Fondamenti di Astrofisica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fondamenti di Astrofisica"

Transcript

1 Fondamenti di Astrofisica Lezione 7 AA 2010/2011 Alessandro Marconi Dipartimento di Fisica e Astronomia

2 Equazioni della struttura stellare Le equazioni che descrivono la struttura stellare sono: dp (r) dr dm(r) dr = GM(r)ρ(r) r 2 =4πr 2 ρ(r) equilibrio idrostatico conservazione della massa dt (r) dr = F [L(r), ρ(r),t(r),k(r),r] trasporto radiativo (trasporto energia all interno della stella, k(r) è l opacità) dl(r) dr =4πr 2 ρ(r)ε(r) conservazione dell energia (ε(r) è l energia prodotta per unità di tempo e di volume) 2

3 Equazioni della struttura stellare Queste equazioni vanno risolte con le opportune condizioni al contorno M(r = 0) = 0 M(r = r )=M L(r = 0) = 0 L(r = r )=L P (r = r )=0 L dipende dalle altre proprietà della stella, questa si usa in alternativa a M a queste vanno poi aggiunte le equazioni che descrivono lo stato del gas, l opacità ed i meccanismi di produzione dell energia P = P [ρ(r),t(r), (X, Y, Z)] k = k[ρ(r),t(r), (X, Y, Z)] ε = ε[ρ(r),t(r), (X, Y, Z)] X = ρ H ρ ; Y = ρ He ρ ; Z = ρ Metalli ρ composizione chimica del gas (metalli, elementi più pesanti di He) 3

4 Equazioni della struttura stellare Ci sono 7 equazioni accoppiate per 7 incognite P (r), M(r), ρ(r), T(r), k(r), L(r), ε(r) con 4 condizioni al contorno per le 4 equazioni differenziali del primo ordine; se c è una soluzione, questa è unica. Adesso esploriamo meglio le equazioni della struttura stellare. Equazione di stato. Dobbiamo tener conto sia della pressione del gas ma anche della pressione di radiazione. Per il gas PV = nrt, si può trasformare in P gas = nrt V = N V R N A T = M mv R N A T = ρ m kt 4

5 Equazione di stato Riguardo alla pressione di radiazione, ricordiamo la definizione di intensità de ν = I ν cos θ da dt dω dν se invece dell energia passo al numero di fotoni dn ν (Ω) = de ν hν = I ν hν cos θ da dt dω dν ciascun fotone ha una quantità di moto (diretta lungo il raggio di propagazione) pari a q ν = hν c dq ν (Ω) =q ν dn ν (Ω) = de ν hν P rad (Ω) = df da = dq ν(ω) dt hν c = de ν c cos θ da normale P da ovvero la quantità di moto trasportata nella direzione Ω è la pressione di radiazione in P sulla superficie da e dovuta ai fotoni che si muovono nella direzione Ω è quindi θ = I ν cos 2 θ dνdω c dω 5

6 Equazione di stato per ottenere la pressione totale occorre integrare su frequenza e angolo solido (supponiamo Iν isotropa) P rad = 1 c 0 I ν dν 2π 0 dφ π 0 cos 2 θ sin θ dθ se il sistema è all equilibrio termodinamico locale (cioè posso definire T punto per punto) Iν = Bν 0 π F ν [BB]dν = 0 πb ν dν = σt 4 0 B ν dν = σt 4 π 0 cos 2 θ sin θ dθ = 2 3 P rad = 1 c σt 4 π 2π 2 3 = 1 3 4σ c T 4 = 1 3 at4 si noti come la pressione di radiazione corrisponde dimensionalmente ad una densità di energia. In effetti u = at 4 è proprio la densità di energia associata alla radiazione. 6

7 Equazione di stato - Opacità In conclusione, l equazione di stato è P = P gas + P rad = ρkt m at 4 Vediamo adesso cosa rappresenta l opacità. L interazione tra un fotone ed una particella (atomo, ione, elettrone) si può parametrizzare tramite la sezione d urto σ, parametro legato alla probabilità dell interazione (dimensionalmente è una superficie): se il fotone incide sulla superficie virtuale σ posta alla posizione della particella si ha l interazione (diffusione e/o assorbimento). σ dl ds ds Visto dal fotone Consideriamo un elemento di volume cilindrico attorno alla direzione di propagazione di un fotone. 7

8 Opacità La probabilità di interazione è data dal rapporto tra l area coperta dalla sezione d urto delle particelle e la superficie del volumetto su cui incide il fotone dp = σ dn ds dn = ndsdl dp = nσdl con dn numero particelle nel volumetto n densità di particelle nel volumetto la distanza tipica che il fotone percorrerà tra una interazione e l altra (cammino libero medio) si avrà per una probabilità p=1 ovvero l = 1 nσ = 1 ρk k = σ m opacità In generale se la materia stellare è composta da vari assorbitori e diffusori di densità ni e sezione d urto σi si avrà l = 1 i n = 1 iσ i ρk ρ = i n i m i k = i n iσ i i m in i = i (ρ i/m i ) σ i i ρ i 8

9 Opacità k è l opacità che compare nell equazione del trasporto radiativo. Il meccanismo più semplice di opacità è la diffusione della luce da parte di elettroni liberi (scattering Thomson) caratterizzata da e 2 2 = cm 2 σ T = 8π 3 m e c 2 σt è la sezione d urto Thomson; è la minima sezione d urto per l interazione tra materia e radiazione. Nell interno delle stelle il gas è completamente ionizzato, è costituito quasi di solo H, l interazione avviene con i soli elettroni (σt ~ 1/m 2 ) per cui n e n H = l = 1 n e σ T ρ m H ρ M 4/3πr 3 m H ρσ T 1.4 g cm g 1.4 g cm cm cm 2 si è usata la densità media del Sole ma se ρ è più grande, come al centro, l è ancora più piccolo. 9

10 Opacità In pratica i fotoni percorrono solo tratti molto piccoli prima di essere deviati. Lo spostamento vettoriale totale è D = l 1 + l l i + + l n li l3 la distanza percorsa è il modulo dello spostamento l1 l2 D 2 = l l l i l n 2 + ij li l j se considero una gran numero di processi di diffusione allora poiché gli spostamenti li hanno direzioni casuali nello spazio li l j =0 ij D 2 = i l i 2 = i l 2 = Nl 2 ovvero D = l N 10

