figura 5.17 figura 5.18

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "figura 5.17 figura 5.18"

Transcript

1 5.3 Filtri passa banda passivi Un filtro passa banda ideale è un circuito che ha il compito di consentire il passaggio di tensioni elettriche la cui frequenza può essere compresa tra f1 ed f2; al di fuori di questo intervallo tutte le tensioni vengono bloccate e all uscita del filtro non si ha alcun segnale. L andamento grafico di questo comportamento è riportato in figura figura 5.17 In figura sono evidenziate le due zone caratteristiche del filtro, la zona passante, entro la quale i segnali d ingresso possono transitare purché abbiano frequenze comprese tra f1 ed f2, e la zona non passante, nella quale nessun segnale avente frequenza inferiore ad f1 o superiore ad f2 può transitare. Il comportamento di un filtro passa banda reale ha però un comportamento molto diverso nell intervallo di frequenze che precede f1 e che segue f2; il percorso tra zona passante e zona non passante non avviene bruscamente, come in figura 5.17, ma gradualmente, secondo una curva caratteristica la cui pendenza è tanto più elevata quanto maggiore è la complessità del circuito passa banda. Si ha perciò una curva di risposta reale del tipo di quella indicata in figura figura 5.18 In figura 5.18 si vede come la risposta del filtro passa banda consenta di attenuare le frequenze inferiori ad f1 e superiori ad f2 secondo certe curve caratterizzate dai punti di ascissa f1 ed f2 ed ordinate 3 db. Le pendenze della curva sono espresse in db/ottava; i valori di f1 e di f2 sono detti frequenze di taglio. Lo schema elettrico di un filtro passa banda, nella configurazione circuitale più semplice, detta cellula, è mostrato in figura

2 figura 5.19 Nella figura si vedono i componenti che costituiscono la struttura filtrante, due resistenze R1 ed R2 uguali tra loro, due condensatori C2 e C3, anch essi uguali tra loro, le induttanze L2 ed L3 uguali tra loro ed infine il condensatore C1 e l induttanza L1. La tensione del segnale d ingresso, Vi, è applicata in serie alla resistenza R1; il segnale d uscita Vu è presente ai capi di R2. Questa configurazione della cellula necessita di un segnale d ingresso il cui generatore abbia un impedenza molto più bassa del valore di R1 ( si dice in questo caso che il generatore deve essere un generatore di tensione ) ; ciò comporta una perdita di 6 db (2 volte), perdita d inserzione, per la partizione della tensione Vi da parte di R1 ed R2. Un circuito filtrante con le stesse caratteristiche di risposta di quello mostrato in figura 5.19 è realizzabile per il filtraggio di segnali prodotti da generatori di corrente, i quali hanno un impedenza molto più elevata di R1. Lo schema di questo filtro è mostrato in figura figura 5.20 Il progetto di entrambi i filtri passa banda sopra illustrati è fattibile, con particolari formule di calcolo, mediante il dimensionamento dei componenti in dipendenza del valore voluto delle due frequenze di taglio f1 ed f2; le formule in oggetto sono le seguenti: L1 = R / [ π * (f 2 f1 )] L2 = L3 = R * ( f2 f1 ) / ( 2* π * f1 * f2 ) C1 = ( f2 f1 ) / ( 4* π * f1 * f2 * R ) dove C è espresso in Farad L è espresso in Henry C2 = C3 = 1/ [ 2 * π * (f 2 f1 ) * R ] 289

3 Il calcolo di un filtro di banda richiede un poco d esperienza per evitare di trovarsi, dopo la procedura di computazione con le formule indicate, con valori di componenti praticamente non accettabili, o perché troppo grandi o perché troppo piccoli. Vedremo più avanti come affrontare queste difficoltà. Un metodo per la computazione veloce su P.C. di filtri di banda è riportato in appendice A9. Per le soluzioni circuitali, alle quali si applicano le formule indicate, si hanno le seguenti caratteristiche: Filtro passa banda con segnale Vi da generatore di tensione Perdita d inserzione nella zona passante Att. = -6 db Attenuazione alle due frequenze di taglio rispetto al livello della zona passante Att. = - 3 db Attenuazione totale alle frequenze di taglio Att. = -3dB 6 db = -9 db Pendenza della curva d attenuazione ben sotto il valore di f1 e ben sopra il valore di f2; Att. = -18 db/ottava (pari alla riduzione dell ampiezza del segnale di 8 volte ad ogni raddoppiamento della frequenza) Filtro passa banda con segnale Vi da generatore di corrente Perdita d inserzione nella zona passante Att. = 0 db Attenuazione alle frequenze di taglio rispetto al livello della zona passante Att. = - 3 db Attenuazione totale alle frequenze di taglio Att. = -3dB 0dB = -3 db Pendenza della curva d attenuazione ben sotto il valore di f1 e ben sopra il valore di f2; Att.= -18 db/ottava (pari alla riduzione dell ampiezza del segnale di 8 volte ad ogni raddoppiamento della frequenza) Vediamo lo sviluppo di un esercizio classico: Dati di progetto: Sia da realizzare un filtro passa banda in grado di essere accoppiato ad un generatore di tensione avente una Zu = 20 ohm, si vogliano le frequenze di taglio poste rispettivamente per f1 = 5000 Hz F2 = Hz ed una pendenza di -18 db/ottava. Dimensionamento della resistenza d ingresso: Il dati di progetto prevedono una configurazione circuitale come quella di figura 5.19, per cui: Il valore di R1 deve essere commisurato al valore di Zu = 10 ohm ; quindi dovrà essere: R1 >> Zu ovvero R1 >> 10 ohm per ottenere questa condizione è opportuno, se possibile*, che R1 sia almeno 100 volte il valore di Zu, quindi R1 = 2000 ohm. Dato che R1 = R2, si ha R2 = 2000 ohm *La possibilità che R1 possa essere del valore calcolato dipende dai valori di L e di C che ne conseguono; se i valori saranno realizzabili, il dato di R1 sarà accettabile, altrimenti, dovrà essere rivisto. Calcolo di L1; L2;L3; C1; C2; C3: Dati f1 = 5000 Hz ; f2 = Hz ed R1=R2 = 2000 ohm il calcolo di L1 si effettua con la formula: 290

