Cap. 1 - Stati di aggregazione della materia.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cap. 1 - Stati di aggregazione della materia."

Transcript

1 Cap. 1 - Stati di aggregazione della materia. Lo stato di aggregazione di un sistema è determinato dalla energia cinetica delle particelle e dall energia potenziale dovuta alle forze di coesione fra le particelle stesse. Il primo fattore determina la disposizione di massima entropia, mentre il secondo determina la minima energia interna ovvero la massima coesione tra le particelle. Spesso la massima coesione richiede una struttura il più ordinata possibile per cui i due fattori sono antagonisti e la struttura dipende da quale dei due prevale. Poichè l energia cinetica dipende dalla temperatura e quella potenziale molto poco, la struttura è ordinata a basse T e disordinata ad alte T. La pressione agisce in maniera opposta: un suo aumento favorisce la coesione. In definitiva, lo stato di aggregazione dipende dalla temperatura e dalla pressione. In un sistema allo stato solido, l energia potenziale di coesione tra le particelle è maggiore della loro energia cinetica per cui la struttura è compatta e ordinata. Allo stato gassoso, l energia di coesione è trascurabile rispetto all energia cinetica di traslazione per cui il sistema è totalmente disordinato. Allo stato liquido, le due forme di energia sono dello stesso ordine di grandezza per cui il sistema è relativamente disordinato anche se la distanza tra le particelle è simile a quella che si ha nello stato solido. Un quarto stato della materia, con il quale, sulla terra, siamo poco familiari è il plasma. Plasma Il 99% dell universo visibile è costituito da plasma. Esso è formato da particelle cariche di alta energia, neutre e ioni, porta corrente elettrica e genera campi magnetici. Fu identificato da Crookes nel 1879 e nel 1929 Langmuir gli diede il nome di plasma. Poiché gli elettroni e gli ioni costituenti il plasma agiscono collettivamente le sue proprietà sono abbastanza complicate da investigare e studiare. Lo stato di plasma è molto diverso dagli altri tre. Esso è lo stato fondamentale dal quale l universo primordiale si è evoluto. Per formare un plasma è necessario strappare elettroni agli atomi. Si può usare energia termica, elettrica, luce (ultravioletta o luce visibile da laser) e se la potenza è insufficiente il plasma si ricombina e diventa un gas neutro. Il plasma può essere controllato tramite campi elettrici e magnetici. La ricerca sui plasmi, oltre alla comprensione dell universo, ha aperto nuovi orizzonti anche nel campo della produzione dell energia (fusione controllata). Il moto degli elettroni e degli ioni produce campi elettrici e magnetici. I primi tendono ad accelerare il plasma ad energie molto alte e i secondi tendono a guidare gli elettroni. Si produce in tal modo la radiazione di sincrotrone. La radiazione di sincrotrone viene emessa da particelle cariche (ad esempio, elettroni) che si muovono all'interno di un campo magnetico, con velocità prossime a quella della luce. Tanto più elevata è la velocità dell'elettrone, tanto minore è la lunghezza d onda della V. Augelli. Fisica degli Stati Condensati Cap.1- Stati di aggregazione della materia 1

2 radiazione emessa ovvero tanto maggiore è la frequenza (nei sincrotroni di Trieste o di Grenoble gli elettroni accelerati hanno energie dell ordine di 2 GeV per cui la lunghezza d onda della radiazione emessa è di circa 2.5 nm). La maggior parte degli oggetti astrofisici sono plasmi. Sulla terra li troviamo nei fulmini, nelle lampade fluorescenti, nella fusione a confinamento magnetico o inerziale. Alcuni plasmi nello spazio hanno densità molto bassa (10-10 m 3 ), mentre un plasma di quark e gluoni ha una densità enormemente alta. V. Augelli. Fisica degli Stati Condensati Cap.1- Stati di aggregazione della materia 2