11 Opacità Un fotone che viene prodotto al centro del Sole sarà diffuso N volte prima di uscire con N = r l cm = = cm Il fotone percorre un tratto pari a N l quindi il tempo necessario ad uscire dal Sole sarà τ = Nl c = l c r l 2 = r 2 lc = ( cm) 2 2 cm cm s s= yr 11

12 Relazioni di scala dal diagramma HR Siamo ora in grado di spiegare le relazioni di scala per le stelle che sono state trovate osservativamente L M 3 L T 8 e (per stelle con M >M ) (con Te temperatura superficiale) Determiniamo la quantità di energia immagazzinata nella stella sotto forma di radiazione. La pressione di radiazione è P rad T 4 E T 4 R 3 è dimensionalmente (ma anche realmente Prad = 1/3 u) una densità di energia per cui Il tempo impiegato a far uscire questa energia dalla stella è il tempo che i fotoni impiegano ad andare dal centro alla superficie della stella ovvero τ = R2 lc = R2 σ T ρ m H c τ σρr 2 12

13 Relazioni di scala dal diagramma HR ovvero L E τ T 4 R 3 σρr 2 T 4 R σρ una relazione analoga si sarebbe scritta partendo dall equazione del trasporto radiativo. σ è stato lasciato per far vedere il suo effetto. Considerandolo costante si ricava la relazione L-M per stelle tipo Sole o più massicce; considerando altri processi σ non è costante e si ricava la relazione per stelle meno massicce del Sole. Consideriamo il caso in cui sia costante. Applicando il teorema del viriale abbiamo trovato P GM 4πR 4 P M R 4 T GMm H 6k B R T M R 13

14 Relazioni di scala dal diagramma HR Combinando le relazioni per L, P e T otteniamo L R ρ T 4 R ρ M R 4 M 4 ρr 3 M 3 dato che ρr 3 M cioè la relazione osservata. La diversa pendenza per le stelle di bassa massa ( L~M 5 ) deriva da una dipendenza dell opacità da T, ovvero da un diverso processo di scattering che domina in quelle stelle. Vediamo adesso di capire perché L~Te 8 L M 3 per stelle con M>M L M 5 per stelle con M<M L T 8 e si riferisce a tutta la sequenza principale, per cui consideriamo una relazione L-M intermedia ovvero L M 4 per tutte le stelle 14

15 Relazioni di scala dal diagramma HR ricordiamo che L =4πR 2 σt 4 e T M R Te superficiale, T media della stella T 4 e L R 2 M 4 R 2 M 4 T 2 M 2 M 2 T 4 L 1/2 T 2 come vedremo più avanti l equilibrio delle stelle sulla sequenza principale è mantenuto dal bruciamento dell H nel nucleo che avviene a temperature ben definite. In pratica T~costante per tutte le stelle di sequenza principale, allora T 4 e L 1/2 ovvero L T 8 e 15

16 La produzione di energia nelle stelle La cosa che resta per finire di vedere la struttura stellare è capire il meccanismo di produzione dell energia all interno del Sole ovvero ε = ε[ρ(r),t(r), (X, Y, Z)] Supponiamo che la fonte di energia del Sole sia gravitazionale, ovvero che il Sole abbia irraggiato fino ad ora l energia liberata dalla sua contrazione. All inizio della contrazione del Sole (ovvero all infinito) adesso E( ) =E grav ( )+E th ( ) =0 E(R )=E grav (R )+E th (R ) dal teorema del Viriale E grav = 2E th ovvero E(R )=E grav (R )+E th (R )= E th (R ) <E( ) 16

17 La produzione di energia nelle stelle La diminuzione di energia è dovuta all energia irraggiata che è pertanto E = E( ) E(R )=E th (R )= 1 2 E grav(r )= 1 2 GM 2 R Per quanto tempo il Sole avrebbe potuto irraggiare energia gravitazionale mantenendo una luminosità L? Questo tempo scala è il cosiddetto tempo di Kelvin-Helmholtz dato da τ KH = E L = 1 2 GM 2 L R = s= yr Ma dalla geologia sappiamo che la Terra è esistita da almeno 4 miliardi di anni e che durante questo tempo non ci sono stati variazioni significative di L. Evidentemente l energia irraggiata dal Sole non è di natura gravitazionale. Similmente si può dimostrare che l energia prodotta da reazioni chimiche (es. H+O H2O) non è sufficiente. 17

18 Energia di legame per particella nucleare (10-13 J) Le reazioni di fusione nucleare Meno strettamente legato Più strettamente legato H Fusione Li He N C O U 56 Fe Energia di legame dovuta alla forza nucleare forte. Numero di massa Fissione Una possibile fonte di energia per il Sole e le altre stelle sulla sequenza principale è la fusione di H in He. Questo processo è esoenergetico poiché l energia di legame di atomo di He è inferiore (più negativa) dell energia di legame totale dei singoli nuclei di H. La diminuzione dell energia di legame all aumento della massa nucleare avviene fino al 56 Fe, dopo l energia di legame cresce nuovamente.

19 La catena p-p La maggior parte dell energia prodotta dal Sole proviene da una catena di reazioni detta catena p-p. Il primo passo è p + p d + e + + ν e d nucleo di Deuterio, isotopo di H con p e n nel nucleo.. Il tempo scala perché questo processo avvenga è τ ~ yr ovvero se ho 2 protoni devo farli scontrare per ~10 10 anni prima che quella reazione avvenga. τ è così lungo perché è reazione che coinvolge le interazioni deboli come si vede dalla presenza del neutrino. L energia totale prodotta e distribuita tra le particelle risultanti è MeV. Appena la reazione avviene e + si annichila con e - rilasciando MeV in fotoni γ. Il neutrino invece ha una debolissima interazione con la materia (cammino libero medio R ) per cui scappa dal Sole portandosi via E~0.26 MeV. Entro ~1 s dalla reazione p+p un deuterone (nucleo deuterio) si fonde con un protone e p + d 3 He + γ con rilascio totale di energia E = 5.40 MeV (γ ed en. cinetica). 19

20 La catena p-p In fine dopo un tempo scala di circa ~ anni si ha 3 He + 3 He 4 He + p + p con un rilascio di energia cinetica pari a MeV. Ricapitolando, ogni volta che la reazione p+p avviene per due volte, 4 protoni sono convertiti in 4 He + 2 neutrini + fotoni + energia cinetica delle particelle. p + p d + e + + ν e τ yr e + + e 2γ τ 1s p + d 3 He + γ τ yr E =0.425 MeV E =2 m e c 2 = MeV} 2 E =5.49 MeV 3 He + 3 He 4 He + p + p E = MeV 20

