IX ESERCITAZIONE - 16 Dicembre 2013

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IX ESERCITAZIONE - 16 Dicembre 2013"

Transcript

1 IX ESERCITAZIONE - 16 Dicembre 2013 I. RENDIMENTO Un gas perfetto monoatomico compie il ciclo schematicamente mostrato in figura, attraverso trasformazioni reversibili. I valori di pressione e volume sono i seguenti: P A = Pa, V A =2l, P B =5P A, V C =3V A. Calcolare il rendimento η del ciclo. Il rendimento è η =L/Q ass. Il lavoro compiuto nel ciclo è pari all area del triangolo ABC: Il calore viene assorbito nel tratto L= 1 2 AC BC =4V A P A =1600 J (1) AB e si ottiene dal primo principio: Q ass =Q AB =L AB + U AB =Area ABVA V C + nc V (T B T C ) (2) dove U AB =nc V ( PB V B nr da cui Q ass =10800J e η =15% Area=L + V A V C AV A =2400 J ) (3) =21P A V A =8400 J (4) P AV A nr

2 2 II. MACCHINA DI CARNOT Una macchina di Carnot assorbe una certa quantità di calore Q 1 da una sorgente a temperatura T 1 e cede calore Q 2 ad una seconda sorgente a temperatura T 2 =40%T 1. Determinare il rendimento η della macchina, il lavoro compiuto durante il ciclo e il calore ceduto. Il rendimento di una macchina di Carnot in funzione delle temperature è: η =1 T 2 T 1 =1 0.4=60% (5) Il lavoro compiuto nel ciclo è L=ηQ 1 ; il calore assorbito è Q 2 = Q 1 (1 η).

3 3 III. LAVORO Un gas perfetto biatomico è contenuto in un cilindro chiuso da un pistone. Inizialmente, si trova nello stato caratterizzato da T A = 300K, V A = 4l, P A = 1atm. Il gas viene poi compresso adiabaticamente fino a V B =1l, poi raffreddato a V =cost finché la temperatura non raggiunge il valore iniziale T A. Il gas viene infine lasciato espandere isotermicamente fino al volume iniziale V A. Disegnare il ciclo nel piano PV e calcolare il lavoro totale. L=L AB + L BC + L CA = U AB + L CA =nc V (T A T B ) + nrt A ln V A V C (6) Dobbiamo ricavare T B =(P B V B )/(nr): nr= P AV A T A =1.35 JK 1 (7) P A V γ A =P BV γ B P B =4 7 5 PA (8) T B =4 7 5 P A V B nr = K (9) da cui L= 5 2 nr(t A T B ) + nrt A ln 4= J (10)

4 4 IV. ISOCORA IRREVERSIBILE Una mole di gas perfetto monoatomico compie un ciclo tra gli stati ABCA, secondo le seguenti trasformazioni: A B isoterma reversibile; B C isobara reversibile; C A isocora irreversibile, durante la quale il sistema viene riportato nello stato A mediante il solo scambio di calore Q CA (L CA =0J). Disegnare il ciclo nel piano PV; calcolare il calore scambiato in ciascuna trasformazione e il calore totale (in modulo e segno); calcolare il lavoro compiuto in ciascuna trasformazione e il lavoro totale (in modulo e segno). Dati: V A =5l, V B =10l, P A =1atm, P B =0.5atm. Q AB =L AB =nrt A ln V B V A =nrt A ln 2 (11) Q BC =nc P (T C T B )=nc P (T C T A ) (12) Q CA =nc V (T A T C ) (13) Dobbiamo ricavare T A e T C. La prima si ottiene dall equazione dei gas perfetti applicata allo stato A, la seconda imponendo che P/(nR)=cost nel tratto BC: T A = P AV A =60.85 K nr (14) T B = T C T C = T A V B V C 2 (15) da cui Q AB =351.08J, Q BC = J, Q CA =379.87J, Q tot =97.83J.

5 5 L AB =Q AB = J (16) L BC =P B (V C V B )= P B V A = J (17) L CA =0 J (18) L tot =97.83 J (19) Nota bene: Q tot =L tot, poiché in un ciclo U tot =0J.

6 6 V. CICLO REVERSIBILE Una mole di gas perfetto monoatomico compie il seguente ciclo: A B isoterma reversibile a T A = 400K che porta a V B = 2V A ; B C isocora reversibile; C A compressione adiabatica reversibile. Disegnare il ciclo nel piano PV; calcolare il calore totale scambiato e il rendimento η del ciclo. Q tot =Q AB + Q BC =L AB + Q BC = (20) =nrt A ln V B V A + nc V (T C T B )=nrt A ln 2 + nc V (T C T A ) (21) Dobbiamo ricavare T C : utilizziamo la relazione tra T e V in un adiabatica (tratto CA): T C V γ 1 C =T A V γ 1 A T C = 1 2/3 T A = K (22) 2 tenuto conto che V B = 2V A. Il calore totale scambiato è Q tot = J. Il rendimento del ciclo: η = L Q ass = Q tot Q AB =20% (23)