4 L1 = R / [ π * (f 2 f1 )] = 2000 ohm /[ 3.14 * ( Hz 5000 Hz)] = mh il calcolo di L2 = L3 si effettua con la formula: L2 = L3 = R * ( f2 f1 ) / ( 2* π * f1 * f2 ) = 2000 ohm * ( Hz 5000 Hz) / / (6.28 * 5000 Hz * Hz) = 31.8 mh il calcolo di C1 si effettua con la formula: C1 = ( f2 f1 ) / ( 4* π * f1 * f2 * R ) = ( Hz 5000 Hz) / / ( * 5000 Hz * Hz * 2000 ohm) = 3980 pf ( con precisione dell 1.25 %) il calcolo di C2 = C3 si effettua con la formula: C2 = C3 = 1/ [ 2 * π * (f 2 f1 ) * R ] =1 / [ 6.28 * ( Hz 5000 Hz) * 2000 ohm] = pf ( con precisione dell 1.25 %) Tracciamento della curva di risposta: Nel caso dei filtri passa banda non è possibile utilizzare una curva di risposta universale, ma si deve ricorrere al tracciamento specifico della risposta del filtro progettato. La curva di risposta di questo filtro è riportata in figura 5.21 figura 5.21 La curva di risposta ha in ascisse la frequenza espressa in KHz ed in ordinate l attenuazione del filtro ad intervalli di 2 db per divisione, per un totale di 40 db. La lettura della curva mostra particolari caratteristiche: 291

5 Per le frequenze di taglio, f1 = 5000 Hz e f2 = 10000, Hz l attenuazione è di 9 db. Dalla frequenza di taglio f2 = Hz al suo doppio, f = Hz, si evidenzia un salto d attenuazione di ben 31 db che apparentemente contrasta con la pendenza dichiarata di 18 db/ottava. Questo comportamento è dovuto al coefficiente di merito delle induttanze che nei pressi della frequenza di taglio incrementa la pendenza d attenuazione ( per trovare la pendenza di 18 db/ottava si dovrebbe tracciare la risposta per frequenze oltre i KHz ). Dalla frequenza di taglio f1 = 5000 Hz alla sua metà, f = 2500 Hz, si evidenzia un salto attenuazione di circa 31 db; anche in questo caso il comportamento è dovuto al coefficiente di merito delle induttanze che, nei pressi della frequenza di taglio, incrementa la pendenza d attenuazione ( per trovare la pendenza di 18 db/ottava si dovrebbe tracciare la risposta per frequenze sotto i 1000 o 2000 Hz ). Osservazioni in merito alla curva di risposta: Per quanto visto in merito alla curva di risposta risulta evidente che il suo tracciamento non è fattibile senza l impiego di un idoneo programma di calcolo, già menzionato in precedenza e contenuto in appendice A10; se non si ha la possibilità di impiegare detto programma si consiglia ciò che molti anni fa veniva fatto in questi casi, per il controllo dei filtri di banda in laboratorio, in assenza dei grafici delle curve di risposta: Si annotano i dati: Frequenze di taglio, f1 ed f2, della banda passante voluta. Frequenza di centro banda fo = (f1 + f2) / 2. Estremo superiore, fs, della zona d attenuazione d interesse nella quale ci si aspetta una pendenza minima di 18 db/ottava. Estremo inferiore, fi, della zona d attenuazione d interesse nella quale ci si aspetta una pendenza minima di 18 db/ottava. figura 5.22 La figura 5.22 mostra la collocazione dei dati nel contesto grafico relativo alla curva di risposta voluta. Si dimensiona il filtro di banda con molta attenzione onde evitare errori banali di calcolo, si controllano i calcoli almeno due volte. Si costruisce il prototipo e lo si prova in laboratorio; si controlla che l attenuazione alla frequenza fo, di centro banda, sia dell ordine di 6 db (tolleranza circa 1 db); 292

6 l attenuazione in fo è dovuta per 6 db alla perdita d inserzione e per il restante alle perdite nelle induttanze. Si controlla che l attenuazione alle frequenze di taglio f1 ed f2 sia dell ordine di 9 db (tolleranza circa 1 db). Si controlla fuori dalla banda passante, tra f2 ed fs, se le pendenze d attenuazione sono entro i limiti voluti ( al meno 18 db ad ogni raddoppiamento della frequenza). Si controlla fuori dalla banda passante, tra f1 ed fi, se le pendenze d attenuazione sono entro i limiti voluti ( al meno 18 db ad ogni dimezzamento della frequenza). Se i dati rilevati corrispondono alle esigenze d impostazione, il controllo del filtro può ritenersi concluso. 293

7 5.3.1 Il filtro di banda a due cellule Per ottenere filtri passa banda con pendenze superiori a quelle ottenibili con filtri ad una cellula si possono realizzare strutture con due cellule uguali tra loro. Un esempio di questa nuova configurazione, derivata dalla struttura di figura 5.20, è riportata in figura figura 5.23 Per semplificare l illustrazione del nuovo filtro sono indicati con le stesse sigle i componenti uguali tra loro quali: Le due resistenze di terminazione R, le due induttanze L1, i due condensatori C1, i due condensatori C2 e le due induttanze L2 Fanno gruppo a parte il condensatore C3 e l induttanza L3. Le formule di calcolo dei componenti sono le stesse illustrate nel paragrafo 5.3 che qui riassumiamo data la presenza di L3 e di C3. L1 = R / [ π * (f 2 f1 )] L2 = R * ( f2 f1 ) / ( 2* π * f1 * f2 ) C1 = ( f2 f1 ) / ( 4* π * f1 * f2 * R ) C2 = 1/ [ 2 * π * (f 2 f1 ) * R ] C3 = 2 * C2 L3 = L2 / 2 Si deve osservare che in questa configurazione compaiono soltanto 10 componenti reattivi dato che, a seguito dell unione tra due cellule, la reattanza L3 ed il condensatore C3 ne sostituiscono, due la prima e due il secondo; il circuito è pertanto è da considerarsi, al fine dei calcoli, come se avesse 12 componenti reattivi. La nuova struttura consente un attenuazione fuori banda con una pendenza di 36 db per ottava, con un taglio di 6 db, rispetto alla banda passante, in corrispondenza delle frequenze di taglio f1 ed f2. Sintetizzando: Perdita d inserzione nella zona passante Att. = -6 db Attenuazione alla frequenza di taglio rispetto al livello della zona passante Att. = - 6 db Attenuazione totale alla frequenza di taglio Att. = -6dB 6 db = -12 db Pendenza della curva d attenuazione ben sopra il valore di f2; Att. = -36 db/ottava (pari alla riduzione dell ampiezza del segnale di 63 volte ad ogni dimezzamento della frequenza) Pendenza della curva d attenuazione ben sotto il valore di f1; Att. = -36 db/ottava (pari alla riduzione dell ampiezza del segnale di 63 volte ad ogni dimezzamento della frequenza) 294

