, si nota come il secondo membro è proprio pari a W. Integrando il primo membro per parti si ottiene Z r? 0 4 r 3 dp dr dr =3 apple 4 3 r3 P (r ) Z r? 0 P 4 r 2 dr ma P(r )=0 poiché è la pressione alla superficie della stelle, inoltre definendo la pressione media P = R r? 0 P dv R r? 0 dv = R r? 0 P dv V 16

17 Il teorema del viriale si ottiene Z r? 0 4 r 3 dp dr dr = 3 PV quindi integrando l equazione dell equilibrio idrostatico si è giunti alla relazione 3 PV = W che rappresenta una delle molte forme del Teorema del Viriale che, in generale, si applica ai sistemi legati gravitazionalmente. Supponiamo che il gas sia ideale, non relativistico (v c) e composto di particelle uguali, allora P V = nrt dove ΔV è un volume di gas, P pressione, T temperatura e Δn il numero di moli. Ricordando che n = N/NA (NA numero Avogadro) e R/NA = k (k costante di Boltzmann) si ha P V = NkT 17

18 Il teorema del viriale L energia cinetica per particella dovuta all agitazione termica è 3/2 kt (gas perfetto monoatomico) per cui l energia totale in ΔV è E th =3/2 NkT ovvero P = 2 3 E th V = 2 3 E th cioè per un gas ideale non relativistico la pressione è 2/3 della densità di energia termica. Questa relazione vale in ogni punto della stella, dove posso definire pressione e temperatura (equilibrio termodinamico locale). Moltiplicando membro a membro per dv = 4π r 2 dr e integrando sul volume della stella otteniamo Z r? 0 4 r 2 P (r)dr = 2 3 Z r? 0 E th dv 18

19 Il teorema del viriale ovvero nella notazione di prima PV = 2 3 ETOT th dove Eth TOT è l energia termica totale immagazzinata nella stella. Sostituendo nel teorema del viriale si ottiene infine E TOT th = 1 2 E grav forma alternativa del teorema del viriale. Ricordiamo che Egrav < 0 poichè il sistema è legato. Se una stella si contrae, Egrav diminuisce (ovvero diventa più negativa) e, di conseguenza, la sua energia termica aumenta. In pratica una stella ha una capacità termica negativa, e questo fatto è alla base di tutta l'evoluzione stellare. 19

20 Il teorema del viriale Altre forme del teorema del viriale sono E TOT = Eth TOT + E grav = Eth TOT E TOT = E TOT th = 1 2 E grav = 1 2 E grav Da cui è ovvio come la capacità termica sia negativa se si considera che un aumento di ETOT porta una diminuzione di ETH. Siccome tutte le stelle irraggiano (perdono) energia sono destinate prima o poi a collassare (Egrav diventa sempre più negativo). Consideriamo nuovamente P = 1 3 E TOT grav V e supponiamo, in prima approssimazione, che ρ sia costante, allora si ha E grav = Z r? 0 = G GM(r) 4 r 2 dr = r Z r? Z r? 0 r 4 dr 0 G 4 3 r r3 4 r 2 dr 20

21 Il teorema del viriale ovvero E grav = 3 5 G 4 3 r3 4 3 r3 r = 3 5 GM 2 r dove M è la massa della stella e ρ è costante. Se ρ decrescesse con r, Egrav sarebbe più negativo (sistema più legato) con un coefficiente > 3/5. In conclusione, a meno di una costante, il valore caratteristico dell energia gravitazionale di una stella è E grav = GM 2 r ovvero P = 1 3 E grav V = GM 2 4 r 4 nel caso del Sole si avrebbe P = GM 2 4 r dyne cm 2 21

22 Il teorema del viriale ricordiamo che 1 dyne cm -2 = 1 g cm s -2 cm -2 = 10-1 (kg m s -2 ) m -2 = 10-1 Pa. Poichè 10 5 Pa 1 atm risulta infine P = Pa = 10 9 atm ovvero la pressione media del Sole è 10 9 volte quella dell atmosfera terrestre! Per stimare il valore tipico della temperatura E TOT th = 1 2 E grav 3 2 NkT vir 1 2 GM 2 r kt vir GM 2 3Nr con N numero totale di particelle nella stella. M = m N dove m è la massa media delle particelle. 22

23 Il teorema del viriale Se il gas è fatto di solo H, ad 1 protone corrisponde un elettrone ovvero m = m p + m e 2 = 1 2 m p 1+ m e m p ' 1 2 m p poiché me/mp ~ 1/2000. Sostituendo per N si ottiene infine kt vir GM m p 6r Nel caso del Sole kt vir erg = 0.34 kev con k = erg K -1 si ha T vir K si ricorda che questa è una temperatura media (viriale) della struttura stellare ed è ovviamente diversa dalla temperature superficiali stimate dagli spettri stellari e che si utilizzano per ottenere la luminosità della stella con la formula del corpo nero. Come vedremo più avanti, a temperature di questo ordine di grandezza possono aver luogo le reazioni di fusione termonucleare. 23

24 La sorgente di energia La pressione del gas consente di mantenere la stella in equilibrio idrostatico con la propria forza gravità. Però la stella perde energia irraggiando alla luminosità L e questo porta ad una diminuzione dell energia totale ETOT; dal teorema del viriale ETOT = EGRAV/2 pertanto EGRAV diminuisce (diventa più negativa) e la stella si contrae. Questa contrazione deve avvenire su tempi scala lunghi, compatibili col fatto che il Sole ha avuto L per almeno 4 miliardi di anni (prove geologiche). Altrimenti deve esistere una fonte di energia che bilanci le perdite radiative e permetta al Sole di mantenersi in equilibrio per almeno 4 miliardi di anni. Supponiamo che la fonte di energia del Sole sia gravitazionale, ovvero che il Sole abbia irraggiato fino ad ora l energia liberata dalla sua contrazione. All inizio della contrazione del Sole (ovvero all infinito) adesso E(1) =E grav (1)+E th (1) =0 E(R )=E grav (R )+E th (R ) dal teorema del Viriale E grav = 2E th 24