21 La catena p-p Il risultato finale è 4p 4 He +2ν e + γ L energia prodotta è E =( ) MeV a cui dobbiamo sottrarre 2 x MeV che vengono dall annichilazione di 2 elettroni pre-esistenti ovvero E = MeV MeV = MeV = [m(4p) m( 4 He)]c 2 ovvero E è proprio pari alla differenza di energia di legame tra 4 He ed i 4 protoni liberi. Risulta anche E =0.007 m(4p)c 2 ovvero ò efficienza di produzione di energia (conversione materia in energia) è pari allo 0.7% della materia/energia a disposizione (massa dei 4 protoni) 21

22 Catena p-p Deuterio Protone Raggio γ ν Neutrino Neutrone Positrone

23 La catena p-p nel Sole Supponiamo adesso che il Sole effettui la reazione 4p 4 He riprocessando il 10% della sua massa. Per quanto tempo è in grado di sostenere un emissione con luminosità L? E nuc = M c 2 ovvero τ nuc = E nuc L = M c 2 L = s yr cioè il Sole riprocessando appena il 10% della sua massa è in grado di emettere Lo per 10 miliardi di anni ovvero la catena pp è in grado di alimentare l emissione del Sole e delle stelle. 23

24 Le reazioni di fusione nucleare Quali sono le condizioni perché avvengano le reazioni di fusione nucleare? Consideriamo due nuclei di numero atomico ZA e ZB (numero di protoni). I due nuclei si respingono a causa dell interazione Coulombiana con una energia di barriera E Coul = Z AZ B e 2 r ovvero per portare i due nuclei a distanza r devo avere un energia cinetica Ekin > ECoul. Perché la reazione nucleare avvenga i due protoni devono giungere a distanze dell ordine di r cm r0 è il raggio d azione della forza nucleare forte (quella che tiene insieme protoni e neutroni nei nuclei atomici) e che per r > r0 è praticamente nulla; E kin >E Coul (r 0 ) Z A Z B MeV 24

25 Le reazioni di fusione nucleare L energia tipica dei protoni nei nuclei delle stelle è E th 3 kt 1 kev 2 con T ~ 10 7 kev dalla stima effettuata col teorema del viriale. Apparentemente questa è troppo piccola in quanto la distanza minima a cui i protoni potrebbero giungere è dell ordine di tunnel interazione Coulombiana interazione nucleare forte r 1 Z AZ B e 2 E th Z AZ B e 2 1 kev = Z AZ B e (1 MeV) = 103 Z AZ B e 2 Er r 0 Se l interazione fosse governata solo dalla meccanica classica i protoni al centro delle stelle non potrebbero fondere. 25

26 Le reazioni di fusione nucleare In realtà avviene un fenomeno prettamente quantistico noto come effetto tunnel (vedi corso di Meccanica Quantistica al 3 o anno). In pratica, grazie al principio di indeterminazione di Heisemberg è possibile violare la conservazione di energia di ΔE per un tempo Δt a patto che E t 2 pertanto esiste una probabilità non nulla che i protoni giungendo ad una distanza r~r1 possano superare la barriera Coulombiana e passare a r~r0. Dalla meccanica quantistica si trova che questa probabilità è g(e) e E G /E E energia cinetica del protone, EG energia di Gamow, g(e) fattore di Gamow con EG 500 kev per cui con E~1 kev si ha g(e) e piccolissima, ma NON zero, per cui le reazioni possono avvenire dato anche il grande numero di protoni e collisioni che avvengono nel nucleo delle stelle. 26

27 Reazioni di fusione: termostati Tenendo conto delle sezioni d urto (probabilità) delle varie reazioni nucleari nella catena p-p si può ricavare l emissività ε (energia prodotta per unità di volume e di tempo). Si trova che le reazioni nucleari avvengono principalmente nel nucleo delle stelle (core) dove le temperature sono a quelle temperature ε(t ) T 4 T kev cioè dipende fortemente da T. Per reazioni nucleari con elementi più pesanti la dipendenza da T è ancora maggiore. Questo comporta che la produzione di energia per fusione nucleare agisce come termostato per tutta la struttura stellare. Supponiamo che T cresca aumenta produzione energia; dato il tempo necessario ai fotoni per uscire, inizialmente ETOT aumenta; E TOT = 1 2 E grav = E th quindi per mantenere l equilibrio della struttura, Egrav deve aumentare ovvero la stella si deve espandere. 27

28 Reazioni di fusione: termostati Ma se la stella si espande, Eth deve diminuire, ovvero la stella si raffredda. Se la stella si raffredda a seguito dell espansione, T diminuisce nuovamente, Eth diminuisce e la stella deve contrarsi, aumentando nuovamente la sua temperatura. Analogamente accadrebbe se si partisse da una diminuzione di T. In ogni caso la produzione di energia dalla relazioni nucleari tende a mantenere costante la temperatura della struttura stellare. In seguito a questo effetto di termostato le stelle sulla MS che bruciano H devono avere temperature simili, ovvero T M R ; T cost. M R 28

29 Il problema dei neutrini solari Una predizione chiave del modello riguarda i neutrini. Per ogni ciclo 4p 4 He si ha la produzione di 26.2 MeV di energia e l emissione di 2 neutrini (elettronici νe) che escono senza interazioni dal Sole. Il flusso di neutrini atteso a Terra è pertanto f νe =2 f 26.2 MeV =2 L /4πd MeV = s 1 cm 2 questi attraversano la Terra senza alcuna interazione. Esperimenti sui neutrini solari sono stati condotti fin dagli anni 60 ma i neutrini rivelati erano circa ~1/3 di quelli predetti dal modello. Oltre ai neutrini elettronici esistono anche i neutrini muonici (νµ ) e tauonici (ντ), non rivelati negli esperimenti di ricerca. Con l esperimento di Superkamiokande in Giappone (2001), si sono cercati i neutrini elettronici prodotti dalle centrali nucleari giapponesi (numero ben noto perchè sono noti i processi che li producono) e se ne sono trovati numero inferiore alle attese: i neutrini oscillano tra i vari stati νe νµ ντ e questo spiega perfettamente il problema dei neutrini solari mancanti. Questa è la prova che il Sole è alimentato dalla catena p-p. 29