3 Stato gassoso Tale stato rappresenta la situazione di minore interazione delle particelle costituenti un sistema e quindi più facilmente riferibile ad un modello teorico detto gas ideale; la teoria cinetica dei gas infatti fa riferimento a un sistemo costituito da un numero elevatissimo di particelle in perenne movimento casuale, il cui volume è trascurabile rispetto a quello del recipiente, gli urti delle particelle sono perfettamente elastici e non esistono interazioni di alcun tipo fra le molecole. E da osservare che i gas reali in condizioni normali (c.n. = 0 C e 1 atmosfera) obbediscono con una deviazione del ± 0,1% a queste leggi fisiche. I parametri necessari a caratterizzare lo stato gassoso sono: la pressione, il volume e la temperatura. La pressione è una forza che insiste sull unità superficie, nel sistema SI la si misura in Pascal (Pa) pari a 1 Newton su m 2, essendo tale unità troppo piccola per le usuali misure sui gas si usano ancora le unità: atmosfera pari alla pressione esercitata nel vuoto da una colonna di mercurio di 760 mm e pari a Pa, viene anche usata l unità millimetro di mercurio pari a 0, atmosfere e 133,32 Pa. Nell uso pratico si fa riferimento a pressioni variabili fra le 10 5 e atmosfere. L unità SI del volume è il m 3, sottomultipli sono il litro pari a 10-3 m 3 e il cc pari a 10-6 m 3. La temperatura è la misura dello stato termico del sistema; esistono scale termometriche arbitrarie che in base alla dilatazione di solidi, liquidi, gas con la temperatura permettono di misurarla. La scala centigrada prende come riferimenti la temperatura di fusione del ghiaccio 0 C e di ebollizione dell acqua a 1 atm (100 C) e divide l intervallo in 100 parti ( C), la scala assoluta o Kelvin fa riferimento alla più bassa temperatura teoricamente raggiungibile (-273,26 C) come 0 (zero Kelvin o V. Augelli. Fisica degli Stati Condensati Cap.1- Stati di aggregazione della materia 3

4 assoluto) per cui 273 K equivalgono a 0 C e 373 K a 100 C, la relazione fra le due scale sarà K = C Prendiamo in esame le relazioni fra le grandezze P,V, e T; tali leggi sono sia ottenute mediante calcolo sia sperimentalmente come comportamento limite dei gas reali. La prima relazione detta legge di Boyle è fra P e V a T ( K) e n (numero di moli) costanti: (PV) n,t = cost Come si vede è una relazione di proporzionalità inversa rappresentata nel piano PV da una iperbole equilatera. La seconda relazione (legge di Charles) è fra V e T (K) a P e n costanti: (V/T) n,p = cost E una relazione di proporzionalità diretta fra V e T a pressione costante. La terza relazione (Legge di Gay Lussac) è fra P e T a volume costante: (P/T) n,v = cost Il principio di Avogadro afferma che a 0 C e 1 atm (condizioni normali, c.n.) una mole di un gas ideale occupa un volume di 22,414 litri (volume molare), quindi sussisterà la relazione. (n/v) P,T = cost Le quattro relazioni possono essere riassunte da un unica equazione detta equazione generale di stato del gas ideale, a tal fine possiamo scrivere : V= cost x 1/P x T x n e la costante può essere calcolata tenendo presente la condizione normale: R= 1 atm x litri /(1 mole x 273 K)= litri atm/(mole K) In realtà i gas reali non seguono rigorosamente queste semplici leggi (PV=nRT) ma se ne discostano più o meno a seconda della temperatura e della pressione. Un gas che obbedisce all equazione PV=nRT è detto ideale. La teoria cinetica del gas ideale si fonda essenzialmente sull assunzione che le particelle, tutte uguali, non interagiscono tra loro se non mediante urti elastici e che il loro moto è del tutto casuale.usando le leggi della meccanica classica si trova che l energia cinetica media delle particelle E cin =3/2kT, essendo k la costante di Boltzmann pari a J/K. Il comportamento di un gas si avvicina a quello del gas ideale quanto più la pressione è bassa. Un indice della idealità di un gas è il suo fattore di compressibilità Z dato dalla seguente relazione: Z= PV/RT Se facciamo riferimento ad una mole di gas ideale, Z = 1 in quanto vale l equazione di stato del gas ideale, nel caso di gas reali si osserva che Z varia a T costante in funzione della pressione, può essere anche diverso da 1, nel caso in cui: Z<1, PV<RT il gas è più comprimibile di un gas ideale, prevalgono cioè le attrazioni fra le molecole; Z>1, PV>RT il gas è meno comprimibile di un gas ideale, prevalgono le repulsioni fra le molecole; Z=1, PV=RT il gas ha un comportamento ideale. V. Augelli. Fisica degli Stati Condensati Cap.1- Stati di aggregazione della materia 4