25 La produzione di energia nelle stelle La diminuzione di energia è dovuta all energia irraggiata che è pertanto ovvero E(R )=E grav (R )+E th (R )= E th (R ) <E(1) E = E(1) E(R )=E th (R )= 1 2 E grav(r )= 1 2 GM 2 Per quanto tempo il Sole avrebbe potuto irraggiare energia gravitazionale mantenendo una luminosità L? Questo tempo scala è il cosiddetto tempo di Kelvin-Helmholtz dato da R KH = E L = 1 2 GM 2 L R = s= yr Ma dalla geologia sappiamo che la Terra è esistita da almeno 4 miliardi di anni e che durante questo tempo non ci sono stati variazioni significative di L. Evidentemente l energia irraggiata dal Sole non è di natura gravitazionale. Similmente si può dimostrare che l energia prodotta da reazioni chimiche (es. H+O H2O) non è sufficiente. 25

26 Energia di legame per particella nucleare (10-13 J) Le reazioni di fusione nucleare Meno strettamente legato H Fusione Energia di legame dovuta alla forza nucleare forte. Una possibile fonte di energia per il Sole e le altre stelle sulla sequenza principale è la fusione di H in He. Più strettamente legato Li He Fissione N C O U 56Fe Numero di massa Questo processo è esoenergetico poiché l energia di legame di atomo di He è inferiore (più negativa) dell energia di legame totale dei singoli nuclei di H. La diminuzione dell energia di legame all aumento della massa nucleare avviene fino al 56Fe, dopo l energia di legame cresce nuovamente.

27 La catena p-p La maggior parte dell energia prodotta dal Sole proviene da una catena di reazioni detta catena p-p. Il primo passo è p + p! d + e + + e d nucleo di Deuterio, isotopo di H con p e n nel nucleo. Il tempo scala perché questo processo avvenga è τ ~ yr ovvero se ho 2 protoni devo farli scontrare per ~10 10 anni prima che quella reazione avvenga. τ è così lungo perché è reazione che coinvolge le interazioni deboli come si vede dalla presenza del neutrino. L energia totale prodotta e distribuita tra le particelle risultanti è MeV. Appena la reazione avviene e + si annichila con e - rilasciando MeV in fotoni γ. Il neutrino invece ha una debolissima interazione con la materia (cammino libero medio R ) per cui scappa dal Sole portandosi via E~0.26 MeV. Entro ~1 s dalla reazione p+p un deuterone (nucleo deuterio) si fonde con un protone e p + d! 3 He + con rilascio totale di energia E = 5.40 MeV (γ ed en. cinetica). 27

28 La catena p-p Infine dopo un tempo scala di circa ~ anni si ha 3 He + 3 He! 4 He + p + p con un rilascio di energia cinetica pari a MeV. Ricapitolando, ogni volta che la reazione p+p avviene per due volte, 4 protoni sono convertiti in 4 He + 2 neutrini + fotoni + energia cinetica delle particelle. p + p! d + e + + e yr E =0.425 MeV e + + e! 2 E =2 m e c 2 = MeV} 2 1s p + d! 3 He yr E =5.49 MeV 3 He + 3 He! 4 He + p + p E = MeV 28

29 La catena p-p Il risultato finale è 4p! 4 He +2 e + L energia prodotta è E =( ) MeV a cui dobbiamo sottrarre 2 x MeV che vengono dall annichilazione di 2 elettroni pre-esistenti ovvero E = MeV MeV = MeV = [m(4p) m( 4 He)]c 2 ovvero E è proprio pari alla differenza di energia di legame tra 4 He ed i 4 protoni liberi. Risulta anche E =0.007 m(4p)c 2 ovvero l efficienza di produzione di energia (conversione materia in energia) è pari allo 0.7% della materia/energia a disposizione (massa dei 4 protoni) 29

30 Catena p-p Deuterio Protone Raggio γ ν Neutrino Neutrone Positrone

31 La catena p-p nel Sole Supponiamo adesso che il Sole effettui la reazione 4p 4 He riprocessando il 10% della sua massa. Per quanto tempo è in grado di sostenere un emissione con luminosità L? ovvero E nuc = M c 2 nuc = E nuc L = M c2 L = s ' yr cioè il Sole riprocessando appena il 10% della sua massa è in grado di emettere L per 10 miliardi di anni ovvero la catena pp è in grado di alimentare l emissione del Sole e delle stelle. 31

32 Reazioni di fusione: termostati Tenendo conto delle sezioni d urto (probabilità) delle varie reazioni nucleari nella catena p-p e della distribuzione di energia dei protoni si può ricavare l emissività ε, l energia prodotta per unità di volume e di tempo ( Astrofisica, LM). Si trova che le reazioni nucleari avvengono principalmente nel nucleo delle stelle (core) dove le temperature sono a quelle temperature (T ) T 4 T K cioè dipende fortemente da T. Per reazioni nucleari con elementi più pesanti la dipendenza da T è ancora maggiore. Questo comporta che la produzione di energia per fusione nucleare agisce come termostato per tutta la struttura stellare. Supponiamo che T cresca aumenta produzione energia; dato il tempo necessario ai fotoni per uscire, inizialmente ETOT aumenta; E TOT = 1 2 E grav = E th E TOT = E TOT th = 1 2 E grav quindi per mantenere l equilibrio della struttura, Egrav deve aumentare ovvero la stella si deve espandere. 32