7 7 VI. TRASFORMAZIONI REVERSIBILI Una mole di gas perfetto monoatomico è nello stato A (T A =300K, V A =1l). Il gas compie le seguenti trasformazioni reversibili: A B isoterma fino a V B =3V A ; B C isocora fino a T C =144.2K; C D compressione adiabatica fino a V D =V A. Disegnare il ciclo nel piano PV. Determinare P(atm), V(l), T(K) in ognuno dei 4 stati. Determinare il calore scambiato in ogni trasformazione, in modulo e segno. Calcolare il lavoro compiuto in ogni trasformazione, in modulo e segno. Calcolare la variazione di energia interna in ogni trasformazione, in modulo e segno. Se D A, calcolare il rendimento η del ciclo. Stato A: Stato B: Stato C: Stato D: T A =300 K; V A =1l; P A = nrt A V A = P a (24) T B =T A =300 K; V B =3V A =3l; P B = nrt B V B = P A 3 = P a (25) T B =144.2 K; V C =3V A =3l; P C = nrt C V C = P a (26) V D =V A =1l (27) T D V γ 1 A =T C (3V A ) γ 1 T D =3 2/3 T C =300 K =T A (28) P D =P A (29) ovvero D A.

8 8 Calori scambiati: Q AB =L AB =nrt A ln V B V A = J (30) Q BC =nc V (T C T B )=nc V (T C T A )= J (31) Q CA =0 J (32) Lavori compiuti: L AB =Q AB = J (33) L BC =0 J (34) L CA = U CA =nc V (T C T A )=Q BC = J (35) Variazioni di energia interna: U AB =0 J (36) U BC =Q BC = J (37) U CA = Q BC = J (38) Nota bene: U tot =0J (ciclo). Il rendimento del ciclo è: η = L = Q tot =1 Q BC =29% (39) Q ass Q AB Q AB

Esercitazione 8. Soluzione Il rendimento di una macchina di Carnot in funzione delle temperature è: η = 1 T 2 T 1 = = 60%

Esercitazione 8. Soluzione Il rendimento di una macchina di Carnot in funzione delle temperature è: η = 1 T 2 T 1 = = 60% Esercitazione 8 Esercizio 1 - Macchina di arnot Una macchina di arnot assorbe una certa quantità di calore Q 1 da una sorgente a temperatura T 1 e cede calore Q 2 ad una seconda sorgente a temperatura

Dettagli

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene:

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene: Esercitazione 7 Esercizio 1 Una massa m g = 20 g di ghiaccio a 0 C è contenuta in un recipiente termicamente isolato. Successivamente viene aggiunta una massa m a = 80 di acqua a 80 C. Quale sarà, all

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (4 Giugno - 8 Giugno 2012) Sintesi Abbiamo formulato il primo principio della termodinamica che regola gli scambi di calore, la

Dettagli

Lezione 5: Termodinamica. Seminario didattico

Lezione 5: Termodinamica. Seminario didattico Lezione 5: Termodinamica Seminario didattico Esercizio n 1 Ad una mole di gas monoatomico viene fatto percorrere il ciclo mostrato in figura il processo bc è una espansione adiabatica; p B =1.03 bar, V

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia.. 2018/2019 Responsabile del corso: Prof. lessandro Lascialfari Tutor (16 ore: Matteo volio Lezione del 15/05/2019 2 h (13:30-15:30, ula G10, Golgi ESERCITZIONI TERMODINMIC Esercizio

Dettagli

Lezione 4: Termodinamica. Seminario didattico

Lezione 4: Termodinamica. Seminario didattico Lezione 4: Termodinamica Seminario didattico Esercizio n 1 Un gas all interno di una camera percorre il ciclo mostrato in figura. Si determini il calore totale fornito al sistema durante la trasformazione

Dettagli

Esonero 20 Gennaio 2016

Esonero 20 Gennaio 2016 Esonero 20 Gennaio 2016 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 2015-2016 Esonero 2 - Fisica Generale I per matematici 20 Gennaio

Dettagli

ESERCIZI SUL PRIMO PRINCIPIO DELLA TERMODINAMICA

ESERCIZI SUL PRIMO PRINCIPIO DELLA TERMODINAMICA ESERCIZI SUL PRIMO PRINCIPIO DELLA TERMODINAMICA ESERCIZIO PP Calcola il calore necessario per portare 7 moli un gas monoatomico dalla temperatura iniziale di 00 K ad una finale di 400 K con una trasformazione

Dettagli

Esercizi Termodinamica

Esercizi Termodinamica Esercizio 1 Esercizi Termodinamica Esercitazioni di Fisica LA per ingegneri - A.A. 2007-2008 Determinare il volume occupato da 10 g di ossigeno (massa molare 32 g/mole) alla pressione di 1 atm e alla temperatura

Dettagli

2. Determinare pressione e temperatura del gas nello stato B [1 punto]; 3. Determinare pressione e temperatura del gas nello stato C [1 punto];

2. Determinare pressione e temperatura del gas nello stato B [1 punto]; 3. Determinare pressione e temperatura del gas nello stato C [1 punto]; 1 Esercizio tratto dal Problema 13.34 del Mazzoldi 2) Un gas ideale biatomico passa dallo stato A.1 10 2 m 3, p A 0.6 bar, T A 476 K) allo stato B V B 3.0 10 2 m 3 ) con una compressione isobara reversibile.