5 Modello dei gas reali. Per un gas reale si tiene conto del fatto che ciascuna particella ha un volume proprio, che esistono delle forze d interazione tra esse, che si muovono in maniera casuale. Oltre all energia cinetica traslazionale, le molecole hanno energia rotazionale e vibrazionale. Una equazione che spiega, anche se solo parzialmente, il comportamento di un gas reale è quella di van der Waals: a P + = V 2 ( V b) nrt b è il volume molare del gas a 0 K ovvero il volume non disponibile per il moto di una mole di gas reale (covolume). Mentre un gas ideale ha volume nullo a 0 K (V=RT/P), uno reale ha volume b, per cui se si considerano le sole forze d interazione, possiamo scrivere: V. Augelli. Fisica degli Stati Condensati Cap.1- Stati di aggregazione della materia 5

6 V reale = b+ RT/P (1) ovvero Z reale = PV reale /RT= bp/rt + 1 questa relazione non spiega i valori di Z minori di 1. Poiché due molecole sferiche di raggio r che si muovono lungo x non possono muoversi a distanza tra i centri minore di 2r, la presenza della particella 1 esclude per il moto della particella 2 un volume pari a 4/3π(2r) 3. Stessa cosa fa la particella 2 nei confronti della 1. Una mole di gas, N A molecole, escluderà un volume di 4/3π(2r) 3 N A /2= 2/3π(2r) 3 N A =b. Esistono anche le forze di coesione a causa delle quali la pressione esercitata dal gas (quella sperimentale) è minore di quella ideale di una quantità P interna, detta pressione interna o di coesione. L introduzione di tali forze consentono di spiegare anche i valori di Z minori di 1. A causa delle forze di coesione la pressione esercitata dal gas è minore di quella che eserciterebbe se esso fosse ideale: P sper = P ideale - P interna La (1) può scriversi come: (P sper + P int )(V-b) = RT e la P int può scriversi come a/v 2 essendo a una costante legata alle forze di coesione. In definitiva, l equazione di van der Waals si scrive: P reale = RT/(V-b) a/v 2 Z può essere > o < di 1 a seconda che b sia > o < di a/rt, ovvero gli effetti di volume superano quelli di coesione o viceversa. La temperatura alla quale b=a/rt si chiama temperatura di Boyle. Le forze di coesione più importanti sono le forze dipolo-dipolo e dipolo istantaneodipolo indotto. Considereremo questa interazione nel caso dei solidi molecolari. Lo stato liquido Lo stato liquido è intermedio tra quello gassoso e quello solido; le forze di coesione tra le molecole sono molto forti, ma non tanto da non permetterne il moto traslazionale. Essi hanno alcune caratteristiche dei solidi ed alcune dei gas. I liquidi sono isotropi, assumono la forma del recipiente che li contiene (come il gas), sono praticamente incomprimibili (come i solidi). Come per lo stato solido, lo stato liquido è associato con una bassa energia cinetica; come per i gas, i liquidi tendono a fluire e la resistenza che caratterizza tale tendenza è la viscosità. Generalmente la viscosità diminuisce all aumentare della temperatura. L energia di coesione fra le particelle ha origine da interazioni dipolo-dipolo, da legami idrogeno, da interazione coulombiana, ecc. V. Augelli. Fisica degli Stati Condensati Cap.1- Stati di aggregazione della materia 6