33 Reazioni di fusione: termostati Ma se la stella si espande, Eth deve diminuire, ovvero la stella si raffredda. Se la stella si raffredda a seguito dell espansione, T diminuisce nuovamente, Eth diminuisce e la stella deve contrarsi, aumentando nuovamente la sua temperatura. Analogamente accadrebbe se si partisse da una diminuzione di T. In ogni caso la produzione di energia dalla relazioni nucleari tende a mantenere costante la temperatura della struttura stellare. In seguito a questo effetto di termostato le stelle sulla MS che bruciano H devono avere temperature simili, ovvero T M R ; T cost.! M R 33

34 Il problema dei neutrini solari Una predizione chiave del modello riguarda i neutrini. Per ogni ciclo 4p 4 He si ha la produzione di 26.2 MeV di energia e l emissione di 2 neutrini (elettronici νe) che escono senza interazioni dal Sole. Il flusso di neutrini atteso a Terra è pertanto f e =2 f 26.2 MeV =2 L /4 d MeV = s 1 cm 2 questi attraversano la Terra senza alcuna interazione. Esperimenti sui neutrini solari sono stati condotti fin dagli anni 60 ma i neutrini rivelati erano circa ~1/3 di quelli predetti dal modello. Oltre ai neutrini elettronici esistono anche i neutrini muonici (νµ ) e tauonici (ντ), non rivelati negli esperimenti di ricerca. Con l esperimento di Superkamiokande in Giappone (2001), si sono cercati i neutrini elettronici prodotti dalle centrali nucleari giapponesi (numero ben noto perchè sono noti i processi che li producono) e se ne sono trovati un numero inferiore alle attese: i neutrini oscillano tra i vari stati νe νµ ντ e questo spiega perfettamente il problema dei neutrini solari mancanti. Questa è la prova che il Sole è alimentato dalla catena p-p. 34

35 Il problema dei neutrini solari Neutrini prodotti anche in rami secondari oltre a p-p: 3He+ 4 He 7 Be+γ!"##$%&!'() *+,-./01-) 234)2'() 7Be+e 7 Li+νe 7Be+p 8 B+ γ 8B 8 B+e + +νe 35

36 Il problema dei neutrini solari Il Sudbury Neutrino Observatory (SNO) era in grado di rivelare due reazioni νe + D e- + p + p, solo per neutrini elettronici νe,τ,μ + D νe,τ,μ + p + n possibile per tutti i neutroni In questo modo è stato possibile verificare che i neutrini solari νe si trasformavano in altri tipi: il flusso totale atteso di neutrini solari νe era pari al flusso νe,τ,μ misurato. SuperKamiokande invece era predisposto per rivelare i neutrini prodotti dalle interazioni fra i raggi cosmici e l atmosfera. SK era in grado di distinguere tra i neutrini provenienti da sopra e da sotto ; il flusso di neutrini dovrebbe essere isotropo (il passaggio attraverso la Terra non lo influenza perché la profondità ottica per interazione è ~0). In realtà si trovarono molti più neutrini da sopra che da sotto. sopra Siccome quelli da sotto dovevano attraversare tutta la Terra prima di giungere SK Terra il rivelatore avevano il tempo di oscillare in altri tipi non rivelati: questa era quindi la prova dell oscillazione dei neutrini. sotto 36

37 Il problema dei neutrini solari Premio Nobel per la Fisica 2015 (6 Ottobre 2015) a Takaaki Kajita, Super-Kamiokande Collaboration Arthur B. McDonald, Sudbury Neutrino Observatory Collaboration Spiegazione dettagliata:

38 Il ciclo CNO Nelle stelle più massicce del Sole (M > 1.2 M ) la produzione di energia segue una sequenza di reazioni diversa detta ciclo CNO che ha sempre come risultato 4p 4 He. In questo ciclo, C, N ed O presenti in tracce fungono da catalizzatori del processo di bruciamento H He, senza che ulteriori C, N e O vengano sintetizzati. La reazione più lenta è la prima (p+ 12 C) che ha bisogno di T~10 7 K ma la sua velocità è fortemente dipendente da T tanto che CNO(T ) T 20 ricordiamo che pp(t ) T 4 anche se T~cost., l aumento di M determina piccoli aumenti di T da ~10 7 a oltre K con conseguente dominio il ciclo CNO oltre 1.2 M. log " T 4 " pp T K " CNO log T 38

39 Il ciclo CNO Isotopi di N e O instabili, decadono in pochi minuti.

La struttura stellare (I)

La struttura stellare (I) La struttura stellare (I) Richiami sul diagramma HR Ripasso Il diagramma HR Come già visto ad Astronomia ricordiamo brevemente alcune proprietà del diagramma HR. Le superfici delle stelle si possono approssimare

Dettagli

La struttura stellare ( III )

La struttura stellare ( III ) La struttura stellare ( III ) Relazioni di scala dal diagramma HR Siamo ora in grado di spiegare le relazioni di scala per le stelle che sono state trovate osservativamente L M 3 L T 8 e (per stelle con

Dettagli

La struttura stellare (II)

La struttura stellare (II) La struttura stellare (II) La sorgente di energia La pressione del gas consente di mantenere la stella in equilibrio idrostatico con la propria forza gravità. Però la stella perde energia irraggiando alla

Dettagli

Fondamenti di Astrofisica

Fondamenti di Astrofisica Fondamenti di Astrofisica Lezione 7 AA 2010/2011 Alessandro Marconi Dipartimento di Fisica e Astronomia Equazioni della struttura stellare Le equazioni che descrivono la struttura stellare sono: dp (r)

Dettagli

La struttura stellare

La struttura stellare La struttura stellare Brevi richiami su proprietà osservative Grandezze più importanti che permettono di caratterizzare le stelle sono: la distanza ( d ); Astronomia lo spettro della radiazione e.m. emessa

Dettagli

La struttura stellare ( II ) Lezione 4

La struttura stellare ( II ) Lezione 4 La struttura stellare ( II ) Lezione 4 Il trasporto radiativo dell energia Il gradiente di pressione P(r) che sostiene una stella è prodotto da un gradiente in ρ(r) e T(r) e quindi L(r), ovvero l energia