8 Vediamo ora un applicazione pratica di calcolo di un filtro di banda a due cellule: Dati di progetto: Sia da realizzare un filtro passa banda in grado di essere accoppiato ad un generatore di tensione avente una Zu = 36 ohm, si vogliano le frequenze di taglio poste rispettivamente per f1 = 1000 Hz F2 = 2000 Hz ed una pendenza di -36 db/ottava. Dimensionamento della resistenza d ingresso: Il dati di progetto prevedono una configurazione circuitale come quella di figura 5.23 per cui: Il valore di R1 deve essere commisurato al valore di Zu = 36 ohm, quindi dovrà essere: R1 >> Zu ovvero R1 >> 36 ohm per ottenere questa condizione è opportuno, se possibile*, che R1 sia almeno 100 volte il valore di Zu, quindi R1 = 3600 ohm. *La possibilità che R1 possa essere del valore calcolato dipende dai valori di L e di C che ne conseguono; se i valori saranno realizzabili, il dato di R1 sarà accettabile, altrimenti, dovrà essere rivisto. Calcolo di L1; L2;L3; C1; C2; C3: Dati f1 = 1000 Hz ; f2 = 2000 Hz ed R1= 3600 ohm il calcolo di L1 si effettua con la formula: L1 = R / [ π * (f 2 f1 )] = 3600 ohm / [ 3.14 * ( 2000 Hz 1000 Hz)] = 1.14 H il calcolo di L2 si effettua con la formula: L2 = R * ( f2 f1 ) / ( 2* π * f1 * f2 ) = 3600 ohm * ( 2000 Hz 1000 Hz) / / (6.28 * 1000 Hz * 2000 Hz) = H il calcolo di C1 si effettua con la formula: C1 = ( f2 f1 ) / ( 4* π * f1 * f2 * R ) = ( 2000 Hz 1000 Hz) / / ( * 1000 Hz * 2000 Hz * 3600 ohm) = pf ( con precisione dell 1.25 %) il calcolo di C2 si effettua con la formula: C2 = 1/ [ 2 * π * (f 2 f1 ) * R ] =1 / [ 6.28 * ( 2000 Hz 1000 Hz) * 3600 ohm] = 44232pF ( con precisione dell 1.25 %) ed infine: C3 = 2 * C2 = pf* 2 =88464 pf( con precisione dell 1.25 %) L3 = L2 / 2 = H / 2 = H 295

9 Tracciamento della curva di risposta: La curva di risposta di questo filtro è riportata in figura 5.24 figura 5.24 La curva di risposta ha in ascisse la frequenza espressa in KHz ed in ordinate l attenuazione del filtro ad intervalli di 4 db per divisione, per un totale di 80 db. La lettura della curva mostra le nuove caratteristiche: Per le frequenze di taglio, f1 = 1000 Hz e f2 = 2000, Hz l attenuazione è di 12 db. Dalla frequenza di taglio f2 = 2000 Hz al suo doppio, f = 4000 Hz, si evidenzia un salto d attenuazione di ben 60 db. Dalla frequenza di taglio f1 = 1000 Hz alla sua metà, f = 500 Hz, si evidenzia un salto attenuazione di circa 58 db. 296

figura 5.9 figura 5.10

figura 5.9 figura 5.10 5.2 Filtri passa alto passivi Un filtro passa alto ideale è un circuito che ha il compito di consentire il passaggio di tensioni elettriche la cui frequenza può essere compresa tra f1 e valori superiori

Dettagli

figura 5.1 figura 5.2

figura 5.1 figura 5.2 Cap. 5 Filtri di banda passivi In questo capitolo tratteremo dei filtri di banda passivi, strutture che giocano un ruolo molto importante nell ambito della progettazione dei circuiti analogici; le funzioni

Dettagli

figura 4.20 La formula generale del rivelatore, valida per segnali d ingresso sinusoidali, è data dall espressione:

figura 4.20 La formula generale del rivelatore, valida per segnali d ingresso sinusoidali, è data dall espressione: 4.12 Il circuito rivelatore La funzione svolta da un circuito rivelatore è simile al processo di raddrizamento svolto da un diodo così come illustrato nel paragrafo 2.3; la differenza sostanziale tra un

Dettagli

FILTRI in lavorazione. 1

FILTRI in lavorazione. 1 FILTRI 1 in lavorazione. Introduzione Cosa sono i filtri? C o II filtri sono dei quadripoli particolari, che presentano attenuazione differenziata in funzione della frequenza del segnale applicato in ingresso.

Dettagli

RISONANZA. Fig.1 Circuito RLC serie

RISONANZA. Fig.1 Circuito RLC serie RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza

Dettagli

7.13 Appendice 7b: Esempi di analisi di Fourier 175

7.13 Appendice 7b: Esempi di analisi di Fourier 175 7.13 Appendice 7b: Esempi di analisi di Fourier 175 Figura 7.20: Scomposizione in serie di Fourier di un onda quadra bipolare all aumentare delle componenti prese in considerazione (dall alto verso il

Dettagli

R = ( r ) * (n) figura 6.1

R = ( r ) * (n) figura 6.1 Cap. 6 Le catene di ritardo Le catene di ritardo, strutture passive molto simili ai filtri passa basso, hanno il compito di provocare dei ritardi calibrati sui segnali elettrici che le percorrono; ritardi

Dettagli

Laboratorio di Telecomunicazioni

Laboratorio di Telecomunicazioni I.I.S. Perlasca sez. ITIS Vobarno (BS) Data 16/10/15 Laboratorio di Telecomunicazioni Castellini Fabio Cognome e Nome Relazione n 2 Classe Gruppo 4 Titolo: I filtri attivi Obiettivo L esperienza, suddivisa

Dettagli

Le tensioni di alimentazione +Va e Va devono essere applicate rispetto alla zona di massa.