7 Si distinguono liquidi ionici (sali fusi) nei quali le particelle sono ioni, liquidi molecolari costituiti da molecole discrete (acqua, cloroformio, benzene,...), liquidi metallici costituiti da atomi di metalli (mercurio,...). Le proprietà di un liquido sono determinate dalla pressione interna che può essere definita come la pressione che si oppone ad un aumento di volume del liquido; questa è legata alla risultante delle forze di attrazione e repulsione agenti su una particella all interno del liquido. Conseguenza dell esistenza della pressione interna è la tensione superficiale. Le molecole in superficie non sono uniformemente circondate dalle molecole del liquido per cui ciascuna di esse sente una forza attrattiva verso l interno. A causa delle interazioni molecolari, il liquido tende a contrarsi assumendo la minima superficie (la goccia è sferica). La tensione superficiale misura la tendenza che un liquido ha a contrarsi; essa è la forza per unità di lunghezza che agisce normalmente alla superficie del liquido. Generalmente, la tensione superficiale diminuisce all aumentare della temperatura. Il fenomeno dell evaporazione è legato all energia cinetica posseduta dalle molecole del liquido che in maniera statistica abbandonano la superficie del liquido. Tale processo dipende ovviamente dalla temperatura ed è un fenomeno di superficie. Quando tale fenomeno non è più di superficie, ma investe tutto il liquido, si ha l ebollizione. Ciò accade ad una data temperatura alla quale la pressione di vapore (è la pressione parziale del suo vapore a cui si verifica l'equilibrio fra la fase liquida e la fase gassosa) uguaglia la pressione atmosferica. La pressione di vapore cresce con la temperatura e crescerà la tendenza ad evaporare. L andamento della pressione di vapore dalla temperatura dipende dal tipo di forze attrattive agenti nel liquido. Più alta è la pressione di vapore, minore è l intensità della forza attrattiva, più velocemente evapora il liquido, più basso è il punto di ebollizione. La solidificazione si ha ad una data temperatura e a spese della fase gassosa. La salita dei liquidi nei capillari è determinata dalle forze di adesione liquido-parete del capillare, che, vincendo la gravità, fanno risalire il liquido. Il menisco che si forma può essere concavo o convesso a seconda che la forza di adesione è maggiore (caso dell acqua) o minore di quella di coesione (caso del mercurio). V. Augelli. Fisica degli Stati Condensati Cap.1- Stati di aggregazione della materia 7

8 Il modello dello stato liquido che si è dimostrato applicabile nella maggior parte dei liquidi è quello delle vacanze fluide (fluidized vacancy model). Sperimentalmente si osserva che il numero di coordinazione delle singole molecole diminuisce all aumentare della temperatura e che la distanza media tra le varie molecole rimane costante. Il modello prevede che nel passaggio dallo stato solido a quello liquido si creano delle cavità di dimensioni simili a quelle delle molecole e in numero che aumenta con la temperatura. In questo modo la densità del liquido diminuisce e le distanze intermolecolari rimangono praticamente costanti. V. Augelli. Fisica degli Stati Condensati Cap.1- Stati di aggregazione della materia 8

I GAS POSSONO ESSERE COMPRESSI.

I GAS POSSONO ESSERE COMPRESSI. I GAS Tutti i gas sono accomunati dalle seguenti proprietà: I GAS POSSONO ESSERE COMPRESSI. L aria compressa occupa un volume minore rispetto a quello occupato dall aria non compressa (Es. gomme dell auto

Dettagli

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi LO STATO GASSOSO Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi STATO GASSOSO Un sistema gassoso è costituito da molecole

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà 2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà 1 I liquidi e loro proprietà 2 Proprietà Generali dei Gas I gas possono essere espansi all infinito. I gas occupano i loro contenitori uniformemente

Dettagli

Stati di aggregazione della materia

Stati di aggregazione della materia SOLIDO: Forma e volume propri. Stati di aggregazione della materia LIQUIDO: Forma del recipiente in cui è contenuto, ma volume proprio. GASSOSO: Forma e volume del recipiente in cui è contenuto. Parametri

Dettagli

Lo Stato Gassoso: Alcune Caratteristiche

Lo Stato Gassoso: Alcune Caratteristiche Lo Stato Gassoso: Alcune Caratteristiche Sebbene possano avere proprietà chimiche distinte, le sostanze in fase gas hanno caratteristiche fisiche molto simili, in quanto le particelle (atomi o molecole)

Dettagli

Stati di aggregazione della materia unità 2, modulo A del libro

Stati di aggregazione della materia unità 2, modulo A del libro Stati di aggregazione della materia unità 2, modulo A del libro Gli stati di aggregazione della materia sono tre: solido, liquido e gassoso, e sono caratterizzati dalle seguenti grandezze: Quantità --->