Dettagli

Astronomia Parte II Struttura stellare

Astronomia Parte II Struttura stellare Astronomia 017-18 Parte II Struttura stellare 13 P( E) Fusione nucleare exp[ E / kt b / 1/ E ] P ( E) B E / kt e P ( E) e T b/ E 1/ Dipendenza esponenziale da T Piccoli cambiamenti in T producono forti

Dettagli

La struttura stellare (II)

La struttura stellare (II) La struttura stellare (II) Il trasporto dell energia La produzione di energia nucleare avviene nel nucleo della stella e l energia prodotta deve essere trasportata verso l esterno. In genere il trasporto

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 10 Fusione nucleare Fusione nucleare (Das-Ferbel, cap. 5.3) Abbiamo già accennato alla fusione nucleare che costituisce la sorgente

Dettagli

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Astronomia Lezione 11/12/2014 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Quali sono i processi nucleari? Nucleosintesi:

Dettagli

Docente: Alessandro Melchiorri

Docente: Alessandro Melchiorri Astronomia Lezione 26/11/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/ Le lezioni astronomia012_*.pdf

Dettagli

Astronomia Lezione 2/12/2011

Astronomia Lezione 2/12/2011 Astronomia Lezione 2/12/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Corso di introduzione all Astrofisica

Corso di introduzione all Astrofisica Corso di introduzione all Astrofisica I modulo Prof. Giuseppe Bertin Anno accademico 9 Indice Il teorema del viriale. Problema....................................... Equazioni del moto e energia per sistemi

Dettagli

ESERCITAZIONI ASTROFISICA STELLARE

ESERCITAZIONI ASTROFISICA STELLARE ESERCITAZIONI per ASTROFISICA STELLARE (AA 2011-2012) (ultimo aggiornamento: 23/03/2012) Esercizio 1: Una stella con gravita` superficiale pari a 3.42 10 4 cm -2 e luminosita` pari a 562 L ha il massimo

Dettagli

Indizi sull esistenza della Materia Oscura

Indizi sull esistenza della Materia Oscura Indizi sull esistenza della Materia Oscura Raffaele Pontrandolfi Corso di Astrosica e Particelle Elementari 2 Motivazione e Introduzione Dalla nucleosintesi primordiale sappiamo che la densità di materia

Dettagli

Stelle e Neutrini: il centro del Sole

Stelle e Neutrini: il centro del Sole Stelle e Neutrini: il centro del Sole Marco G. Giammarchi Istituto Nazionale di Fisica Nucleare Via Celoria 16 20133 Milano (Italy) marco.giammarchi@mi.infn.it http://pcgiammarchi.mi.infn.it/giammarchi/

Dettagli

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica CURRICULUM ASTROFISICA E FISICA DELLO SPAZIO Anno Accademico 2011-2012 PROGRAMMA

Dettagli

Astronomia Lezione 5/12/2011

Astronomia Lezione 5/12/2011 Astronomia Lezione 5/12/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo A) Meccanica Un cilindro di altezza h, raggio r e massa m, ruota attorno al proprio asse (disposto verticalmente) con velocita` angolare ω i. l cilindro viene appoggiato delicatamente su un secondo cilindro

Dettagli

L evoluzione stellare ( I )

L evoluzione stellare ( I ) L evoluzione stellare ( I ) L evoluzione stellare Fino ad ora abbiamo considerato le stelle in equilibrio stazionario sulla sequenza principale (bruciamento di H) ed abbiamo visto che una stella di massa

Dettagli

L evoluzione stellare

L evoluzione stellare L evoluzione stellare L evoluzione stellare Fino ad ora abbiamo considerato le stelle in equilibrio stazionario sulla sequenza principale (bruciamento di H) ed abbiamo visto che una stella di massa M e

Dettagli

Corso di Introduzione all Astrofisica P. Monaco, AA 2015/2016. Soluzione degli esercizi Parte 1, Misure astronomiche

Corso di Introduzione all Astrofisica P. Monaco, AA 2015/2016. Soluzione degli esercizi Parte 1, Misure astronomiche Corso di Introduzione all Astrofisica P. Monaco, AA 2015/2016 Soluzione degli esercizi Parte 1, Misure astronomiche (1) Partendo da M = m 5 log d + 5 dove d è in pc, usiamo la relazione tra AU e pc per

Dettagli

Calore, lavoro e trasformazioni termodinamiche (1)

Calore, lavoro e trasformazioni termodinamiche (1) Calore, lavoro e trasformazioni termodinamiche (1) Attraverso scambi di calore un sistema scambia energia con l ambiente. Tuttavia si scambia energia anche quando le forze (esterne e interne al sistema)

Dettagli

Dal macroscopico al microscopico

Dal macroscopico al microscopico Dal macroscopico al microscopico Costituenti della materia ATOMI (in greco indivisibili, intuizione di Democrito V secolo a. C.) Atomi, di dimensioni di circa 10-10 m, si differenziano a seconda dell elemento

Dettagli

Evoluzione stellare: dalla nascita di una stella alla sua fine. Serafina Carpino

Evoluzione stellare: dalla nascita di una stella alla sua fine. Serafina Carpino Evoluzione stellare: dalla nascita di una stella alla sua fine Serafina Carpino Oltre a miliardi di stelle, nello spazio ci sono nubi di materia interstellare, formate da estese condensazioni di gas e

Dettagli

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI Università degli Studi di Udine Corso di Laurea in Ingegneria Gestionale A.A. 05/06 Sessione di Giugno/Luglio 06 Esame di FISICA GENERALE CFU) Primo Appello PROVA SCRITTA 3 Giugno 06 TESTI E SOLUZIONI

Dettagli

Lezione 2 Condizioni fisiche per la produzione di energia per mezzo di fusione termonucleare controllata