Le tensioni di alimentazione +Va e Va devono essere applicate rispetto alla zona di massa. 4.2 Sul calcolo del guadagno di un microamplificatore Uno schema elettrico che mostra il più semplice impiego di un circuito integrato è tracciato in figura 4.4, in essa è riportato un microamplificatore

Dettagli

I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT

I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT NOME: Marco COGNOME: Salzillo TITOLO: AMPLIFICATORE OPERAZIONALE NON INVERTENTE OBBIETTIVO: REALIZZARE UN CIRCUITO OPERAZIONALE NON INVERTENTE CHE AMPLIFICA DI 11,7dB CIRCUITO TEORICO: CIRCUITO APPLICATIVO:

Dettagli

valore v u = v i / 2 V u /V i = 1/ 2

valore v u = v i / 2 V u /V i = 1/ 2 I Filtri Il filtro è un circuito che ricevendo in ingresso segnali di frequenze diverse è in grado di trasferire in uscita solo i segnali delle frequenze volute, in pratica seleziona le frequenze che si

Dettagli

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC 23. Guadagno di un quadripolo Filtri passivi isposta in frequenza dei circuiti C-L-LC In un quadripolo generico (fig. ) si definisce guadagno G il rapporto tra il valore d uscita e quello d ingresso della

Dettagli

Amplificatore passabanda invertente Un amplificatore passabanda ha un organizzazione circuitale di principio schematizzata nella figura seguente.

Amplificatore passabanda invertente Un amplificatore passabanda ha un organizzazione circuitale di principio schematizzata nella figura seguente. Amplificatore passabanda invertente rev. del /06/008 pagina /7 Amplificatore passabanda invertente Un amplificatore passabanda ha un organizzazione circuitale di principio schematizzata nella figura seguente.

Dettagli

Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza

Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza Esperienza n. 10 Partitore resistivo e sua compensazione in c.a. Partitore resistivo-capacitivo Partitore resistivo: abbiamo visto che in regime di corrente continua il rapporto di partizione è costante:

Dettagli

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Si analizzi l amplificatore mostrato in figura, determinando: 1. il valore del guadagno di tensione a frequenze intermedie; 2. le frequenze di taglio

Dettagli

jω, che esprime il legame tra una grandezza di OUT ( V o I ) e una _ G(jω) = Vout / Vin

jω, che esprime il legame tra una grandezza di OUT ( V o I ) e una _ G(jω) = Vout / Vin FILTRI - DEFINIZIONI 1. Un filtro è un circuito elettrico selettivo nei confronti della frequenza dei segnali applicati in ingresso. In altre parole, segnali di diversa frequenza non sono elaborati allo

Dettagli

RELAZIONE DI ELETTRONICA: INTRODUZIONE SUI FILTRI

RELAZIONE DI ELETTRONICA: INTRODUZIONE SUI FILTRI In elettronica possiamo definire un filtro come un dispositivo in grado di filtrare un determinato intervallo di frequenze alla propria uscita, attenuandole fino ad annullarle. A seconda delle frequenze

Dettagli

Elaborazione analogica Filtri Passa-basso, passa-alto, passa-banda, notch Frequenza di taglio Ordine Passivi Attivi

Elaborazione analogica Filtri Passa-basso, passa-alto, passa-banda, notch Frequenza di taglio Ordine Passivi Attivi Elaborazione analogica Filtri Passa-basso, passa-alto, passa-banda, notch Frequenza di taglio Ordine Passivi Attivi Filtri Un filtro è un circuito in grado di far passare segnali con una specifica gamma

Dettagli

2. La Frequenza di taglio è la f. che separa la Banda Passante ( Banda Chiara ) dalla Banda Attenuata ( Banda Scura ). Per f = ft

2. La Frequenza di taglio è la f. che separa la Banda Passante ( Banda Chiara ) dalla Banda Attenuata ( Banda Scura ). Per f = ft 1. FILTRI - DEFINIZIONI Un filtro è un circuito elettrico selettivo nei confronti della frequenza dei segnali applicati in ingresso. In altre parole, segnali di diversa frequenza non sono elaborati allo

Dettagli

Relazione. Gli argomenti preliminari con cui abbiamo iniziato prima di affrontare il tema dell alimentatore swiching sono stati i seguenti:

Relazione. Gli argomenti preliminari con cui abbiamo iniziato prima di affrontare il tema dell alimentatore swiching sono stati i seguenti: Caggiano Paolo I.T.I.S Galileo Galilei Roma Relazione Tutor: Corradi Giovanni Ciambrone Paolo Gli argomenti preliminari con cui abbiamo iniziato prima di affrontare il tema dell alimentatore swiching sono

Dettagli

ft = 1 / 6,28 * 20*10exp3* 10exp-8 = 796 [ Hz ]

ft = 1 / 6,28 * 20*10exp3* 10exp-8 = 796 [ Hz ] 4 5 4 5 7 1 7 1 1. 1 FUNZIONE DI TRASFERIMENTO BLOCCO U1 ft = 1 / 6,28 * 20*10exp3* 10exp-8 = 796 [ Hz ] +15 +15 U1 U2 va(t) vin R1 3 2 6 vout1 R3 3 2 6 vout2 5k 1k LF351 LF351-15 R2 20k C1-15 R4 20k C2

Dettagli

Un filtro Passa-Basso consente alle frequenze che precedono il punto chiamato frequenza di taglio f c (cutoff frequency) di passare attraverso di

Un filtro Passa-Basso consente alle frequenze che precedono il punto chiamato frequenza di taglio f c (cutoff frequency) di passare attraverso di I filtri I filtri vengono utilizzati per eliminare delle bande di frequenze dal segnale originario. Generalmente vengono realizzati con una circuiteria passiva, sono identificati da una frequenza di taglio

Dettagli

Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza

Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza C. Del Turco 2007 Indice : Cap. 1 I componenti di base (12) 1.1 Quali sono i componenti di base (12) 1.2 I resistori (12)

Dettagli

1 = 0. 1 è la frequenza di taglio inferiore 2 = 2 è la frequenza di taglio superiore. Elettronica II Prof. Paolo Colantonio 2 14

1 = 0. 1 è la frequenza di taglio inferiore 2 = 2 è la frequenza di taglio superiore. Elettronica II Prof. Paolo Colantonio 2 14 Filtri Passivi Filtri elettrici ideali: sono quadrupoli che trasmettono un segnale di ingresso in un certo intervallo di frequenze ovvero esiste una banda di pulsazioni tale che la funzione di trasferimento:

Dettagli

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA ALUNNO: Fratto Claudio CLASSE: IV B Informatico ESERCITAZIONE N : 5 LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA DATI: VIn = 20mV

Dettagli

In conduzione continua si ottiene una tensione sul carico v c proporzionale al valore desiderato v i.