Dettagli

Macchine termiche: ciclo di Carnot

Macchine termiche: ciclo di Carnot Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un

Dettagli

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1 GAS IDEALI E MACCHINE TERMICHE G. Pugliese 1 Proprietà dei gas 1. Non hanno forma né volume proprio 2. Sono facilmente comprimibili 3. Le variabili termodinamiche più appropriate a descrivere lo stato

Dettagli

Macchine termiche: ciclo di Carnot

Macchine termiche: ciclo di Carnot Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un

Dettagli

I principi della termodinamica

I principi della termodinamica I principi della termodinamica dalla pratica alla teoria di Ettore Limoli Convenzione sui segni di Q e di L Calore assorbito dal sistema: Q > 0 Calore ceduto dal sistema: Q < 0 Lavoro fatto dal sistema:

Dettagli

Dalla legge dei gas perfetti si ha il rapporto tra il numero di moli dei due gas R T 1 V 2 P V 1. =n 1. RT 2 =V 2 qundi: n 1 = T 2. =n 2.

Dalla legge dei gas perfetti si ha il rapporto tra il numero di moli dei due gas R T 1 V 2 P V 1. =n 1. RT 2 =V 2 qundi: n 1 = T 2. =n 2. Compito intercorso Fisica II ICI 1 giugno 2006 1 Due recipienti uguali, isolati termicamente dall'ambiente esterno, sono connessi da un condotto con un rubinetto, inizialmente chiuso. Uno dei recipienti

Dettagli

FISICA. Un sistema formato da un gas ideale monoatomico(= sistema) alla pressione costante di 110kPa acquista 820J di energia nella modalità calore.

FISICA. Un sistema formato da un gas ideale monoatomico(= sistema) alla pressione costante di 110kPa acquista 820J di energia nella modalità calore. Serie 5: Termodinamica V FISICA II liceo Esercizio 1 Primo principio Un cilindro contiene 4 mol di un gas(= sistema) monoatomico a temperatura iniziale di 27 C. Il gas viene compresso effettuano su di

Dettagli

Esercitazione 13/5/2016

Esercitazione 13/5/2016 Esercitazione 3/5/206 Esercizio Un anello di massa m e raggio r rotola senza strisciare su un piano orizzontale con velocità v CM costante. Ad un certo istante inizia a salire lungo un piano inclinato.

Dettagli

Corso di Fisica Generale 1 (mod. B) Esercitazione Giovedì 9 giugno 2011

Corso di Fisica Generale 1 (mod. B) Esercitazione Giovedì 9 giugno 2011 Corso di Fisica Generale 1 (mod. B) Esercitazione Giovedì 9 giugno 2011 Esercizio 1. Due moli di un gas ideale biatomico passano dallo stato termodinamico A, Ta = 400 K, allo stato B, Tb = 300 K, tramite

Dettagli

Temi di termodinamica

Temi di termodinamica Temi di termodinamica Prova scritta del 12/04/1995 Una mole di gas perfetto monoatomico alla temperatura T A =243 K e pressione p A = 2 atm, esegue un ciclo reversibile costituito dalle seguenti trasformazioni:

Dettagli

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica. Argomento 11 Termodinamica

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica. Argomento 11 Termodinamica Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 11 Termodinamica 2 L energia interna dei gas L energia totale di tutte le molecole del sistema: e. cinetica traslazionale e.

Dettagli

Scritti di Termodinamica dt + R dt T. = cp. = 1.4 = gas biatomico = 78.0 K

Scritti di Termodinamica dt + R dt T. = cp. = 1.4 = gas biatomico = 78.0 K Scritti di Termodinamica 2002 2016 (02/07/18) Una mole di gas ideale passa dallo stato A allo stato B con una trasformazione isobara in cui: H = 2269.72 J, U = 1621.23 J, S = 6.931 J/K Determinare i valori

Dettagli

Lezione 4: Termodinamica. Seminario didattico

Lezione 4: Termodinamica. Seminario didattico Lezione 4: Termodinamica Seminario didattico Esercizio n 1 Un vaso di massa 150g in rame (calore specifico 0,0923 cal/g K) contiene 220g di acqua, entrambi alla temperatura di 20,0 C. Un cilindro di 300g

Dettagli

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it)

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it) Esercizio Argomenti: gas perfetti, trasformazioni adiabatiche, primo principio. Livello: scuola superiore. Un gas perfetto monoatomico si trova in un contenitore chiuso da un pistone mobile. Inizialmente

Dettagli

Scritto di Termodinamica - 22 febbraio 2017

Scritto di Termodinamica - 22 febbraio 2017 Scritto di Termodinamica - febbraio 07 Primo problema Un serbatoio di 3 m x 4 m viene alimentato da una falda sotterranea. Contemporaneamente, viene svuotato attraverso una tubazione del diametro di 5

Dettagli

Soluzioni Compito di Fisica I I Sessione I Appello Anno Accademico

Soluzioni Compito di Fisica I I Sessione I Appello Anno Accademico catcode`"active Soluzioni Compito di Fisica I I Sessione I Appello Anno Accademico 014-015 Esercizio n.1: Un blocco M è inizialmente fermo nel tratto orizzontale di una guida priva di attrito (figura 1).