Lezione 2 Condizioni fisiche per la produzione di energia per mezzo di fusione termonucleare controllata Lezione Condizioni fisiche per la produzione di energia per mezzo di fusione termonucleare controllata G. Bosia Universita di Torino 1 Plasma termo-nucleare Definizione : Un plasma termo nucleare e un

Dettagli

Distribuzione di densità

Distribuzione di densità Distribuzione di densità Distribuzione di densità in presenza di forze conservative. A F dx A La forza conservativa esterna agisce su ciascuno degli N componenti del gas all interno del volume Adx. La

Dettagli

Concorso per l ammissione al Dottorato in Fisica

Concorso per l ammissione al Dottorato in Fisica Concorso per l ammissione al Dottorato in Fisica AA 2009-2010 - XXV ciclo (D.R. 552) Prova A Si svolga a scelta uno dei tre temi (in non più di 3 facciate) e si risolvano due dei cinque esercizi proposti

Dettagli

Richiami di Astrofisica Stellare. Lezione 3

Richiami di Astrofisica Stellare. Lezione 3 Richiami di Astrofisica Stellare Lezione 3 Evoluzione dopo la seq. principale Le stelle passano gran parte della loro vita nella sequenza principale. P.e. l 80% per il Sole. La sequenza principale è la

Dettagli

L'EVOLUZIONE STELLARE

L'EVOLUZIONE STELLARE L'EVOLUZIONE STELLARE Lezioni d'autore di Claudio Censori VIDEO Introduzione (I) La vita delle stelle è condizionata dalla loro massa e dalla tendenza inesorabile al collasso causato dal peso degli strati

Dettagli

Energia interna. 1 se non durante gli urti

Energia interna. 1 se non durante gli urti Energia interna L energia interna E int di un sistema è la somma delle energie cinetiche e potenziali (dovute alle interazioni) delle particelle che lo compongono. In un gas ideale le particelle sono indipendenti:

Dettagli

Astronomia Lezione 16/12/2011

Astronomia Lezione 16/12/2011 Astronomia Lezione 16/12/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Concorso per l ammissione al Dottorato in Fisica AA XXVI ciclo (D.R. 552) Prova A

Concorso per l ammissione al Dottorato in Fisica AA XXVI ciclo (D.R. 552) Prova A Concorso per l ammissione al Dottorato in Fisica AA 2010-2011 - XXVI ciclo (D.R. 552) Prova A Si svolga a scelta uno dei tre temi (in non più di 3 facciate) e si risolvano due dei cinque esercizi proposti

Dettagli

Fisica del VITA MEDIA o <<TEMPO SCALA>> di una stella. RISERVA ENERGETICA (masse delle particelle) POTENZA IRRADIATA

Fisica del VITA MEDIA o <<TEMPO SCALA>> di una stella. RISERVA ENERGETICA (masse delle particelle) POTENZA IRRADIATA Bollitore tibetano Fisica del 1900 VITA MEDIA o di una stella RISERVA ENERGETICA (masse delle particelle) POTENZA IRRADIATA M i c h e l s o n In Fisica oramai, è soltanto questione di mettere

Dettagli

Gas ideale: velocità delle particelle e pressione (1)

Gas ideale: velocità delle particelle e pressione (1) Gas ideale: velocità delle particelle e pressione (1) In un gas ideale le particelle sono considerate puntiformi e risentono di forze solo durante gli urti (perfettamente elastici) con le pareti del recipiente.

Dettagli

Struttura ed evoluzione delle stelle. Lezione 11

Struttura ed evoluzione delle stelle. Lezione 11 Struttura ed evoluzione delle stelle Lezione 11 Sommario L evoluzione di pre-sequenza principale. Il riscaldamento per collasso gravitazionale. La fusione nucleare. La catena p-p. Il ciclo CNO. Struttura

Dettagli

sezione d urto di interazione neutroni - 12 C

sezione d urto di interazione neutroni - 12 C Interazione dei neutroni con la materia Poiché il neutrone ha carica nulla esso non interagisce elettricamente con gli elettroni dell atomo, ma subisce solo interazioni nucleari con i nuclei della materia

Dettagli

Divagazioni sulla fisica delle particelle. La struttura della materia Le particelle fondamentali Le interazioni fondamentali

Divagazioni sulla fisica delle particelle. La struttura della materia Le particelle fondamentali Le interazioni fondamentali Divagazioni sulla fisica delle particelle La fisica delle particelle come pretesto per fare alcune semplici considerazioni di fisica La struttura della materia Le particelle fondamentali Le interazioni

Dettagli

Astronomia Lezione 11/11/2011

Astronomia Lezione 11/11/2011 Astronomia Lezione 11/11/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

S ν = c 4 u ν. S ν dν = c 8π h ν e hν. k B T. S λ = 2π λ 5 c2 h

S ν = c 4 u ν. S ν dν = c 8π h ν e hν. k B T. S λ = 2π λ 5 c2 h Corso di Introduzione alla Fisica Quantistica (f) Esercizi: Maggio 2006 (con soluzione) i) Un filamento emette radiazione che ha una lunghezza d onda massima λ Max = 15000 10 8 cm. Considerando di approssimare

Dettagli

Informazioni generali

Informazioni generali Informazioni generali ASTROFISICA NUCLEARE Laurea Magistrale in Fisica, II semestre Il corso è basato su: -Dispense di Astrofisica Nucleare del docente Prof. Giampaolo Cò: http://www.dmf.unisalento.it/~gpco/astro/astro.pdf

Dettagli

FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE

FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE (lezione I, 07.05.13) Marta Ruspa 1 L

Dettagli

Sistemi binari e accrescimento

Sistemi binari e accrescimento Sistemi binari e accrescimento Le Stelle Binarie Finora abbiamo considerato le stelle come oggetti luminosi e isolati; le stelle sono alimentate da reazioni di fusione nucleare non interagiscono con il