30 Il ciclo CNO Nelle stelle più massicce del Sole (M > 1.2 M ) la produzione di energia segue una sequenza di reazioni diversa detta ciclo CNO che ha sempre come risultato 4p 4 He. In questo ciclo, C, N ed O presenti in tracce fungono da catalizzatori del processo di bruciamento H He, senza che ulteriori C, N e O vengano sintetizzati. La reazione più lenta è la prima (p+ 12 C) che ha bisogno di T~10 7 K ma la sua velocità è fortemente dipendente da T tanto che ε CNO (T ) T 20 log ε T 20 ε CNO ricordiamo che ε pp (T ) T 4 anche se T~cost., l aumento di M determina piccoli aumenti di T da ~10 7 a oltre K con conseguente dominio il ciclo CNO oltre 1.2 M. T 4 ε pp K log T 30

31 Il ciclo CNO Isotopi di N e O instabili, decadono in pochi minuti.

32 Il trasporto dell energia La produzione di energia nucleare avviene nel nucleo della stella e l energia prodotta deve essere trasportata verso l esterno. In genere il trasporto dell energia avviene attraverso i fotoni (vedi lezione su opacità) ovvero si ha un trasporto radiativo. In certe condizioni si instaura la convezione e si passa al trasporto convettivo, ovvero il plasma caldo fluisce dalle regioni interne alle regioni esterne, e quello freddo viceversa (vedi corso Termodinamica). Si può facilmente dimostrare (vedi libro) che questo avviene quando dt (r) dr > γ 1 γ T P dp (r) dr in tal caso, questa diventa proprio l equazione del trasporto radiativo Per M > 1.2 M la produzione di energia è col ciclo CNO, il nucleo è convettivo ed il mantello radiativo. Per M < 1.2 M la produzione di energia è col ciclo pp, il nucleo è radiativo ed il mantello convettivo. Al diminuire della massa il nucleo convettivo cresce in dimensioni fino ad interessare tutta la stella per M < 0.5 M 32

33 Il trasporto dell energia Zon interna convettiva, zona esterna radiativa Zona interna radiativa, zona esterna convettiva Interamente convettiva Dominate dal ciclo CNO Dominate dalla catena p-p 33

La struttura stellare ( III )

La struttura stellare ( III ) La struttura stellare ( III ) Relazioni di scala dal diagramma HR Siamo ora in grado di spiegare le relazioni di scala per le stelle che sono state trovate osservativamente L M 3 L T 8 e (per stelle con

Dettagli

La struttura stellare ( II ) Lezione 4

La struttura stellare ( II ) Lezione 4 La struttura stellare ( II ) Lezione 4 Il trasporto radiativo dell energia Il gradiente di pressione P(r) che sostiene una stella è prodotto da un gradiente in ρ(r) e T(r) e quindi L(r), ovvero l energia

Dettagli

La struttura stellare (II)

La struttura stellare (II) La struttura stellare (II) La sorgente di energia La pressione del gas consente di mantenere la stella in equilibrio idrostatico con la propria forza gravità. Però la stella perde energia irraggiando alla

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 10 Fusione nucleare Fusione nucleare (Das-Ferbel, cap. 5.3) Abbiamo già accennato alla fusione nucleare che costituisce la sorgente

Dettagli

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata Radioattività 1. Massa dei nuclei 2. Decadimenti nucleari 3. Legge del decadimento XVI - 0 Nucleoni Protoni e neutroni sono chiamati, indifferentemente, nucleoni. Il numero di protoni (e quindi di elettroni

Dettagli

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica CURRICULUM ASTROFISICA E FISICA DELLO SPAZIO Anno Accademico 2011-2012 PROGRAMMA

Dettagli

Gravità bilanciata dalla pressione cinetica

Gravità bilanciata dalla pressione cinetica Cap. 3 stelle normali Gravità bilanciata dalla pressione cinetica 1 dp ρ dr = GM r 2 2T = f GM 2 R equilibrio differenziale integrato T = 1 k GMm p 10R 107 K ma la stella irraggia quindi perde energia

Dettagli

L abbondanza degli elementi nell universo

L abbondanza degli elementi nell universo L abbondanza degli elementi nell universo Abbondanze nel sistema solare Abbondanze fotosferiche e meteoriche Abbondanze cosmiche Chi da dove? a)nucleosisntesi primordiale b)nucleosintesi stellare fino

Dettagli

ESERCITAZIONI ASTROFISICA STELLARE

ESERCITAZIONI ASTROFISICA STELLARE ESERCITAZIONI per ASTROFISICA STELLARE (AA 2011-2012) (ultimo aggiornamento: 23/03/2012) Esercizio 1: Una stella con gravita` superficiale pari a 3.42 10 4 cm -2 e luminosita` pari a 562 L ha il massimo

Dettagli

Stelle: la fusione nucleare

Stelle: la fusione nucleare Stelle: la fusione nucleare Primo Levi-Roberto Bedogni UNO SGUARDO ALLE STELLE, PIANETI, GALASSIE: INTRODUZIONE ALL ASTRONOMIA Bedogni Roberto INAF Osservatorio Astronomico di Bologna http://www.bo.astro.it/~bedogni/primolevi/

Dettagli

ELEMENTI di CHIMICA NUCLEARE. La FISSIONE NUCLEARE

ELEMENTI di CHIMICA NUCLEARE. La FISSIONE NUCLEARE ELEMENTI di CHIMICA NUCLEARE La FISSIONE NUCLEARE Lo scienziato Otto Hahn nel 938 scoprì che l'uranio 35 9U è fissile. La fissione è una rottura dei nuclei pesanti e può avvenire quando un neutrone lento

Dettagli

Struttura ed evoluzione delle stelle. Lezione 11

Struttura ed evoluzione delle stelle. Lezione 11 Struttura ed evoluzione delle stelle Lezione 11 Sommario L evoluzione di pre-sequenza principale. Il riscaldamento per collasso gravitazionale. La fusione nucleare. La catena p-p. Il ciclo CNO. Struttura

Dettagli

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg.