Dettagli

Processi reversibili e irreversibili

Processi reversibili e irreversibili Processi reversibili e irreversibili Trasformazioni reversibili: la direzione della trasformazione può essere invertita, cambiando di poco le condizioni esterne. Esempio: gas compresso da un pistone. Trasformazioni

Dettagli

b) Essendo p A V A = p C V C ne risulta T C = T A = 300 K.

b) Essendo p A V A = p C V C ne risulta T C = T A = 300 K. 2.00 moli di un gas perfetto di volume V 1 = 3.50 m 3 e T 1 = 300 K possono espandersi fino a V 2 = 7.00 m 3 e T 2 = 300 K. Il processo è compiuto isotermicamente. Determinare: a) Il lavoro fatto dal gas;

Dettagli

Macchina termica ideale (di Carnot)

Macchina termica ideale (di Carnot) Macchina termica ideale (di Carnot) La macchina di Carnot è formata da un ciclo in un gas perfetto, costituito da due trasformazioni isoterme (ab e dc in figura) e due adiabatiche (bc e da in figura).

Dettagli

Temperatura e Calore (parte 3) 07/05/15 Macchine termiche e Secondo Principio della Termodinamica

Temperatura e Calore (parte 3) 07/05/15 Macchine termiche e Secondo Principio della Termodinamica Temperatura e Calore (parte 3) 1 Macchine Termiche o Le prima macchine termiche (a vapore) furono inventate nel 17 secolo. o Intorno al 2000 la più recente innovazione sui motori termici: il COMMON RAIL

Dettagli

Riepilogo di calorimetria

Riepilogo di calorimetria Riepilogo di calorimetria Applicate la conservazione dell energia: Calore assorbito = Calore ceduto Se non ci sono trasformazioni di fase: 1. Calore assorbito = massa x calore specifico x (T fin T iniz

Dettagli

8 1. Trasformazione AB : ISOBARA 2. Trasformazione BC: ISOCORA 3. Trasformazione CD: ISOBARA 4. Trasformazione DA: ISOCORA. V(l)

8 1. Trasformazione AB : ISOBARA 2. Trasformazione BC: ISOCORA 3. Trasformazione CD: ISOBARA 4. Trasformazione DA: ISOCORA. V(l) ermodinamica Un gas monoatomico compie il ciclo mostrato nella figura sotto, dove le trasformazioni, sono isobare e le trasformazioni e sono isocore. apendo che l, p 8atm, 6 l, p atm. alcolare il rendimento

Dettagli

PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa ; ) Q 2 = Q 1 Q 1. t = dm. dt H; = nrt A ln 4 < 0; R 1 = 3 2 R: C + ln 4 C p = 1

PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa ; ) Q 2 = Q 1 Q 1. t = dm. dt H; = nrt A ln 4 < 0; R 1 = 3 2 R: C + ln 4 C p = 1 PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa. Il funzionamento di una macchina a vapore puo essere approssimato a quello di una macchina di Carnot, che assorbe calore alla temperatura 2 della

Dettagli

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche.

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche. 16 Il ciclo di Stirling Il coefficiente di effetto utile per il ciclo frigorifero di Carnot è, in base alla (2.9): T min ɛ =. (2.31) T max T min Il ciclo di Carnot è il ciclo termodinamico che dà il maggior

Dettagli

p A Esercizio (tratto dal Problema 13.6 del Mazzoldi 2)

p A Esercizio (tratto dal Problema 13.6 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 13.6 del Mazzoldi 2) Un gas ideale (n 0.45 moli) passa con un isobara reversibile dallo stato A ( 2 bar) allo stato B, compiendo un lavoro W A B 640 J. Successivamente

Dettagli

Soluzioni del problema 14.21

Soluzioni del problema 14.21 Soluzioni del problema 1421 Con ulteriori indicazioni sulle trasformazioni Sommario Riportiamo le soluzioni del problema, con considerazioni didattiche, per dare indicazioni su altre trasformazioni, non

Dettagli

Trasformazione isobara

Trasformazione isobara Trasformazione isobara Q DU Il calore immesso diventa: - avoro - Aumento di temperatura Si mantiene costante: egge: Calore: avoro: a pressione 1 a legge di Gay-ussac: V/T=cost Q = c p n DT = p DV Grafico

Dettagli

Macchine termiche. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Macchine termiche. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Macchine termiche Il primo principio della termodinamica stabilisce l equivalenza tra calore e lavoro Almeno in linea di principio consente di trasformare l energia interna di un serbatoio di calore in

Dettagli

Applicazioni sulle trasformazioni termodinamiche nei gas perfe5. Prof. Francesco Di Capua a.a. 2018/19

Applicazioni sulle trasformazioni termodinamiche nei gas perfe5. Prof. Francesco Di Capua a.a. 2018/19 Applicazioni sulle trasformazioni termodinamiche nei gas perfe5 Prof. Francesco Di Capua a.a. 2018/19 Casi paracolari della prima legge della termodinamica ΔE int = Q L Processo Restrizione Conseguenza