Dettagli

La struttura stellare

La struttura stellare La stuttua stellae La stuttua stellae Una stella è una sfea di gas tenuta insieme dall auto gavità ed il cui collasso è impedito dalla pesenza di gadienti di pessione. Con ottima appossimazione una stella

Dettagli

Più importanti osservabili stellari

Più importanti osservabili stellari Più importanti osservabili stellari. Luminosità: disponibili per alcune decine di migliaia di oggetti con distanza nota. Massa: note per alcune centinaia di sistemi binari 3. Diametri angolari: noti per

Dettagli

Trasmissione del calore

Trasmissione del calore Trasmissione del calore In natura esistono tre modi diversi attraverso i quali il calore si può trasmettere da un corpo a temperatura più bassa a uno a temperatura più alta, oppure, entro un medesimo corpo,

Dettagli

- velocità dell auto v = 80 km/h; - g = accelerazione di gravità = 9,81 m/s 2-1h = 3600 s - E c = ½ m v 2 - E p = m g h ES. 1

- velocità dell auto v = 80 km/h; - g = accelerazione di gravità = 9,81 m/s 2-1h = 3600 s - E c = ½ m v 2 - E p = m g h ES. 1 Da quale altezza dovrebbe cadere un auto (in assenza di attrito) per acquistare un energia cinetica uguale a quella che avrebbe se viaggiasse alla velocità di 80 km/h? - velocità dell auto v = 80 km/h;

Dettagli

I neutrini solari e da supernova (parte 1) Corso di Introduzione all astrofisica Anno accademico Alessandra Re

I neutrini solari e da supernova (parte 1) Corso di Introduzione all astrofisica Anno accademico Alessandra Re I neutrini solari e da supernova (parte 1) Corso di Introduzione all astrofisica Anno accademico 018-019 Alessandra Re aaacmxicbvdlahsxfnwkzctnu6ddzinqagxtmbmmztihmyxtqbmnhnvqyneib6ddcfbipmlbvonizsswkq3/ylohc/yoia4nhmfuicvphayx3fr0pu3yyura+undxvvnz80tz6eolnadl1uplg9ndmqqkmxburofrayyiwc5zdhtx9bdyjo3/gricbyhmtxoizdflwpe4vw6lvfniyxdaetaytjfza67p0kfflgk0yift6rdk/eu7qc7bmpzatkywi/1qs4zqkqsyp34znos5ississcji1b9kr4aucjvwy5/pjxodam4ucs6gaaemgypystaafqgyk3mdpl67otlbgdgxsebrpxh3c4zlybqbyufnf5557tfia1y9xvd/wqhclguypi8alpghohr8dcqsc5swqxq0if6v8yizjgejuhbcs5ye/jkd7u0ng3zutg84ijjwytt6tlyqh38gbosynpes4+uluyw/yj/ov3uv/o38ppuvroucteylo/z35caqk

Dettagli

Insegnante: Prof.ssa La Salandra Incoronata

Insegnante: Prof.ssa La Salandra Incoronata LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe IVB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata TERMODINAMICA: LE LEGGIDEI GAS IDEALI E LA LORO INTERPRETAZIONE

Dettagli

Per improvvisa morte del computer oberon le slides sono temporaneamente qui:

Per improvvisa morte del computer oberon le slides sono temporaneamente qui: Astronomia Lezione 29/11/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Per improvvisa morte del computer oberon le slides sono temporaneamente qui: https://www.dropbox.com/sh/anj0ijvcgu71cir/c5nk_-nomg

Dettagli

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Astronomia Lezione 28/11/2014 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 L interno delle Stelle Equilibrio

Dettagli

Cosa alimenta le stelle? Stefano Covino INAF / Osservatorio Astronomico di Brera

Cosa alimenta le stelle? Stefano Covino INAF / Osservatorio Astronomico di Brera Cosa alimenta le stelle? Stefano Covino INAF / Osservatorio Astronomico di Brera Dato di ingresso: il Sole splende La quantità di energia che riceviamo dal Sole è nota come Costante Solare (CS): 1,37 kw/m

Dettagli

Radiazioni ionizzanti

Radiazioni ionizzanti Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni ionizzanti 11/3/2005 Struttura atomica Atomo Nucleo Protone 10 10 m 10 14 m 10 15 m ev MeV GeV 3 3,0 0,3 0 0 0 Atomo Dimensioni lineari

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Esame di Fisica I Totale (1^ appello estivo) e Secondo Parziale

Esame di Fisica I Totale (1^ appello estivo) e Secondo Parziale Esame di Fisica I Totale (1^ appello estivo) e Secondo Parziale Corso di Laurea in Chimica, 8/06/015 NB: Scrivere'sempre'il'proprio'nome'e'cognome'su'ogni'foglio.'Spiegare,'quanto'possibile,'il' procedimento'per'giungere'ai'risultati.'ordine'e'chiararezza'sono'elementi'di'valutazione.'

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 15 luglio 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 15 luglio 2010 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 15 luglio 2010 1) Una particella di massa m = 100 g viene lanciata da un punto O di un piano orizzontale scabro con velocità v O, paraliela al

Dettagli

Docente: Alessandro Melchiorri

Docente: Alessandro Melchiorri Astronomia Lezione 22/11/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/ Le lezioni astronomia012_*.pdf

Dettagli

Primo Principio della termodinamica

Primo Principio della termodinamica Primo Principio della termodinamica 1 FORME DI ENERGIA Esistono diverse forme di energia In un sistema la somma di tutte le forme di energia è detta energia totale E del sistema. La Termodinamica studia

Dettagli

ed infine le interazioni nucleari forte e debole? dove E rappresenta l energia cinetica della particella α, e K è: K = e2 2Z

ed infine le interazioni nucleari forte e debole? dove E rappresenta l energia cinetica della particella α, e K è: K = e2 2Z Introduzione 1. Stima il valore delle energie dei fotoni necessarie per risolvere distanze atomiche, e poi nucleari. 2. Per quali ragioni fisiche le interazioni fondamentali sono state storicamente identificate