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg. Reazioni nucleari Un nucleo instabile può raggiungere una nuova condizione di stabilità attraverso una serie di decadimenti con emissione di particelle α, β, γ o di frammenti nucleari (fissione). Emissione

Dettagli

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 10 Radioattività... 2 L atomo... 3 Emissione di raggi x... 4 Decadimenti nucleari. 6 Il decadimento alfa.... 7 Il decadimento beta... 8 Il decadimento gamma...... 9 Interazione dei fotoni

Dettagli

Energia delle stelle, energia dalle stelle

Energia delle stelle, energia dalle stelle Energia delle stelle, energia dalle stelle Il ciclo energetico, meccanismo fondamentale nell'evoluzione delle stelle Marco Stangalini INAF-OAR Istituto Nazionale di Astrofisica Qual è il processo più efficiente

Dettagli

FNPA1 Prova parziale del 16/04/2012

FNPA1 Prova parziale del 16/04/2012 FNPA1 Prova parziale del 16/04/01 Problema 1 L energia di legame dei nuclei 4 He e 7 3 Li è rispettivamente 8.3 e 39.3 MeV. a) Verificare se la reazione p + 7 3 Li 4 3 He + 4 3 He è esotermica o endotermica.

Dettagli

Fissione indotta e fusione nucleare (cenni)

Fissione indotta e fusione nucleare (cenni) Fissione indotta e fusione nucleare (cenni) La fissione spontanea avviene per nuclei molto pesanti Z 2/A > 47 (per 238U, Z 2/A=36 ) Fissione indotta: lo scattering di una particella su di un nucleo fissile

Dettagli

Fisica del VITA MEDIA o <<TEMPO SCALA>> di una stella. RISERVA ENERGETICA (masse delle particelle) POTENZA IRRADIATA

Fisica del VITA MEDIA o <<TEMPO SCALA>> di una stella. RISERVA ENERGETICA (masse delle particelle) POTENZA IRRADIATA Bollitore tibetano Fisica del 1900 VITA MEDIA o di una stella RISERVA ENERGETICA (masse delle particelle) POTENZA IRRADIATA M i c h e l s o n In Fisica oramai, è soltanto questione di mettere

Dettagli

Il Nucleo. Dimensioni del nucleo dell'ordine di 10. m Il raggio nucleare R = R 0 -15

Il Nucleo. Dimensioni del nucleo dell'ordine di 10. m Il raggio nucleare R = R 0 -15 Il Nucleo Nucleo e' costituito da nucleoni (protoni e neutroni). Mentre i neutroni liberi sono abbastanza instabili tendono a decadere in un protone ed un elettrone (t 1/2 circa 900 s), i protoni sono

Dettagli

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Astronomia Lezione 28/11/2014 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 L interno delle Stelle Equilibrio

Dettagli

Gas ideale: velocità delle particelle e pressione (1)

Gas ideale: velocità delle particelle e pressione (1) Gas ideale: velocità delle particelle e pressione (1) In un gas ideale le particelle sono considerate puntiformi e risentono di forze solo durante gli urti (perfettamente elastici) con le pareti del recipiente.

Dettagli

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti materiali in funzione dell'energia del fascio dei fotoni Esperto Qualificato LNF - INFN Interazioni delle particelle indirettamente ionizzanti con la materia Le particelle indirettamente ionizzanti, principalmente

Dettagli

Misteri nell Universo

Misteri nell Universo Misteri nell Universo Quali sono le forme di materia ed energia nell universo osservabile? Quale e la ricetta (ingredienti e proporzioni) del nostro universo? 1 L eredità di Copernico Quale è la relazione

Dettagli

Se la funzione è analiticamente invertibile, estratto q, si può ricavare x = x(q).

Se la funzione è analiticamente invertibile, estratto q, si può ricavare x = x(q). La tecnica Monte Carlo Il metodo Monte Carlo è basato sulla scelta di eventi fisici con una probabilità di accadimento nota a priori. sia p(x) la distribuzione di probabilità con la quale si manifesta

Dettagli

Beta decay. max e ) -5 Legge di Sargent

Beta decay. max e ) -5 Legge di Sargent Beta decay Nuclei emettono elettroni con una distribuzione continua di energia Il valore massimo dell energia energia cinetica dell elettrone elettrone e circa uguale alla differenza di massa tra i nuclei

Dettagli

Studiamo le stelle su modelli che si basano su due presupposn principali:

Studiamo le stelle su modelli che si basano su due presupposn principali: - - 0 Introduzione. Le forze che agiscono nelle stelle. La stru9ura della materia (approfondimento) 3. Le reazioni di fusione nucleare Le fasi della vita di una stella: 4. La nascita delle stelle 5. Le

Dettagli

geometria di un apparato di conteggio

geometria di un apparato di conteggio La Sezione d urto Supponiamo di avere un fascio di particelle (protoni, elettroni, fotoni o qualsiasi altra particella) di ben definita energia che incide su un bersaglio (target). L intensità I di un

Dettagli

CRISI DELLA FISICA CLASSICA e FISICA DEI QUANTI Esercitazione

CRISI DELLA FISICA CLASSICA e FISICA DEI QUANTI Esercitazione ! ISTITUTO LOMBARDO ACCADEMIA DI SCIENZE E LETTERE Ciclo formativo per Insegnanti di Scuola Superiore - anno scolastico 2017-2018 Prima lezione - Milano, 10 ottobre 2017 CRISI DELLA FISICA CLASSICA e FISICA

Dettagli

L evoluzione stellare

L evoluzione stellare L evoluzione stellare L evoluzione stellare Fino ad ora abbiamo considerato le stelle in equilibrio stazionario sulla sequenza principale (bruciamento di H) ed abbiamo visto che una stella di massa M e

Dettagli

Cosa alimenta le stelle? Stefano Covino INAF / Osservatorio Astronomico di Brera

Cosa alimenta le stelle? Stefano Covino INAF / Osservatorio Astronomico di Brera Cosa alimenta le stelle? Stefano Covino INAF / Osservatorio Astronomico di Brera Dato di ingresso: il Sole splende La quantità di energia che riceviamo dal Sole è nota come Costante Solare (CS): 1,37 kw/m

Dettagli

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) Atomi 16 Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) 17 Teoria atomica di Dalton Si basa sui seguenti postulati: 1. La materia è formata

Dettagli

Fondamenti di Astrofisica

Fondamenti di Astrofisica Fondamenti di Astrofisica Lezione 12 AA 2010/2011 Alessandro Marconi Dipartimento di Fisica e Astronomia Hubble Ultra-Deep Field (HUDF) Come visto nella prima lezione l HUDF è l esposizione più profonda

Dettagli

Materia e forze alla scala subatomica: il nucleo atomico, le particelle elementari

Materia e forze alla scala subatomica: il nucleo atomico, le particelle elementari Materia e forze alla scala subatomica: il nucleo atomico, le particelle elementari Andrea Bizzeti Università di Modena e Reggio Emilia Dipartimento di Scienze Fisiche, Informatiche e Matematiche Modena,

Dettagli

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton Democrito IV secolo A.C. ATOMO Lavoisier Proust Legge della conservazione della massa Legge delle proporzioni definite Dalton (808) Teoria atomica Gay-Lussac volumi di gas reagiscono secondo rapporti interi

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

L origine degli elementi chimici: Le fornaci stellari. Lezioni d'autore

L origine degli elementi chimici: Le fornaci stellari. Lezioni d'autore L origine degli elementi chimici: Le fornaci stellari Lezioni d'autore VIDEO Introduzione La storia sull origine degli elementi chimici è strettamente intrecciata con l evoluzione del nostro universo.