Dettagli

Soluzioni del problema adattato

Soluzioni del problema adattato Soluzioni del problema 1412 adattato Tipo di problema fornito per la parte di termodinamica nella prova scritta Sommario Riportiamo tutte le possibili soluzioni del problema, anche con considerazioni didattiche

Dettagli

UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009

UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009 COMPITO DI FISICA SPERIMENTALE I DEL 05/12/2008 1. Un proiettile di massa M=10 kg, nel vertice della sua traiettoria parabolica esplode in due frammenti di massa m 1 e m 2 che vengono proiettati nella

Dettagli

Calore, lavoro e trasformazioni termodinamiche (1)

Calore, lavoro e trasformazioni termodinamiche (1) Calore, lavoro e trasformazioni termodinamiche (1) Attraverso scambi di calore un sistema scambia energia con l ambiente. Tuttavia si scambia energia anche quando le forze (esterne e interne al sistema)

Dettagli

SECONDO PRINCIPIO TERMODINAMICA Problemi di Fisica secondo principio termodinamica

SECONDO PRINCIPIO TERMODINAMICA Problemi di Fisica secondo principio termodinamica SEONO PRINIPIO ERMOINMI Problemi di Fisica secondo principio termodinamica SEONO PRINIPIO ERMOINMI PROEM alcolare il rendimento di una macchina di arnot che lavora fra la temperatura di ebollizione dell'acqua

Dettagli

COMPITO DI FISICA SPERIMENTALE I DEL

COMPITO DI FISICA SPERIMENTALE I DEL COMPITO DI FISICA SPERIMENTALE I DEL 30/11/2007 1. Una slitta di massa M=150 kg, sul cui tetto è fissato un cannoncino di massa m=50 kg inclinato di un angolo α=30 rispetto all orizzontale, può scivolare

Dettagli

Entalpia. L'entalpia è una funzione di stato ed è una grandezza estensiva. dh=du+pdv+vdp --> du+pdv = dh - Vdp

Entalpia. L'entalpia è una funzione di stato ed è una grandezza estensiva. dh=du+pdv+vdp --> du+pdv = dh - Vdp Entalpia Si definisce entalpia la grandezza H ( 1 H = U + pv L'entalpia è una funzione di stato ed è una grandezza estensiva. Differenziando la (1) si ha dh=du+pdv+vdp --> du+pdv = dh - Vdp In una generica

Dettagli

COMPITO A. 4) Primo principio della termodinamica per sistemi chiusi ed aperti. 5)Teoremi di Carnot: enunciati ed esempi

COMPITO A. 4) Primo principio della termodinamica per sistemi chiusi ed aperti. 5)Teoremi di Carnot: enunciati ed esempi COMPITO A 1)In un vaso di alluminio, di massa m1, è contenuta la massa m2 di acqua di cui non si conosce la temperatura. Nell acqua si immerge un pezzo di rame di massa m3, riscaldato a t1 C e con ciò

Dettagli

Fisica Generale I A.A

Fisica Generale I A.A Fisica Generale I A.A. 2017-2018 ESERCIZI DI TERMODINAMICA Esercizio 1 Una lastra di metallo di massa m M = 10 kg e calore specifico c M = 0.2 kcal kg 1 C 1 si trova inizialmente ad una temperatura t M

Dettagli

dallo stato 1 allo stato 2 è uguale all integrale

dallo stato 1 allo stato 2 è uguale all integrale Capitolo 13 L entropia 167 QUESITI E PROBLEMI 1 La grandezza fisica entropia può assumere valori solo positivi (vero/falso). Se sono determinati lo stato iniziale e lo stato finale di un sistema fisico,

Dettagli

Compito di Fisica Generale I mod. B, Corsi di Laurea in Fisica e in Astronomia, AA 2010/11. Cognome... Nome... Matricola n...

Compito di Fisica Generale I mod. B, Corsi di Laurea in Fisica e in Astronomia, AA 2010/11. Cognome... Nome... Matricola n... 22.06.2011 Compito di Fisica Generale I mod. B, Corsi di Laurea in Fisica e in Astronomia, AA 2010/11 Cognome... Nome... Matricola n... Esercizio 1. Si abbia un recipiente a pareti adiabatiche contenente

Dettagli

Scritto di Termodinamica - 16/02/2018

Scritto di Termodinamica - 16/02/2018 Primo problema Scritto di Termodinamica - 6/0/08 Nell ipotesi di liquido perfetto (densità = 9 0 kg=m 3 ), calcolare la portata Q del sifone in gura che scarica il liquido dal recipiente no alla sezione

Dettagli

Dato che i tre corpi non scambiano calore con l ambiente esterno, allora la somma algebrica dei calori scambiati deve essere uguale a zero: + Q 3

Dato che i tre corpi non scambiano calore con l ambiente esterno, allora la somma algebrica dei calori scambiati deve essere uguale a zero: + Q 3 isica (.. 004/005) Esercizi ermodinamica ( a parte) ) re corpi di capacità termica,,, che si trovano alle temperature,,, vengono posti a contatto. Nell ipotesi che i tre corpi non scambino calore con l

Dettagli

SISTEMA TERMODINAMICO STATO TERMODINAMICO

SISTEMA TERMODINAMICO STATO TERMODINAMICO SISTEMA TERMODINAMICO Sistema macroscopico (gas, liquido, solido) chimicamente definito, composto da un grande numero di atomi o molecole. In una mole di sostanza: N 6,02 10 23 Isolato: non scambia né