In conduzione continua si ottiene una tensione sul carico v c proporzionale al valore desiderato v i. Controllo ad anello aperto Il filtro LC è necessario per ridurre le ondulazioni di corrente e di tensione ed è dimensionato in modo da mantenere v c circa costante. R rappresenta le perdite sugli avvolgimenti

Dettagli

figura 4.39 figura 4.40

figura 4.39 figura 4.40 4.17 Circuiti analogici comandati da sistemi digitali Il problema del comando di circuiti analogici da parte di sistemi digitali si pone frequentemente, sia quando i due coesistono nello stesso apparato,

Dettagli

Risposta a segnali dotati di serie o trasformata di Fourier. Identificazione della risposta in frequenza

Risposta a segnali dotati di serie o trasformata di Fourier. Identificazione della risposta in frequenza RISPOSTA IN FREQUENZA Risposta esponenziale Risposta sinusoidale Risposta a segnali dotati di serie o trasformata di Fourier Identificazione della risposta in frequenza Diagrammi di Bode Diagrammi polari

Dettagli

GLI AMPLIFICATORI OPERAZIONALI

GLI AMPLIFICATORI OPERAZIONALI GLI AMPLIFICATORI OPERAZIONALI Prof. Michele Burgarelli 0 Grazie agli studenti della 5 AM a.s. 2013/2014 dell'itis Rossi di Vicenza Grazie a chi ha dato un essenziale supporto per la stesura di tali dispense.

Dettagli

L amplificatore Williamson

L amplificatore Williamson L amplificatore Williamson Nel 1947 l inglese D.T.N. Williamson propose un amplificatore audio che è da molti considerato il primo amplificatore ad alta fedeltà. Pur essendo realizzato con tubi elettronici,

Dettagli

1. Convertire il numero esadecimale 4BE7 in binario su 16 bit. 2. Il risultato della conversione precedente, letto in complemento a due, è un numero:

1. Convertire il numero esadecimale 4BE7 in binario su 16 bit. 2. Il risultato della conversione precedente, letto in complemento a due, è un numero: TEST INIZIALE (in alcuni casi, oltre a crocettare la risposta corretta, si deve anche fare un disegno o scrivere qualche valore) 1. Convertire il numero esadecimale 4BE7 in binario su 16 bit. 0100 1011

Dettagli

ESERCITAZIONE DI LABORATORIO SULLA DETERMINAZIONE DELLA RISPOSTA IN FREQUENZA DI UN FILTRO PASSIVO PASSA-BASSO COSTITUITO DA UNO STADIO RC

ESERCITAZIONE DI LABORATORIO SULLA DETERMINAZIONE DELLA RISPOSTA IN FREQUENZA DI UN FILTRO PASSIVO PASSA-BASSO COSTITUITO DA UNO STADIO RC ESERCITZIONE DI LBORTORIO SULL DETERMINZIONE DELL RISPOST IN FREQUENZ DI UN FILTRO PSSIVO PSS-BSSO COSTITUITO D UNO STDIO RC Premessa Un filtro è un quadripolo capace di operare una selezione, tra i segnali

Dettagli

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA DI UN FILTRO RC PASSA-BASSO SCHEMA

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA DI UN FILTRO RC PASSA-BASSO SCHEMA ALUNNO: Fratto Claudio CLASSE: IV B Informatico ESERCITAZIONE N : 2 LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA DI UN FILTRO RC PASSA-BASSO SCHEMA DATI: R = 1kΩ C = 100nF VIn =

Dettagli

ω 0, f 0 = pulsazione e frequenza di risonanza

ω 0, f 0 = pulsazione e frequenza di risonanza Edutecnica.it Circuiti risonanti esercizi risolti Circuiti isonanti serie:iepilogo delle regole Si usa la seguente nomenclatura: ω, f pulsazione e frequenza di risonanza Banda passante del circuito risonante

Dettagli

Circuiti Elettrici Lineari Risposta in frequenza

Circuiti Elettrici Lineari Risposta in frequenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Circuiti Elettrici ineari isposta in frequenza Circuiti Elettrici ineari a.a. 89 Prof.

Dettagli

Impedenze ed Ammettenze 1/5

Impedenze ed Ammettenze 1/5 Impedenze ed Ammettenze 1/5 V=Z I. Rappresentazione alternativa I=Y V Z ed Y sono numeri complessi Bipolo di impedenza Z = R+ j X Resistenza Reattanza Conduttanza 1 Y = = G+ jb Z Suscettanza Lezione 2

Dettagli

5 Ae ELETTRONICA 2 TEST FILA

5 Ae ELETTRONICA 2 TEST FILA 5 Ae ELETTRONICA 2 TEST FILA 1 11 12-13 1) a) Studiare il comportamento di questo Filtro, a livello circuitale, ricavando poi G(jω), G, Fase ; b) disegnare il grafico del Modulo in scala naturale C1 1nF

Dettagli

Serie di Fourier. Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma:

Serie di Fourier. Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma: Serie di Fourier Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma: x( t) = = 0, A cos ( 2πf t + ϕ ) Cioè: ogni segnale periodico di periodo T si può scrivere come somma

Dettagli

teoria di Elettrotecnica

teoria di Elettrotecnica 1 teoria di corrente alternata monofase teoria di Elettrotecnica CORRENTE ALTERNATA MONOFASE A cura del prof. M. ZIMOTTI 1 teoria di corrente alternata monofase INTRODUZIONE TRIGONOMETRIA In un triangolo

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione del Problema Per t < 0 il circuito da considerare è il seguente: gv v R Applicando la KCL al nodo superiore si ottiene l equazione: Si ha inoltre v (0 ) gv (0 ) v (0 ) v (0 ) R 0 R g 0 00 00

Dettagli

Filtri a quarzo. 6 febbraio 2010

Filtri a quarzo. 6 febbraio 2010 IZ3NPZ Ferdinando e ARIVERONAEST 6 febbraio 2010 Premessa Un cristallo di quarzo ha un comportamento che viene descritto dal seguente circuito: 0 01 Lm ESR m 01 00 11 01 con m e L m parametri che tengono

Dettagli

a.a. 2015/2016 Docente: Stefano Bifaretti

a.a. 2015/2016 Docente: Stefano Bifaretti a.a. 2015/2016 Docente: Stefano Bifaretti email: bifaretti@ing.uniroma2.it Controllo ad anello aperto Il filtro LC è necessario per ridurre le ondulazioni di corrente e di tensione ed è dimensionato in