Dettagli

LA STRUTTURA DELL ATOMO

LA STRUTTURA DELL ATOMO Università degli studi di MILANO Facoltà di AGRARIA El. di Chimica e Chimica Fisica Mod. 1 CHIMICA Lezione 2 Anno Accademico 2010-2011 Docente: Dimitrios Fessas LA STRUTTURA DELL ATOMO IL NUCLEO In fisica

Dettagli

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene Serie 42: Soluzioni FAM C. Ferrari Esercizio 1 Corpo nero 1. Abbiamo: Sole λ max = 500nm - spettro visibile (giallo); Sirio B λ max = 290nm - ultravioletto; corpo umano λ max = 9300nm - infrarosso. 2.

Dettagli

Introduzione alla Cosmologia Fisica Lezione 15

Introduzione alla Cosmologia Fisica Lezione 15 Introduzione alla Cosmologia Fisica Lezione 15 I modelli cosmologici moderni: Lo stato stazionario vs Il modello del Big Bang Giorgio G.C. Palumbo Università degli Studi di Bologna Dipartimento di Astronomia

Dettagli

Sm, T 1/ 2. Il decadimento alfa

Sm, T 1/ 2. Il decadimento alfa Il decadimento alfa L emissione di particelle α da parte di vari radionuclidi rappresenta una delle prime scoperte della fisica moderna: nel 1908 utherford dimostrò che tale radiazione è costituita da

Dettagli

FISICA delle APPARECCHIATURE per RADIOTERAPIA

FISICA delle APPARECCHIATURE per RADIOTERAPIA Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per RADIOTERAPIA Marta Ruspa 20.01.13 M. Ruspa 1 ONDE ELETTROMAGNETICHE

Dettagli

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C.

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C. Serie 19: Relatività VIII FAM C. Ferrari Esercizio 1 Collisione completamente anelastica Considera la collisione frontale di due particelle A e B di massa M A = M B = M e v A = v B = 3/5c, tale che alla

Dettagli

e, non dipendendo da A, è la stessa per tutti i nuclei. 3A 4πr 3 0 n = A V = A = cm -3

e, non dipendendo da A, è la stessa per tutti i nuclei. 3A 4πr 3 0 n = A V = A = cm -3 Modelli nucleari collettivi: il modello a goccia di liquido Già nel 1911 Rutherford, per spiegare i risultati del suo esperimento di diffusione di particelle α da nuclei pesanti ricavò che il nucleo è

Dettagli

La misura della temperatura

La misura della temperatura Calore e temperatura 1. La misura della temperatura 2. La dilatazione termica 3. La legge fondamentale della termologia 4. Il calore latente 5. La propagazione del calore La misura della temperatura La

Dettagli

Astronomia Lezione 16/12/2011

Astronomia Lezione 16/12/2011 Astronomia Lezione 16/12/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma senza una differenza

Dettagli

ARGOMENTO: Cenni di Fisica del Nucleo

ARGOMENTO: Cenni di Fisica del Nucleo UNIVERSITA DEGLI STUDI DI GENOVA C.L. TECNICHE DIAGNOSTICHE RADIOLOGICHE CORSO INTEGRATO: MISURE ELETTRICHE ED ELETTRONICHE MATERIA: FISICA APPLICATA 2 (2 anno 1 sem) ARGOMENTO: Cenni di Fisica del Nucleo

Dettagli

Statica ed equilibrio dei corpi

Statica ed equilibrio dei corpi Statica ed equilibrio dei corpi Avendo stabilito le leggi che regolano il moto dei corpi è possibile dedurre le leggi che regolano il loro equilibrio in condizioni statiche, cioè in assenza di movimento.

Dettagli

Raccolta di esercizi di fisica moderna

Raccolta di esercizi di fisica moderna Raccolta di esercizi di fisica moderna M. Quaglia IIS Avogadro Torino M. Quaglia (IIS Avogadro Torino) Raccolta di esercizi di fisica moderna Torino, 20/11/2014 1 / 30 Prova AIF e Sillabo http://www.aif.it/archivioa/aif_seconda_prova_di_fisica.pdf

Dettagli

Introduzione alla Meccanica Quan1s1ca

Introduzione alla Meccanica Quan1s1ca Introduzione alla Meccanica Quan1s1ca Danilo Babusci Stage Es)vi LNF Giugno 2012 Probabilità Le leggi fondamentali della natura sono leggi di probabilità, non leggi di certezza La Meccanica Quantistica

Dettagli

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROBLEMA 1. PROVA DI AMMISSIONE A.A.:2007-2008 SOLUZIONE DELLA PROVA SCRITTA DI FISICA a) da g = GM segue: M = gr2 R 2 G b) La forza centripeta che fa descrivere

Dettagli

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009 S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009 Conduzione elettrica nei metalli (conduttori e semiconduttori) Corso di Laboratorio di Didattica

Dettagli

Big Bang ed Evoluzione dell Universo. NUOVO ISTITUTO CARDUCCI SIENA 03 DICEMBRE 2010 DOCENTE : Angela Dami

Big Bang ed Evoluzione dell Universo. NUOVO ISTITUTO CARDUCCI SIENA 03 DICEMBRE 2010 DOCENTE : Angela Dami Big Bang ed Evoluzione dell Universo NUOVO ISTITUTO CARDUCCI SIENA 03 DICEMBRE 010 DOCENTE : Angela Dami Universo stazionario Redshift dello spettro delle radiazioni emanate dalle galassie Scoperta di

Dettagli

Formulario. (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q 1Q 2 r 2 = 1 Q 1 Q 2

Formulario. (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q 1Q 2 r 2 = 1 Q 1 Q 2 Formulario (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q Q 2 r 2 = Q Q 2 4πε r 2 Campo elettrico: E F q Campo coulombiano generato da una carica