Dettagli

Le trasformazioni principali. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Le trasformazioni principali. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Le trasformazioni principali Universita' di Udine 1 Trasformazioni notevoli: un elenco Le trasformazioni reversibili sono evidentemente infinite Hanno molta importanza alcune trasformazioni fondamentali

Dettagli

FISICA. Termodinamica PRIMO PRINCIPIO DELLA TERMODINAMICA. Autore: prof. Pappalardo Vincenzo. docente di Matematica e Fisica

FISICA. Termodinamica PRIMO PRINCIPIO DELLA TERMODINAMICA. Autore: prof. Pappalardo Vincenzo. docente di Matematica e Fisica FISICA Termodinamica PRIMO PRINCIPIO DELLA TERMODINAMICA Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica La termodinamica si occupa principalmente degli scambi energetici fra un sistema

Dettagli

Primo principio. Energia interna di un sistema. Sistema e stato termodinamico Trasformazioni termodinamiche ΔU =Q L

Primo principio. Energia interna di un sistema. Sistema e stato termodinamico Trasformazioni termodinamiche ΔU =Q L Primo principio Energia interna di un sistema Funzione di stato Aumenta se viene dato calore al sistema Aumenta se viene fatto lavoro dall esterno sul sistema ΔU =Q L Sistema e stato termodinamico Trasformazioni

Dettagli

Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013

Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013 Fisica Facoltà di Ingegneria, Architettura e delle Scienze Motorie Lezione 6 maggio 2013 Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano Macchine Termiche Le macchine

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 018/019 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (16 ore): Matteo Avolio Lezione del 08/05/019 h (13:30-15:30, Aula G10, Golgi) ESERCITAZIONI FLUIDI Esercizio

Dettagli

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio 1 Definizione di Gas Perfetto Un gas perfetto è un gas ideale il cui comportamento approssima quello dei gas reali a densità

Dettagli

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016 POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a. 015-16 I appello, 1 luglio 016 Giustificare le risposte e scrivere in modo chiaro e leggibile. Scrivere in stampatello nome, cognome, matricola

Dettagli

Macchine termiche e frigoriferi

Macchine termiche e frigoriferi Macchine termiche e frigoriferi Una macchina termica grazie ad una sequenza di trasformazioni termodinamiche di una data sostanza, produce lavoro utilizzabile. Una macchina lavora su di un ciclo di trasformazioni

Dettagli

Tutorato di Fisica 1 - AA 2014/15

Tutorato di Fisica 1 - AA 2014/15 Tutorato di Fisica 1-2014/15 Emanuele Fabbiani 21 febbraio 2015 1 Termodinamica 1.1 Esercizio 1 Una bolla di aria di volume V = 20 cm 3 si trova sul fondo di un lago di profondità h = 40 m dove la temperatura

Dettagli

CAPITOLO 22 IL PRIMO PRINCIPIO DELLA TERMODINAMICA

CAPITOLO 22 IL PRIMO PRINCIPIO DELLA TERMODINAMICA Problemi)di)paragrafo) 1) La temperatura rimane costante e il volume a disposizione dell aria diminuisce. Quindi la velocità media delle molecole non varia, ma le molecole impiegano meno tempo a percorrere

Dettagli

Se non sapete la risposta a una domanda, e il valore chiesto serve per la domanda successiva, usate un simbolo per questo valore e andate avanti

Se non sapete la risposta a una domanda, e il valore chiesto serve per la domanda successiva, usate un simbolo per questo valore e andate avanti ESERCIZI D ESAME R= 8.31 J mole -1 K -1 Se non sapete la risposta a una domanda, e il valore chiesto serve per la domanda successiva, usate un simbolo per questo valore e andate avanti Problema A Una centrale

Dettagli

LEZIONI ED ESERCITAZIONI DI FISICA Prof. Francesco Marchi 1 Appunti su: termodinamica del gas ideale 24 dicembre 2010 1 Per altri materiali didattici o per contattarmi: Blog personale: http://francescomarchi.wordpress.com/

Dettagli

Facoltà di Ingegneria. Fisica 1. AA.2007/08. Prova in itinere n.2. Cognome Nome Anno di corso

Facoltà di Ingegneria. Fisica 1. AA.2007/08. Prova in itinere n.2. Cognome Nome Anno di corso Siena 28/03/2008 vers.1 Si consideri il ciclo reversibile ABCA che riguarda del gas perfetto monoatomico e che è costituito, nell ordine, dalla compressione adiabatica AB, dall isoterma BC e dall isocora

Dettagli

E' COSTITUITO, IN SUCCESSIONE CICLICA, DALLE SEGUENTI TRASFORMAZIONI:

E' COSTITUITO, IN SUCCESSIONE CICLICA, DALLE SEGUENTI TRASFORMAZIONI: G - CICLO DI CARNOT CICLO DI CARNOT E' COSTITUITO, IN SUCCESSIONE CICLICA, DALLE SEGUENTI TRASFORMAZIONI: 1. ESPANSIONE ISOTERMA 2. ESPANSIONE ADIABATICA 3. COMPRESSIONE ISOTERMA 4. COMPRESSIONE ADIABATICA

Dettagli

Cognome...Nome...matricola...