Dettagli

FISICA-TECNICA Miscela di gas e vapori. Igrometria

FISICA-TECNICA Miscela di gas e vapori. Igrometria FISICA-TECNICA Miscela di gas e vapori. Igrometria Katia Gallucci Spesso è necessario variare il contenuto di vapore presente in una corrente gassosa. Lo studio di come si possono realizzare queste variazioni

Dettagli

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti Unità di misura Le unità di misura sono molto importanti 1000 è solo un numero 1000 lire unità di misura monetaria 1000 unità di misura monetaria ma il valore di acquisto è molto diverso 1000/mese unità

Dettagli

3. Stato gassoso. Al termine dell unità didattica si dovranno raggiungere i seguenti obiettivi:

3. Stato gassoso. Al termine dell unità didattica si dovranno raggiungere i seguenti obiettivi: 3. Stato gassoso. Al termine dell unità didattica si dovranno raggiungere i seguenti obiettivi:. Descrivere le caratteristiche e il comportamento del gas a livello microscopico.. Definire pressione temperatura

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

TEORIA CINETICA DEI GAS

TEORIA CINETICA DEI GAS TEORIA CINETICA DEI GAS La teoria cinetica dei gas è corrispondente con, e infatti prevede, le proprietà dei gas. Nella materia gassosa, gli atomi o le molecole sono separati da grandi distanze e sono

Dettagli

LE LEGGI DEI GAS. Dalle prime teorie cinetiche dei gas simulazioni della dinamica molecolare. Lezioni d'autore

LE LEGGI DEI GAS. Dalle prime teorie cinetiche dei gas simulazioni della dinamica molecolare. Lezioni d'autore LE LEGGI DEI GAS Dalle prime teorie cinetiche dei gas simulazioni della dinamica molecolare. Lezioni d'autore alle Un video : Clic Un altro video : Clic Un altro video (in inglese): Clic Richiami sulle

Dettagli

1 atm = 760 mm Hg = 760 torr = 101300 N/m 2 =101300 Pa. Anodo = Polo Positivo Anione = Ione Negativo. Catodo = Polo Negativo Catione = Ione Positivo

1 atm = 760 mm Hg = 760 torr = 101300 N/m 2 =101300 Pa. Anodo = Polo Positivo Anione = Ione Negativo. Catodo = Polo Negativo Catione = Ione Positivo 1) Concetti Generali 1. Unità di Misura: A. Pressione 1 atm = 760 mm Hg = 760 torr = 101300 N/m 2 =101300 Pa. B. Calore 1 joule = 10 7 Erg. 1 caloria = 4,185 joule. Anodo = Polo Positivo Anione = Ione

Dettagli

Gas. Vapore. Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente. microscopico MACROSCOPICO

Gas. Vapore. Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente. microscopico MACROSCOPICO Lo Stato Gassoso Gas Vapore Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente MACROSCOPICO microscopico bassa densità molto comprimibile distribuzione

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore 1 Temperatura e Calore Stati di Aggregazione Temperatura Scale Termometriche Dilatazione Termica Il Calore L Equilibrio Termico La Propagazione del Calore I Passaggi di Stato 2 Gli

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

Ripasso sulla temperatura, i gas perfetti e il calore

Ripasso sulla temperatura, i gas perfetti e il calore Ripasso sulla temperatura, i gas perfetti e il calore Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia La temperatura Fenomeni non interpretabili con le leggi della meccanica Dilatazione

Dettagli

GAS. I gas si assomigliano tutti

GAS. I gas si assomigliano tutti I gas si assomigliano tutti Aeriforme liquido solido GAS Descrizione macroscopica e microscopica degli stati di aggregazione della materia Fornendo energia al sistema, le forze di attrazione tra le particelle

Dettagli

L H 2 O nelle cellule vegetali e

L H 2 O nelle cellule vegetali e L H 2 O nelle cellule vegetali e il suo trasporto nella pianta H 2 O 0.96 Å H O 105 H 2s 2 2p 4 tendenza all ibridizzazione sp 3 H δ+ O δ- δ+ 1.75 Å H legame idrogeno O δ- H H δ+ δ+ energia del legame