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

Sistemi binari e accrescimento

Sistemi binari e accrescimento Sistemi binari e accrescimento Le Stelle Binarie Finora abbiamo considerato le stelle come oggetti luminosi e isolati; le stelle sono alimentate da reazioni di fusione nucleare non interagiscono con il

Dettagli

La struttura stellare

La struttura stellare La struttura stellare Brevi richiami su proprietà osservative Grandezze più importanti che permettono di caratterizzare le stelle sono: la distanza ( d ); Astronomia lo spettro della radiazione e.m. emessa

Dettagli

Lezione 4 Proprietà fondamentali di un plasma II

Lezione 4 Proprietà fondamentali di un plasma II Lezione 4 Proprietà fondamentali di un plasma II G. Bosia Universita di Torino 1 Interfaccia elettrico tra plasma e prima parete solida Quando un plasma e in contatto con un corpo solido, (quale la parete

Dettagli

L'Insostenibile Velocità del Neutrino

L'Insostenibile Velocità del Neutrino L'Insostenibile Velocità del Neutrino Roberto Ferrari Istituto Nazionale di Fisica Nucleare Liceo Scientifico Marconi - Sommario 1: i neutrini 2: la produzione 3: la rivelazione 2 2 1. i neutrini 3 3 i

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://cms.pg.infn.it/santocchia/

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

CARICA ELETTRICA E LEGGE DI COULOMB

CARICA ELETTRICA E LEGGE DI COULOMB QUESITI 1 CARICA ELETTRICA E LEGGE DI COULOMB 1. (Da Medicina e Odontoiatria 2015) Due particelle cariche e isolate sono poste, nel vuoto, a una certa distanza. La forza elettrostatica tra le due particelle

Dettagli

MISURA DELLA MASSA DELL ELETTRONE

MISURA DELLA MASSA DELL ELETTRONE MISURA DELLA MASSA DELL ELETTRONE di Arianna Carbone, Giorgia Fortuna, Nicolò Spagnolo Liceo Scientifico Farnesina Roma Interazioni tra elettroni e fotoni Per misurare la massa dell elettrone abbiamo sfruttato

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye 1 / 5 Corso:Fisica moderna/calore specifico dei solidi/modello di Debye Debye riprende l intero modello di Planck per il corpo nero: non solo la quantizzazione dell energia ma anche l idea che vi siano

Dettagli

Sistemi binari e accrescimento. Lezione 8

Sistemi binari e accrescimento. Lezione 8 Sistemi binari e accrescimento Lezione 8 Le Stelle Binarie Finora abbiamo considerato le stelle come oggetti luminosi e isolati; le stelle sono alimentate da reazioni di fusione nucleare non interagiscono

Dettagli

Spettro elettromagnetico

Spettro elettromagnetico Spettro elettromagnetico Sorgenti Finestre Tipo Oggetti rilevabili Raggi γ ev Raggi X Lunghezza d onda E hc = hν = = λ 12. 39 λ( A o ) Visibile Infrarosso icro onde Onde-radio Dimensione degli oggetti

Dettagli

P. Sapia Università della Calabria. a.a. 2009/10

P. Sapia Università della Calabria. a.a. 2009/10 FISICA PER I BENI CULTURALI Ii MATERIA E INTERAZIONE CON LA RADIAZIONE P. Sapia Università della Calabria a.a. 2009/10 Interazioni fondamentali Gravitazionale Debolmente attrattiva, tra tutte le particelle

Dettagli

Lavoisier (1770) Legge della conservazione della massa in una trasf. chimica es. C + O 2 CO 2 Dalton (1808) Teoria atomica

Lavoisier (1770) Legge della conservazione della massa in una trasf. chimica es. C + O 2 CO 2 Dalton (1808) Teoria atomica ATOMO Democrito IV secolo A.C. Lavoisier (1770) Legge della conservazione della massa in una trasf. chimica es. C + O 2 CO 2 Dalton (1808) Teoria atomica E=mc 2 Avogadro (1811) Volumi uguali di gas diversi

Dettagli

La chimica nucleare. A cura della prof. ssa. Barone Antonina

La chimica nucleare. A cura della prof. ssa. Barone Antonina La chimica nucleare A cura della prof. ssa Barone Antonina La radioattività Nella seconda metà dell 800, Henry Becquerel, Pierre e Marie Curie, scoprirono che alcuni elementi( uranio, torio, radio) emettevano

Dettagli

avviene per ogni tipo di neutrino. Il numero di fermioni è governato dalla distribuzione di Fermi- Dirac: n(e)de = u(e) E

avviene per ogni tipo di neutrino. Il numero di fermioni è governato dalla distribuzione di Fermi- Dirac: n(e)de = u(e) E Capitolo 9 Nucleosintesi La comprensione dell esistenza degli elementi della tavola periodica è una delle tematiche più studiate dell astrofisica nucleare. Nei capitoli 4, 5 e 7 abbiamo individuato diverse

Dettagli

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene:

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene: Esercitazione 7 Esercizio 1 Una massa m g = 20 g di ghiaccio a 0 C è contenuta in un recipiente termicamente isolato. Successivamente viene aggiunta una massa m a = 80 di acqua a 80 C. Quale sarà, all

Dettagli

Diffusione da elettroni legati elasticamente

Diffusione da elettroni legati elasticamente Diffusione da elettroni legati elasticamente Nell ipotesi di elettroni legati elasticamente nella materia, il moto del singolo elettrone è determinato dall equazione del moto classica r + γṙ + ω 0r F ext

Dettagli

Cicli nucleari all interno delle stelle

Cicli nucleari all interno delle stelle Introduzione Il decadimento radioattivo dei nuclei instabili è uno dei principali processi di produzione di fotoni gamma di bassa energia. I nuclei instabili sono il risultato di complesse reazioni nucleari

Dettagli

introduzione alla fisica subnucleare

introduzione alla fisica subnucleare introduzione alla isica subnucleare AA 2006/07 Giovanni Busetto 1 la isica subnucleare oggi gli elementi del Modello Standard AA 2006/07 Giovanni Busetto 2 la isica subnucleare oggi 3 interazioni ondamentali

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

4πε. h m. Eq. di Schrödinger per un atomo di idrogeno:

4πε. h m. Eq. di Schrödinger per un atomo di idrogeno: Eq. di Schrödinger per un atomo di idrogeno: h m e 1 ψ 4πε r 0 ( r) = Eψ ( r) Questa equazione è esattamente risolubile ed il risultato sono degli orbitali di energia definita E n = m e 1 α 1 1 e mc n