Dettagli

Parte I Le informazioni fisiche contenute negli spettri

Parte I Le informazioni fisiche contenute negli spettri Parte I Le informazioni fisiche contenute negli spettri Cara$eris(che importan( delle Onde: Lunghezza d onda λ : in metri Per le onde luminose si una il nano- metro (nm) o l Ångstrom (Å) Frequenza ν :

Dettagli

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Astronomia Lezione 21/11/2014 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Equazione del Trasporto Radiativo

Dettagli

Astronomia Lezione 24/11/2011

Astronomia Lezione 24/11/2011 Astronomia Lezione 24/11/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 21 luglio 2011

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 21 luglio 2011 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 1 luglio 011 1) Una particella P di massa m = 0 g viene tenuta ferma in un punto O di un piano orizzontale liscio e comprime di un tratto d

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Premessa TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido.

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. UNITÀ 8 LA MECCANICA DEI FLUIDI 1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. 3. La pressione atmosferica. 4. La legge di Stevino. 5. La legge di Pascal. 6. La forza di Archimede.

Dettagli

L origine degli elementi chimici: Le fornaci stellari. Lezioni d'autore

L origine degli elementi chimici: Le fornaci stellari. Lezioni d'autore L origine degli elementi chimici: Le fornaci stellari Lezioni d'autore VIDEO Introduzione La storia sull origine degli elementi chimici è strettamente intrecciata con l evoluzione del nostro universo.

Dettagli

Lez 14 16/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Lez 14 16/11/2016. Lezioni in   didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 Lez 14 16/11/2016 Lezioni in http://www.fisgeo.unipg.it/~fiandrin/ didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 1 Esperienza di Joule E. Fiandrini Fis. Sper. e 2 Esperienza di Joule

Dettagli

Approfondimenti. Rinaldo Rui. ultima revisione: 29 maggio 2019

Approfondimenti. Rinaldo Rui. ultima revisione: 29 maggio 2019 Approfondimenti Rinaldo Rui ultima revisione: 29 maggio 2019 1 Sistemi ermodinamici 1.4 Lezione #4 1.4.2 eoria cinetica dei gas Il metodo statistico consiste nel definire un modello fisico-matematico,

Dettagli

MONDO DEI NEUTRINI. Prima tappa: Anni 30 il neutrino entra sulla scena. Seconda tappa: Neutrini masse e oscillazioni

MONDO DEI NEUTRINI. Prima tappa: Anni 30 il neutrino entra sulla scena. Seconda tappa: Neutrini masse e oscillazioni UN VIAGGIO IN TRE TAPPE NEL MONDO DEI NEUTRINI Prima tappa: Anni 30 il neutrino entra sulla scena della fisica delle particelle Seconda tappa: Neutrini masse e oscillazioni Terza tappa: I neutrini come

Dettagli

Fisica Generale 1 per Chimica Formulario di Meccanica

Fisica Generale 1 per Chimica Formulario di Meccanica Fisica Generale 1 per Chimica Formulario di Meccanica Vettori : operazioni elementari: Nota: un vettore verra' qui rappresentato in grassetto es: A = ( A x, A y, A z ) Prodotto scalare A. B = A B cos θ,

Dettagli

CRISI DELLA FISICA CLASSICA e FISICA DEI QUANTI Esercitazione

CRISI DELLA FISICA CLASSICA e FISICA DEI QUANTI Esercitazione ! ISTITUTO LOMBARDO ACCADEMIA DI SCIENZE E LETTERE Ciclo formativo per Insegnanti di Scuola Superiore - anno scolastico 2017-2018 Prima lezione - Milano, 10 ottobre 2017 CRISI DELLA FISICA CLASSICA e FISICA

Dettagli

Studente. Matricola. Anno di corso. Esame Corso di Fisica AA /01/2017 Corso di Laurea in Scienze Geologiche

Studente. Matricola. Anno di corso. Esame Corso di Fisica AA /01/2017 Corso di Laurea in Scienze Geologiche Teoria: Esercizi: Quesiti: Studente Matricola Anno di corso Esame Corso di Fisica AA. 2015-2016 16/01/2017 Corso di Laurea in Scienze Geologiche Griglia quesiti risposta multipla A B C D 1 2 3 4 5 6 7

Dettagli

Fisica nucleare e subnucleare 1 appello 26 gennaio 2011

Fisica nucleare e subnucleare 1 appello 26 gennaio 2011 Fisica nucleare e subnucleare 1 appello 26 gennaio 2011 Problema 1 Per studiare la reazione: γ + p n + π +, un fascio di fotoni di energia 300 MeV e intensità I = 10 8 s -1 incide su un bersagio di idrogeno

Dettagli

Stelle: la fusione nucleare

Stelle: la fusione nucleare Stelle: la fusione nucleare Primo Levi-Roberto Bedogni UNO SGUARDO ALLE STELLE, PIANETI, GALASSIE: INTRODUZIONE ALL ASTRONOMIA Bedogni Roberto INAF Osservatorio Astronomico di Bologna http://www.bo.astro.it/~bedogni/primolevi/

Dettagli

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente. Soluzioni

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente. Soluzioni Prova scritta di Fisica Scienze e Tecnologie dell Ambiente 6 Settembre 007 Soluzioni Parte 1 1) Sia θ l angolo di inclinazione del piano. Scelto l asse x lungo la direzione di massima pendenza, e diretto

Dettagli

Fondamenti di Astrofisica

Fondamenti di Astrofisica Fondamenti di Astrofisica Lezione 12 AA 2010/2011 Alessandro Marconi Dipartimento di Fisica e Astronomia Hubble Ultra-Deep Field (HUDF) Come visto nella prima lezione l HUDF è l esposizione più profonda

Dettagli

b) Essendo p A V A = p C V C ne risulta T C = T A = 300 K.

b) Essendo p A V A = p C V C ne risulta T C = T A = 300 K. 2.00 moli di un gas perfetto di volume V 1 = 3.50 m 3 e T 1 = 300 K possono espandersi fino a V 2 = 7.00 m 3 e T 2 = 300 K. Il processo è compiuto isotermicamente. Determinare: a) Il lavoro fatto dal gas;

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009 1) Meccanica: CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009 Una slitta di massa m=12 Kg si muove lungo un piano inclinato di 30, lungo s =10 metri. Sapendo che il coefficiente

Dettagli

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU............ Tempo a disposizione (tre esercizi) 2 ore e 30 1 esercizio (esonero) 1 ora

Dettagli

Iniziamo, a questo punto, lo studio del nucleo atomico con la determinazione delle caratteristiche orbitali dei protoni.