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

Leggi dei gas. PV = n RT SISTEMI DI PARTICELLE NON INTERAGENTI. perché le forze tra le molecole sono differenti. Gas perfetti o gas ideali

Leggi dei gas. PV = n RT SISTEMI DI PARTICELLE NON INTERAGENTI. perché le forze tra le molecole sono differenti. Gas perfetti o gas ideali Perché nelle stesse condizioni di temperatura e pressione sostanze differenti possono trovarsi in stati di aggregazione differenti? perché le forze tra le molecole sono differenti Da che cosa hanno origine

Dettagli

STATO LIQUIDO. Si definisce tensione superficiale (γ) il lavoro che bisogna fare per aumentare di 1 cm 2 la superficie del liquido.

STATO LIQUIDO. Si definisce tensione superficiale (γ) il lavoro che bisogna fare per aumentare di 1 cm 2 la superficie del liquido. STTO LIQUIDO Una sostanza liquida è formata da particelle in continuo movimento casuale, come in un gas, tuttavia le particelle restano a contatto le une alle altre e risentono sempre delle notevoli forze

Dettagli

I FENOMENI TERMICI. I fenomeni termici Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna ott-07. pag.1

I FENOMENI TERMICI. I fenomeni termici Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna ott-07. pag.1 I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano pag.1

Dettagli

Gas perfetti e sue variabili

Gas perfetti e sue variabili Gas perfetti e sue variabili Un gas è detto perfetto quando: 1. è lontano dal punto di condensazione, e quindi è molto rarefatto 2. su di esso non agiscono forze esterne 3. gli urti tra le molecole del

Dettagli

STATI FISICI DELLA MATERIA: SOLIDI, LIQUIDI E GAS

STATI FISICI DELLA MATERIA: SOLIDI, LIQUIDI E GAS STATI FISICI DELLA MATERIA: SOLIDI, LIQUIDI E GAS 7.A PRE-REQUISITI 7.B PRE-TEST 7.C OBIETTIVI 7.1 INTRODUZIONE 7.2 LO STATO SOLIDO 7.2.1 IL RETICOLO CRISTALLINO 7.2.2 STRUTTURA E PROPRIETA DEI DIVERSI

Dettagli

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Gas e gas perfetti 1 Densita Densita - massa per unita di volume Si misura in g/cm 3 ρ = M V Bassa densita Alta densita Definizione di Pressione Pressione = Forza / Area P = F/A unita SI : 1 Nt/m 2 = 1

Dettagli

LEZIONE 1. Materia: Proprietà e Misura

LEZIONE 1. Materia: Proprietà e Misura LEZIONE 1 Materia: Proprietà e Misura MISCELE, COMPOSTI, ELEMENTI SOSTANZE PURE E MISCUGLI La materia può essere suddivisa in sostanze pure e miscugli. Un sistema è puro solo se è formato da una singola

Dettagli

Capitolo 2 Le trasformazioni fisiche della materia

Capitolo 2 Le trasformazioni fisiche della materia Capitolo 2 Le trasformazioni fisiche della materia 1.Gli stati fisici della materia 2.I sistemi omogenei e i sistemi eterogenei 3.Le sostanze pure e i miscugli 4.I passaggi di stato 5. la teoria particellare

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2 46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo

Dettagli

Facoltà di Medicina e Chirurgia - Corso di Laurea Magistrale a Ciclo Unico in Odontoiatria e Protesi Dentaria. Università degli Studi dell Insubria

Facoltà di Medicina e Chirurgia - Corso di Laurea Magistrale a Ciclo Unico in Odontoiatria e Protesi Dentaria. Università degli Studi dell Insubria Università degli Studi dell Insubria Corso integrato: FISICA E STATISTICA Disciplina: FISICA MEDICA Docente: Dott. Raffaele NOVARIO Recapito: raffaele.novario@uninsubria.it Orario ricevimento: Da concordare

Dettagli

Cenni di Teoria Cinetica dei Gas

Cenni di Teoria Cinetica dei Gas Cenni di Teoria Cinetica dei Gas Introduzione La termodinamica descrive i sistemi termodinamici tramite i parametri di stato (p, T,...) Sufficiente per le applicazioni: impostazione e progettazione di