Dettagli

Astronomia Lezione 14/11/2011

Astronomia Lezione 14/11/2011 Astronomia Lezione 14/11/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

La fusione. Lezioni d'autore. di Claudio Cigognetti

La fusione. Lezioni d'autore. di Claudio Cigognetti La fusione Lezioni d'autore di Claudio Cigognetti La bomba H (da Ulisse Rai) VIDEO VIDEO Il plasma costituito da un gas di ioni, elettroni, atomi o molecole complessivamente neutro in esso dominano gli

Dettagli

Evoluzione stellare prima della sequenza principale

Evoluzione stellare prima della sequenza principale Evoluzione stellare prima della sequenza principale Ivo Riccardi Indice 1 Il mezzo interstellare Nel 1908 Von Mie dimostrò che l attenuazione (o estinzione) subita dalla luce attraversando il mezzo interstellare

Dettagli

la forma esplicita delle correzioni

la forma esplicita delle correzioni la forma esplicita delle correzioni al leading order (ma nei programmi di fit le correzioni si spingono, a seconda dei casi, ad ordini superiori) e per m H >m W le correzioni dipendenti dal flavour sono

Dettagli

Evoluzione stellare: dalla nascita di una stella alla sua fine. Serafina Carpino

Evoluzione stellare: dalla nascita di una stella alla sua fine. Serafina Carpino Evoluzione stellare: dalla nascita di una stella alla sua fine Serafina Carpino Oltre a miliardi di stelle, nello spazio ci sono nubi di materia interstellare, formate da estese condensazioni di gas e

Dettagli

Spettro di corpo nero, temperatura di brillanza e temperatura di antenna

Spettro di corpo nero, temperatura di brillanza e temperatura di antenna Spettro di corpo nero, temperatura di brillanza e temperatura di antenna Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Cosa trattiamo oggi Lo spettro di corpo nero Perché il

Dettagli

SCIENZA DEI MATERIALI. Chimica Fisica. VI Lezione. Dr. Fabio Mavelli. Dipartimento di Chimica Università degli Studi di Bari

SCIENZA DEI MATERIALI. Chimica Fisica. VI Lezione. Dr. Fabio Mavelli. Dipartimento di Chimica Università degli Studi di Bari SCIENZA DEI MATERIALI Chimica Fisica VI Lezione Dr. Fabio Mavelli Dipartimento di Chimica Università degli Studi di Bari Energia Libera di Helmholtz F 2 Definiamo la funzione di stato Energia Libera di

Dettagli

Un modello per il gas ideale

Un modello per il gas ideale Un modello per il gas ideale Un gas ideale consiste di particelle (atomi o molecole) che hanno le seguenti proprietà 1. Il volume proprio delle particelle è trascurabile rispetto al volume occupato dal

Dettagli

Esercizi su Chimica Nucleare e Nucleogenesi

Esercizi su Chimica Nucleare e Nucleogenesi Insegnamento di Chimica Generale 083424 - CCS CHI e MAT A.A. 2015/2016 (I Semestre) Esercizi su Chimica Nucleare e Nucleogenesi Prof. Dipartimento CMIC Giulio Natta http://chimicaverde.vosi.org/citterio/it//

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro di una forza Consideriamo una forza F applicata ad un punto materiale P che si sposti

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito

Dettagli

Convezione Conduzione Irraggiamento

Convezione Conduzione Irraggiamento Sommario Cenni alla Termomeccanica dei Continui 1 Cenni alla Termomeccanica dei Continui Dai sistemi discreti ai sistemi continui: equilibrio locale Deviazioni dalle condizioni di equilibrio locale Irreversibilità

Dettagli

Tesi di Laurea I livello

Tesi di Laurea I livello UNIVERSITÁ DEGLI STUDI DI CATANIA FACOLTÁ DI SCIENZE MATEMATICHE FISICHE E NATURALI CORSO DI LAUREA IN FISICA Tesi di Laurea I livello A.A. 2007/2008 Candidato: AGATIA LIBERTINO Relatore: Prof. LUCIO PATERNÓ

Dettagli

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015 Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 3 giugno 015 Problema 1 Si consideri un sistema costituito da un cilindro omogeneo di raggio R 1 = 10 cm e altezza h = 0 cm, inserito all

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

Energia del campo elettromagnetico

Energia del campo elettromagnetico Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano

Dettagli

CONDENSATI DI BOSE-EINSTEIN E SUPERFLUIDI

CONDENSATI DI BOSE-EINSTEIN E SUPERFLUIDI CONDENSATI DI BOSE-EINSTEIN E SUPERFLUIDI Consideriamo un fluido in una scatola. Questo è un insieme di tanti piccoli costituenti che supponiamo per semplicità essere identici. Dalla meccanica quantistica

Dettagli

Richiami di Astrofisica Stellare. Lezione 2

Richiami di Astrofisica Stellare. Lezione 2 Richiami di Astrofisica Stellare Lezione 2 Fotometria e magnitudini Misurare lo spettro di una sorgente può essere difficile in tal caso si può misurare la luce in una data banda passante T(λ): λ eff =

Dettagli

Interazione radiazione materia Dott.ssa Alessandra Bernardini

Interazione radiazione materia Dott.ssa Alessandra Bernardini Interazione radiazione materia Dott.ssa Alessandra Bernardini 1 Un po di storia Lo studio delle radiazioni ionizzanti come materia di interesse nasce nel novembre del 1895 ad opera del fisico tedesco Wilhelm

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Corso di Stelle e Galassie Lezione del 05/10/2016 Il Sole

Corso di Stelle e Galassie Lezione del 05/10/2016 Il Sole Corso di Stelle e Galassie Lezione del 05/10/2016 Il Sole Do#.ssa Silvia Perri Dipar0mento di Fisica, Università della Calabria Cubo 33B, 5 piano silvia.perri@fis.unical.it Introduzione In Astrofisica

Dettagli

Il semiconduttore è irradiato con fotoni a λ=620 nm, che vengono assorbiti in un processo a due particelle (elettroni e fotoni).

Il semiconduttore è irradiato con fotoni a λ=620 nm, che vengono assorbiti in un processo a due particelle (elettroni e fotoni). Fotogenerazione -1 Si consideri un semiconduttore con banda di valenza (BV) e banda di conduzione (BC) date da E v =-A k 2 E c =E g +B k 2 Con A =10-19 ev m 2, B=5, Eg=1 ev. Il semiconduttore è irradiato

Dettagli