Dettagli

Proprietà dei sistemi ed operatori

Proprietà dei sistemi ed operatori Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l insieme di tutti i valori che può assumere la grandezza I sistemi

Dettagli

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE POLITECNICO DI TORINO Laboratorio di Elettrotecnica Data: Gruppo: Allievi: TERZA ESERCITAZIONE Strumenti utilizzati Materiale necessario Generatore di funzioni da banco Oscilloscopio da banco Bread-board

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Misura della banda passante di un filtro RC-CR

Misura della banda passante di un filtro RC-CR Elettronica Applicata a.a. 05/06 Esercitazione N Misura della banda passante di un filtro RC-CR Prof. Ing. Elena Biagi Sig. Marco Calzolai Sig. Andrea Giombetti Piergentili Ing. Simona Granchi Ing. Enrico

Dettagli

In questo articolo viene descritto come si è operato e vengono commentati i risultati.

In questo articolo viene descritto come si è operato e vengono commentati i risultati. Valutazione di un trasformatore di impedenza - Un utile impiego per il VNA di N2PK La valutazione di un trasformatore di impedenza può essere effettuata in diversi modi: con l analizzatore vettoriale di

Dettagli

Circuito RC con d.d.p. sinusoidale

Circuito RC con d.d.p. sinusoidale Circuito C con d.d.p. sinusoidale Un circuito C-serie ha la seguente configurazione: G è la resistenza interna del generatore. Misura dello sfasamento della tensione ai capi del condensatore rispetto alla

Dettagli

SENSORE PER LA MISURA DEL RUMORE (IL FONOMETRO)

SENSORE PER LA MISURA DEL RUMORE (IL FONOMETRO) SENSORE PER LA MISURA DEL RUMORE (IL FONOMETRO) Il fonometro è un dispositivo elettroacustico per la misura del livello di pressione sonora. La sua funzione principale p è quella di convertire un segnale

Dettagli

Maturità Elettronica e Telecomunicazioni TEMA DI ELETTRONICA

Maturità Elettronica e Telecomunicazioni TEMA DI ELETTRONICA Maturità Elettronica e Telecomunicazioni TEMA DI ELETTRONICA Testo Un sistema elettronico di registrazione e visualizzazione dell attività elettrica del cuore è realizzato secondo lo schema a blocchi riportato

Dettagli

Resistenze campione. 3 terminali: L, H e G (connesso a scatola) C HG , C LG. capacità verso scatola (C HG < C LG ) C GT

Resistenze campione. 3 terminali: L, H e G (connesso a scatola) C HG , C LG. capacità verso scatola (C HG < C LG ) C GT 3 terminali: L, H e G (connesso a scatola) C HG, C LG capacità verso scatola (C HG < C LG ) C GT capacità tra scatola e potenziale di terra (potenziale dei conduttori circostanti) Le correnti che attraversano

Dettagli

Campi Elettromagnetici e Circuiti I Risposta in frequenza

Campi Elettromagnetici e Circuiti I Risposta in frequenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Campi Elettromagnetici e Circuiti I isposta in frequenza Campi Elettromagnetici e

Dettagli

Filtri. Filtri RF per segnali di antenna. Filtri canale IF. Filtri banda base o banda audio

Filtri. Filtri RF per segnali di antenna. Filtri canale IF. Filtri banda base o banda audio Filtri Filtri RF per segnali di antenna Filtri canale IF Filtri banda base o banda audio Filtri attivi e passivi Un filtro è un circuito selettivo in frequenza che lascia passare i segnali (in genere tensioni

Dettagli

LINEE CON CARICHI DISTRIBUITI

LINEE CON CARICHI DISTRIBUITI Zeno Martini (admin) LINEE CON CARICHI DISTRIBUITI 19 January 2010 Prologo In questo messaggio del forum RenzoDF mi ha richiesto di riprodurre quanto i miei sacri testi riportavano per le linee ad anello.

Dettagli

Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche:

Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche: Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche: Tipologia di filtro: equiripple Numero di poli: 5 Massimo ripple in banda: 0.5 db Frequenza centrale: 2.45 Ghz Banda

Dettagli

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli FEDERICO II 1 Lezione

Dettagli

SENSIBILITÀ DI UN RICEVITORE NEL FUNZIONAMENTO A SINGOLA E DOPPIA RICEZIONE. ( )

SENSIBILITÀ DI UN RICEVITORE NEL FUNZIONAMENTO A SINGOLA E DOPPIA RICEZIONE. ( ) SENSIBILITÀ DI UN RICEVITORE NEL FUNZIONAMENTO A SINGOLA E DOPPIA RICEZIONE. (18-07-2015) Il segnale minimo che un ricevitore è in grado di rivelare dipende dal valore minimo del rapporto fra la potenza

Dettagli

Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra

Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra TABELLE DEI COLORI 4 ANELLI. 1 ANELLO 2 ANELLO 3 ANELLO 4 ANELLO Nero. 0 x 1 - Marrone 1 1 x 10 - Rosso

Dettagli

ovvero la DC indesidrata più la componente continua dell onda quadra e tutte le sue armoniche. Da Fourier si pone: a 0 = 2 T

ovvero la DC indesidrata più la componente continua dell onda quadra e tutte le sue armoniche. Da Fourier si pone: a 0 = 2 T 1 Filtro passa banda Il segnale di interesse è una onda quadra da 0 ad A mentre il rumore è composto, oltre che da rumore bianco (equamente distribuito in frequenza), anche da una elevata componente in

Dettagli

Capitolo. Risposta in frequenza 7.1. Risposta in regime sinusoidale 7.2. Generalità: diagrammi di Bode Tracciamento dei diagrammi di Bode 7.