Cognome...Nome...matricola... Cognome......Nome......matricola...... Facoltà di Ingegneria. Padova Luglio Corso di Laurea in Ingegneria Meccanica II a Squadra. II ppello Fisica Problema - Meccanica ( Punti ****) Un asta sottile e omogenea

Dettagli

Fisica Generale I (primo e secondo modulo) A.A. 2009-10, 30 Agosto 2010

Fisica Generale I (primo e secondo modulo) A.A. 2009-10, 30 Agosto 2010 Fisica Generale I (primo e secondo modulo) A.A. 009-10, 30 Agosto 010 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e per

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 21 luglio 2011

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 21 luglio 2011 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 1 luglio 011 1) Una particella P di massa m = 0 g viene tenuta ferma in un punto O di un piano orizzontale liscio e comprime di un tratto d

Dettagli

Sistema termodinamico: porzione di universo separata da tutto il resto del mondo. Ambiente esterno confini del sistema

Sistema termodinamico: porzione di universo separata da tutto il resto del mondo. Ambiente esterno confini del sistema Termodinamica: concetti di base Sistema termodinamico: porzione di universo separata da tutto il resto del mondo Ambiente esterno confini del sistema sistema Stato del sistema: definito dal valore delle

Dettagli

Termodinamica (3) Trasformazioni termodinamiche Lezione 14, 20/11/2018, JW

Termodinamica (3) Trasformazioni termodinamiche Lezione 14, 20/11/2018, JW Termodinamica (3) Trasformazioni termodinamiche Lezione 14, 20/11/2018, JW 17.2-17.4 1 2. Il primo principio della termodinamica Il primo principio della termodinamica è un affermazione della conservazione

Dettagli

Esercitazione X - Legge dei gas perfetti e trasformazioni

Esercitazione X - Legge dei gas perfetti e trasformazioni Esercitazione X - Legge dei gas perfetti e trasformazioni termodinamiche Formulario Il primo principio della termodinamica afferma che la variazione dell energia interna di un sistema U è uguale alla somma

Dettagli

- velocità dell auto v = 80 km/h; - g = accelerazione di gravità = 9,81 m/s 2-1h = 3600 s - E c = ½ m v 2 - E p = m g h ES. 1

- velocità dell auto v = 80 km/h; - g = accelerazione di gravità = 9,81 m/s 2-1h = 3600 s - E c = ½ m v 2 - E p = m g h ES. 1 Da quale altezza dovrebbe cadere un auto (in assenza di attrito) per acquistare un energia cinetica uguale a quella che avrebbe se viaggiasse alla velocità di 80 km/h? - velocità dell auto v = 80 km/h;

Dettagli

SISTEMA TERMODINAMICO STATO TERMODINAMICO

SISTEMA TERMODINAMICO STATO TERMODINAMICO SISTEMA TERMODINAMICO Sistema macroscopico (gas, liquido, solido) chimicamente definito, composto da un grande numero di atomi o molecole. In una mole di sostanza: N 6,02 10 23 Isolato: non scambia né

Dettagli

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA FACOLTA DI INGEGNERIA. Esame di Fisica II (modulo unico) Ingegneria Automatica del

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA FACOLTA DI INGEGNERIA. Esame di Fisica II (modulo unico) Ingegneria Automatica del UNIVERSIA DEGLI SUDI DI ROMA LA SAPIENZA FACOLA DI INGEGNERIA Esame di Fisica II (modulo unico) Ingegneria Automatica del 12.1.26 N.1 Una vaschetta contenente acqua scivola su un piano liscio inclinato

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 15 luglio 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 15 luglio 2010 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 15 luglio 2010 1) Una particella di massa m = 100 g viene lanciata da un punto O di un piano orizzontale scabro con velocità v O, paraliela al

Dettagli

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica

Dettagli

2) Qual' e la massa di 10 litri di azoto alla pressione di 4 atmosfere ed alla temperatura di 30 C? (P.M.=28 g/mole). (R = J/moleK; ) Risp : 45g

2) Qual' e la massa di 10 litri di azoto alla pressione di 4 atmosfere ed alla temperatura di 30 C? (P.M.=28 g/mole). (R = J/moleK; ) Risp : 45g Aria : Miscuglio di gas costituito da azoto (75,45% in peso), e ossigeno (23,14% in peso), con una piccola percentuale di gas nobili, anidride carbonica e vapor acqueo. La composizione dell'aria non è

Dettagli

Trasformazioni termodinamiche: Esercizi svolti

Trasformazioni termodinamiche: Esercizi svolti Trasformazioni termodinamiche: Esercizi svolti 9 aprile 2013 Esercizio 1 Si consideri un sistema chiuso in cui si abbia inizialmente aria a 5 C, ad una pressione p 1 = 1 bar, che venga in un secondo momento

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 01/07/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 01/07/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13 Prova Scritta del 01/07/2013 - NOME 1) Un contenitore di volume iniziale V i 80 litri contiene n3 moli di gai deal monoatomico

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Esercizio 1 Un oggetto viene posto nel fuoco di uno specchio parabolico puntato verso il sole. i dimostri che indipendentemente dalle dimensioni dello specchio e dalla precisione con cui è lavorato ed

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 25 agosto 2011

Fisica Generale I (primo e secondo modulo) A.A , 25 agosto 2011 Fisica Generale I (primo e secondo modulo) A.A. 2010-11, 25 agosto 2011 Cognome Nome Matricola Iscritto al Corso di Laurea in Matematica Fisica Anno di Corso primo oltre il primo Tipo di scritto svolto

Dettagli

Secondo principio della termodinamica: perché????