Iniziamo, a questo punto, lo studio del nucleo atomico con la determinazione delle caratteristiche orbitali dei protoni. Espressione teorica delle forze nucleari e caratteristiche di moto dei nucleoni. Nell Art. 5 abbiamo visto che il nucleo atomico, per poter fornire incrementi dell energia di legame, per aggiunta di un

Dettagli

Fisica dell atmosfera. Gaetano Festa

Fisica dell atmosfera. Gaetano Festa Fisica dell atmosfera Lezione III Gaetano Festa Riferimento sferico ( r, θ, ϕ) Radiale Meridionale (N) Zonale (E) Sistema di riferimento locale : x (E), (N), z (U); dx = r cos φdλ; d = rdφ; dz = dr φ λ

Dettagli

LT In Scienza dei Materiali Corso di Fisica Applicata. Prova di esame del 22/04/15. n. Matricola:

LT In Scienza dei Materiali Corso di Fisica Applicata. Prova di esame del 22/04/15. n. Matricola: LT In Scienza dei Materiali Corso di Fisica Applicata Prova di esame del 22/04/15 Nome n. Matricola: 1) Struttura del Nucleo atomico Qual è la relazione tra difetto di massa ed energia di legame di un

Dettagli

Capitolo 14 Interazione radiazione-materia: i neutroni

Capitolo 14 Interazione radiazione-materia: i neutroni Capitolo 14 Interazione radiazione-materia: i neutroni 14.1 Interazione dei neutroni con la materia Poiché il neutrone ha carica nulla esso non interagisce elettricamente con gli elettroni dell atomo,

Dettagli

Fondamenti di Trasporto Radiativo

Fondamenti di Trasporto Radiativo Fondamenti di Trasporto Radiativo Luminosità e Flusso della radiazione Sorgente astrofisica che emette energia de in tempo dt. La luminosità è la quantità di energia irraggiata nell unità di tempo: L =

Dettagli

Dischi di accrescimento: struttura

Dischi di accrescimento: struttura Accrescimento 2 Struttura locale: nell approssimazione di disco sottile, i gradienti di temperatura e pressione sono essenzialmente verticali (cioe le variazioni locali lungo la componente radiale sono

Dettagli

ELEMENTI di CHIMICA NUCLEARE. La FISSIONE NUCLEARE

ELEMENTI di CHIMICA NUCLEARE. La FISSIONE NUCLEARE ELEMENTI di CHIMICA NUCLEARE La FISSIONE NUCLEARE Lo scienziato Otto Hahn nel 938 scoprì che l'uranio 35 9U è fissile. La fissione è una rottura dei nuclei pesanti e può avvenire quando un neutrone lento

Dettagli

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata Radioattività 1. Massa dei nuclei 2. Decadimenti nucleari 3. Legge del decadimento XVI - 0 Nucleoni Protoni e neutroni sono chiamati, indifferentemente, nucleoni. Il numero di protoni (e quindi di elettroni

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 Appello generale 26 Giugno 2014

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 Appello generale 26 Giugno 2014 FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 Appello generale 26 Giugno 2014 1) MECCANICA Una particella P1, di massa m = 400g si trova, inizialmente in quiete, in un punto A di un piano orizzontale liscio.

Dettagli

FAM. = 5 4 Mc2 = E C = 5 2 Mc2 1 v2. c 2. 2 M 2M) = 1 2 Mc2

FAM. = 5 4 Mc2 = E C = 5 2 Mc2 1 v2. c 2. 2 M 2M) = 1 2 Mc2 Serie 19: Soluzioni FAM C. Ferrari Esercizio 1 Collisione completamente anelastica Utilizziamo la conservazione dell energia e della quantità di moto (sistema isolato) in cui trattiamo A e B all inizio

Dettagli

Processi reversibili e irreversibili

Processi reversibili e irreversibili Processi reversibili e irreversibili Trasformazioni reversibili: la direzione della trasformazione può essere invertita, cambiando di poco le condizioni esterne. Esempio: gas compresso da un pistone. Trasformazioni

Dettagli

Rivelatori Caratteristiche generale e concetti preliminari

Rivelatori Caratteristiche generale e concetti preliminari Rivelatori Caratteristiche generale e concetti preliminari Stage Residenziale 2012 Indice Caratteristiche generali sensibilità, risposta, spettro d ampiezza, risoluzione energetica, efficienza, tempo morto

Dettagli

Esercizi di Fisica II svolti in aula. Federico Di Paolo (22/02/2013)

Esercizi di Fisica II svolti in aula. Federico Di Paolo (22/02/2013) Esercizi di Fisica II svolti in aula Federico Di Paolo (22/02/203) Esercizio L elettrone e il protone hanno rispettivamente una massa di 9. 0 3 kg e, 67 0 27 kg. La loro carica elettrica è pari a.6 0 9

Dettagli

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0.

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0. Esercizio 1 All interno di una sfera di raggio posta nel vuoto esiste una densità di carica ρ = ρ r 2 distanza dal centro della sfera e ρ. Determinare: 1. La carica totale della sfera 2. Il campo elettrico

Dettagli