Capitolo. Risposta in frequenza 7.1. Risposta in regime sinusoidale 7.2. Generalità: diagrammi di Bode Tracciamento dei diagrammi di Bode 7. Capitolo 7 7. 7. 7.3 7.4 7.5 7.6 7.7 7.8 7.9 Risposta in regime sinusoidale Generalità: diagrammi di Bode. Tracciamento dei diagrammi di Bode Grafici dei diagrammi di Bode delle funzioni elementari Esempi

Dettagli

Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI

Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI Un filtro passivo in elettronica ha il compito di elaborare un determinato segnale in ingresso. Ad esempio una sua funzione può

Dettagli

Filtri passa alto, passa basso e passa banda

Filtri passa alto, passa basso e passa banda Filtri passa alto, passa basso e passa banda Valerio Toso Introduzione In elettronica i ltri sono circuiti che processano un segnale modicandone alcune caratteristiche come l'ampiezza e la fase. Essi si

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta

Dettagli

Tipi di amplificatori e loro parametri

Tipi di amplificatori e loro parametri Amplificatori e doppi bipoli Amplificatori e doppi bipoli Introduzione e richiami Simulatore PSPICE Amplificatori Operazionali e reazione negativa Amplificatori AC e differenziali Amplificatori Operazionali

Dettagli

La teoria delle serie di Fourier dimostra che la maggior parte dei segnali e quindi di forme d onda può essere prodotta sommando assieme onde

La teoria delle serie di Fourier dimostra che la maggior parte dei segnali e quindi di forme d onda può essere prodotta sommando assieme onde FILTRI La teoria delle serie di Fourier dimostra che la maggior parte dei segnali e quindi di forme d onda può essere prodotta sommando assieme onde sinusoidali Segnale sinusoidale rappresentato proiettando

Dettagli

ELETTRONICA APPLICATA E MISURE

ELETTRONICA APPLICATA E MISURE Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO De3 ESERCIZI PARTI B e D» Esempi di esercizi da scritti di esame AA 2015-16 01/12/2015-1 ElapDe2-2014 DDC Page 1 2014 DDC 1 De3:

Dettagli

Mixer per la prima conversione nell analizzatore di spettro (Carlo Carobbi, Maggio 2016)

Mixer per la prima conversione nell analizzatore di spettro (Carlo Carobbi, Maggio 2016) Mixer per la prima conversione nell analizzatore di spettro (Carlo Carobbi, Maggio 6 Esistono diversi tipi di mixer [, capitolo 3]: sbilanciati, bilanciati (a singolo, doppio o triplo bilanciamento, attivi

Dettagli

Figura 1 Figura 2. Dati : f = 45 Hz, V c = 350 V, R = 22, L 1 = 16 mh, L 2 = 13 mh.

Figura 1 Figura 2. Dati : f = 45 Hz, V c = 350 V, R = 22, L 1 = 16 mh, L 2 = 13 mh. 1 2 3 I U 1 2 Un utilizzatore trifase (U) è costituito da tre impedenze uguali, ciascuna delle quali è mostrata nella figura 2, collegate a triangolo ed è alimentato da una linea trifase caratterizzata

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE IUITI IN EGIME SINUSOIDALE 9.1. Nel circuito della figura il voltaggio alternato è V = V 0 cost con = 314 rad/s, V 0 = 311 V, L = 0.9 H, = 6.96 F. Se il fattore di potenza del circuito è pari a 0.98, la

Dettagli

APPUNTI DI ELETTRONICA V D FILTRI ATTIVI. Campi di applicazione. I filtri nel settore dell elettronica sono utilizzati per:

APPUNTI DI ELETTRONICA V D FILTRI ATTIVI. Campi di applicazione. I filtri nel settore dell elettronica sono utilizzati per: APPUNTI DI ELETTRONICA V D FILTRI ATTIVI Campi di applicazione I filtri nel settore dell elettronica sono utilizzati per: attenuare i disturbi, il rumore e le distorsioni applicati al segnale utile; separare

Dettagli

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo Esercitazione 3 Biagio Provinzano Aprile 005 Esercizio I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo V A, β = 00, V BE = 0.7V in zona attiva ed infine Cπ = C µ =0pF.

Dettagli

POWER METER STRUMENTAZIONE. Realizziamo un ottimo misuratore di potenza dei segnali radio impiegabile sia al banco che sul campo. Prima puntata.

POWER METER STRUMENTAZIONE. Realizziamo un ottimo misuratore di potenza dei segnali radio impiegabile sia al banco che sul campo. Prima puntata. 76 STRUMENTAZIONE POWER METER Realizziamo un ottimo misuratore di potenza dei segnali radio impiegabile sia al banco che sul campo. Prima puntata. di FULVIO DE SANTIS U no strumento che non dovrebbe mancare

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e Tecnologie della Comunicazione Lezione 5: strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza Rappresentazione spettrale di un segnale Il grafico

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2 Circuiti in corrente alternata 1. Uso di un generatore di funzioni (onda quadra e sinusoidale); 2.

Dettagli

ELETTRONICA I - Ingegneria MEDICA. Caratteristiche e criteri di Sintesi (progetto) di FILTRI analogici attivi e passivi

ELETTRONICA I - Ingegneria MEDICA. Caratteristiche e criteri di Sintesi (progetto) di FILTRI analogici attivi e passivi ELETTRONICA I - Ingegneria MEDICA Caratteristiche e criteri di Sintesi (progetto) di FILTRI analogici attivi e passivi FILTRI Caratterizzazione Caratterizzazione nel dominio del tempo e della frequenza

Dettagli

figura 4.51 figura 4.52

figura 4.51 figura 4.52 4.20 Il modulatore bilanciato Grande importanza nella progettazione dei circuiti elettronici riveste il modulatore bilanciato; questo dispositivo trova diverse applicazioni sia nelle tecniche di comunicazione

Dettagli

Passa-Basso Passa-Alto

Passa-Basso Passa-Alto Filtri Passivi Filtri elettrici ideali: sono quadrupoli che trasmettono un segnale di ingresso in un certo intervallo di frequenze ovvero esiste una banda di pulsazioni tale che la funzione di trasferimento:

Dettagli

Sez 4 INTERAZIONE CON L IMPIANTO ELETTRICO

Sez 4 INTERAZIONE CON L IMPIANTO ELETTRICO Sez 4 INTERAZIONE CON L IMPIANTO ELETTRICO 25 febbraio 2016 dalle ore 14.00 alle ore 19.00 c/o Sala Consiglio del Dipartimento di Energia Politecnico di Milano Macchina sincrona Funzionamento normale:

Dettagli

Fondamenti di Elettronica, Sez.1

Fondamenti di Elettronica, Sez.1 Fondamenti di Elettronica, Sez.1 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

Campionamento. Campionamento: problema

Campionamento. Campionamento: problema Posizione del problema uniforme Ricostruzione Teorema del campionamento Significato della formula di ricostruzione Sistema di conversione A/D sample & hold quantizzazione Sistema di conversione D/A : problema