Secondo principio della termodinamica: perché???? Secondo principio della termodinamica: perché???? Primo principio: bilancio degli scambi energetici con l ambiente, ma non dà nessuna spiegazione del fatto che in natura alcune trasformazioni procedono

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-2009, 2 settembre 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale

Dettagli

Lez 15 22/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Lez 15 22/11/2016. Lezioni in  didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 Lez 15 22/11/2016 Lezioni in http://www.fisgeo.unipg.it/~fiandrin/ didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 1 Energia interna di un gas ideale E. Fiandrini Fis. Sper. e 2 Energia

Dettagli

La macchina termica. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

La macchina termica. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 La macchina termica Universita' di Udine 1 La macchina termica Un insieme di trasformazioni che parta da uno stato e vi ritorni costituisce una macchina termica un ciclo termodinamico Universita' di Udine

Dettagli

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale.

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale. Serie 10: ermodinamica X FISICA II liceo Esercizio 1 Ciclo di Carnot Considera il ciclo di Carnot, in cui il fluido (=sistema) è considerato un gas ideale. Si considerano inoltre delle trasformazioni reversibili.

Dettagli

Motore di Stirling. Scopo dell esperienza

Motore di Stirling. Scopo dell esperienza Motore di Stirling Scopo dell esperienza Lo scopo dell esperienza è duplice: calcolare il rendimento del motore in seguito alla realizzazione di un ciclo termico determinare il potere refrigerante e calorifico

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 Compito generale 21 Giugno 2013

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 Compito generale 21 Giugno 2013 FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 Compito generale 21 Giugno 2013 1) Un corpo di massa M = 300 g viene lanciato verso il basso, con velocità in modulo v A = 1 m/s, lungo un piano inclinato di

Dettagli

Trasformazioni reversibili e irreversibili:

Trasformazioni reversibili e irreversibili: rasformazioni reversibili e irreversibili: Esempi di trasformazioni irreversibili: - un gas compresso si espande spontaneamente in uno spazio vuoto - la neve fonde al sole - un farmaco si scioglie nel

Dettagli

Gas ideale: velocità delle particelle e pressione (1)

Gas ideale: velocità delle particelle e pressione (1) Gas ideale: velocità delle particelle e pressione (1) In un gas ideale le particelle sono considerate puntiformi e risentono di forze solo durante gli urti (perfettamente elastici) con le pareti del recipiente.

Dettagli

Dipartimento di Fisica, Informatica e Matematica, UNIMORE Progetto Scienze in Gioco preparazione gara locale Olifis 2018

Dipartimento di Fisica, Informatica e Matematica, UNIMORE Progetto Scienze in Gioco preparazione gara locale Olifis 2018 1) A proposito di gas e entropia (esercizio tratto da Elementi di fisica, P. Mazzoldi, M.Nigro, C.Voci, Edises) Tre n moli di gas ideale passano dalla stato A (V A = 30 10-3 m 3, p A = 2 10 5 Pa) allo

Dettagli

Soluzione della prova scritta di Fisica 1 del 12/07/2011. h T. Figure 1: Quesito 1

Soluzione della prova scritta di Fisica 1 del 12/07/2011. h T. Figure 1: Quesito 1 Soluzione della prova scritta di Fisica 1 del 12/07/2011 1 Quesito y d θ x M m P m M P M P M Figure 1: Quesito 1 La risposta alla prima domanda(il valore di all equilibrio e la condizione di esistenza

Dettagli

Termologia. Paolo Bagnaia - CTF Esercizi di termologia e termodinamica 1

Termologia. Paolo Bagnaia - CTF Esercizi di termologia e termodinamica 1 ermologia Paolo Bagnaia - CF - 3 - Esercizi di termologia e termodinamica 1 Esercizio Un cubetto di ghiaccio di 150 g alla temeratura di 0 C è gettato in unreciiente, i che contiene 300 g di acqua alla

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 9 luglio 2015

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 9 luglio 2015 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 9 luglio 05 ) Un corpo si massa M = 300 g poggia su un piano orizzontale liscio lungo l = m, seguito da un piano orizzontale scabro, di lunghezza

Dettagli

Appunti di Fisica _I Secondo semestre. Termodinamica Trasformazioni, lavoro e calore

Appunti di Fisica _I Secondo semestre. Termodinamica Trasformazioni, lavoro e calore Pisa Aprile 2011 Cap.35 v 11 Appunti di Fisica _I Secondo semestre Termodinamica Trasformazioni, lavoro e calore Sommario Lavoro ed il primo principio...1 Trasformazione isoterma...2 Trasformazione isobara...2

Dettagli