Dettagli

Componenti in corrente continua

Componenti in corrente continua Ogni componente reale utilizzato in un circuito è la realizzazione approssimata di un elemento circuitale ideale. Nello studio dei sistemi in cc gli elementi più importanti sono : esistore Generatori campione

Dettagli

Corrente alternata. Capitolo 3. 3.1 Grandezze utilizzate. Simbolo Definizione Unità di misura Simbolo unità di misura. I Corrente ampere A

Corrente alternata. Capitolo 3. 3.1 Grandezze utilizzate. Simbolo Definizione Unità di misura Simbolo unità di misura. I Corrente ampere A Capitolo 3 Corrente alternata 3. Grandezze utilizzate Simbolo Definizione Unità di misura Simbolo unità di misura I Corrente ampere A V Tensione volt V R Resistenza ohm Ω C Capacità farad F L Induttanza

Dettagli

ω 1 è la frequenza di taglio inferiore ω 2 = ω 1 = 0 ω 2 è la frequenza di taglio superiore Α(ω) Α(ω) ω ω 1 ω 2

ω 1 è la frequenza di taglio inferiore ω 2 = ω 1 = 0 ω 2 è la frequenza di taglio superiore Α(ω) Α(ω) ω ω 1 ω 2 . Studio della loro risposta ad un onda quadra 1 Filtri elettrici ideali: sono quadrupoli che trasmettono un segnale di ingresso in un certo intervallo di frequenze ovvero esiste una banda di pulsazioni

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplificatori operazionali Parte 4 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 3-5-07) Amplificatori operazionali non ideali Il comportamento degli amplificatori operazionali reali si

Dettagli

Filtro Passa Basso anti TVI per HF

Filtro Passa Basso anti TVI per HF Angelo Protopapa - IK0VVG Filtro Passa Basso anti TVI per HF 1. Introduzione L idea di progettare e realizzare un filtro passa basso per applicazione TVI non rappresenta sicuramente il massimo dell originalità

Dettagli

Misure su linee di trasmissione

Misure su linee di trasmissione Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare

Dettagli

Giovanni Schgör (g.schgor)

Giovanni Schgör (g.schgor) Giovanni Schgör (g.schgor) CONSIDERAZIONI SUI FILTRI PASSIVI 10 January 2012 In un argomento recentemente trattato nel Forum si è discusso sulla composizione di filtri passivi, rispettivamente un passa-alto

Dettagli

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω)

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω) Strumentazione: oscilloscopio, generatore di forme d onda (utilizzato con onde sinusoidali), 2 sonde, basetta, componenti R,L,C Circuito da realizzare: L = 2 H (±10%) con resistenza in continua di R L

Dettagli

I.P.S.I.A. Di BOCCHIGLIERO I Filtri ---- Materia: Elettronica, Telecomunicazioni ed Applicazioni. prof. Ing. Zumpano Luigi

I.P.S.I.A. Di BOCCHIGLIERO I Filtri ---- Materia: Elettronica, Telecomunicazioni ed Applicazioni. prof. Ing. Zumpano Luigi I.P.S.I.A. Di BOCCHIGLIEO a.s. 211/212 -classe IV- Materia: Elettronica, Telecomunicazioni ed Applicazioni ---- I Filtri ---- Aunni: Bossio Salvatore Ammannato Luigi Chindamo Michelangelo Paletta Francesco

Dettagli

LSS ADC DAC. Piero Vicini A.A

LSS ADC DAC. Piero Vicini A.A LSS 2016-17 ADC DAC Piero Vicini A.A. 2016-2017 Conversione Digitale-Analogica La conversione digitale-analogica (DAC, Digital to Analog Conversion) permette di costruire una tensione V (o una corrente

Dettagli

PROGETTO DI UN FILTRO PASSA BASSO

PROGETTO DI UN FILTRO PASSA BASSO orso di elettronica per telecomunicazioni - esercitazione POGETTO DI UN FILTO PASSA BASSO Docente del corso: prof. Giovanni Busatto Galletti iccardo Matr. 65 relazione elettronica per telecomunicazioni

Dettagli

ELETTRONICA CdS Ingegneria Biomedica

ELETTRONICA CdS Ingegneria Biomedica ELETTRONICA CdS Ingegneria Biomedica LEZIONE A.2 Circuiti a diodi: configurazioni, analisi, dimensionamento Caratteristica di trasferimento Tagliatori Generatori di funzioni Rivelatori di picco e di inviluppo

Dettagli

Le sonde Pagina in. - figura

Le sonde Pagina in. - figura Le sonde Paga 04 LE ONDE L impedenza di gresso,, di un oscilloscopio è modellabile dal parallelo tra una resistenza e una capacità C, i cui valori tipici sono rispettivamente MΩ e 0 0pF. Il loro valore

Dettagli

Generatore di Funzioni

Generatore di Funzioni Generatore di Funzioni Tipo di onda Come impostare una certa frequenza? Hz, khz, MHz. Oscilloscopio CH1 nel tempo CH2 nel tempo XY (CH1 vs. CH2) DUAL entrambi Lettura: Valore/DIVISIONE Ogni quadrato corrisponde

Dettagli

(ma) (ma) Voltage (V) Fig

(ma) (ma) Voltage (V) Fig 4.4 Esempi di progetto di circuiti passivi non lineari Circuiti passivi non lineari sono quei circuiti che utilizzano le proprietà non lineari dei diodi. Esempi di tali circuiti sono costituiti dai rivelatori

Dettagli

EdmondDantes. 19 July 2010

EdmondDantes. 19 July 2010 EdmondDantes RISONANZA SERIE 19 July 2010 Introduzione Il fenomeno della risonanza può manifestarsi solo in circuiti che presentano proprietà induttive-capacitive In un circuito esclusivamente ohmico-induttivo

Dettagli

Filtri. - I filtri passivi, usano solo componenti passivi (resistenze, condensatori e induttanze).

Filtri. - I filtri passivi, usano solo componenti passivi (resistenze, condensatori e induttanze). Filtri Un filtro è un circuito selettivo in frequenza che lascia passare i segnali in una certa banda e blocca, oppure attenua, I segnali al di fuori di tale banda. I filtri possono essere attivi o passivi.

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 1)

Esercizi sulle reti elettriche in corrente alternata (parte 1) Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2 Circuiti in corrente alternata. Uso di un generatore di funzioni (onda quadra e sinusoidale); 2.

Dettagli