Dettagli

Capitolo 1 ( Cenni di chimica/fisica di base ) Pressione

Capitolo 1 ( Cenni di chimica/fisica di base ) Pressione PRESSIONE: La pressione è una grandezza fisica, definita come il rapporto tra la forza agente ortogonalmente 1 su una superficie e la superficie stessa. Il suo opposto (una pressione con verso opposto)

Dettagli

L E L E G G I D E I G A S P A R T E I

L E L E G G I D E I G A S P A R T E I L E L E G G I D E I G A S P A R T E I Variabili di stato Equazioni di stato Legge di Boyle Pressione, temperatura, scale termometriche Leggi di Charles/Gay-Lussac Dispense di Chimica Fisica per Biotecnologie

Dettagli

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una LA TERMOLOGIA La termologia è la parte della fisica che si occupa dello studio del calore e dei fenomeni legati alle variazioni di temperatura subite dai corpi. Essa si può distinguere in: Termometria

Dettagli

La fisica di Feynmann Termodinamica

La fisica di Feynmann Termodinamica La fisica di Feynmann Termodinamica 3.1 TEORIA CINETICA Teoria cinetica dei gas Pressione Lavoro per comprimere un gas Compressione adiabatica Compressione della radiazione Temperatura Energia cinetica

Dettagli

Liquidi, Solidi e Forze Intermolecolari

Liquidi, Solidi e Forze Intermolecolari Liquidi, Solidi e Forze Intermolecolari Distanze tra molecole Stati Fisici (Fase) Comportamento atipico La maggiore differenza tra liquidi e solidi consiste nella libertà di movimento delle loro molecole

Dettagli

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA Poiché è impossibile contare o pesare gli atomi o le molecole che formano una qualsiasi sostanza chimica, si ricorre alla grandezza detta quantità

Dettagli

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano Temperatura

Dettagli

PROGRAMMA OPERATIVO NAZIONALE

PROGRAMMA OPERATIVO NAZIONALE PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio Termodinamica I FENOMENI TERMICI Temperatura

Dettagli

Università degli studi di MILANO Facoltà di AGRARIA. El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA. Lezione 2 LO STATO GASSOSO

Università degli studi di MILANO Facoltà di AGRARIA. El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA. Lezione 2 LO STATO GASSOSO Università degli studi di MILANO Facoltà di AGRARIA El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA Lezione 2 Anno Accademico 2010-2011 Docente: Dimitrios Fessas LO STATO GASSOSO Prof. Dimitrios

Dettagli

Indice generale 1 INTRODUZIONE, CINEMATICA IN DUE O TRE DIMENSIONI; VETTORI 71 DINAMICA: LE LEGGI DI NEWTON 115 MOTO: CINEMATICA IN UNA DIMENSIONE 25

Indice generale 1 INTRODUZIONE, CINEMATICA IN DUE O TRE DIMENSIONI; VETTORI 71 DINAMICA: LE LEGGI DI NEWTON 115 MOTO: CINEMATICA IN UNA DIMENSIONE 25 Indice generale PREFAZIONE ALLO STUDENTE TAVOLA DEI COLORI x xiv xvi 1 INTRODUZIONE, MISURE, STIME 1 1 1 La natura della scienza 2 1 2 Modelli, teorie e leggi 3 1 3 Misure ed errori; cifre significative

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

Fondamenti di chimica Raymond Chang Copyright 2009 The McGraw-Hill Companies srl CAPITOLO 5 I GAS

Fondamenti di chimica Raymond Chang Copyright 2009 The McGraw-Hill Companies srl CAPITOLO 5 I GAS CAPITOLO 5 I GAS 5.13 5.14 Strategia: poiché 1 atm = 760 mmhg, è necessario il seguente fattore di conversione per ottenere la pressione in atmosfere. Per la seconda conversione, 1 atm = 101.325 kpa. Soluzione:

Dettagli

Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica

Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica Termodinamica Equazione di Stato: p = pressione ; V = volume ; T = temperatura assoluta ; n = numero di moli ; R = costante

Dettagli

Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012

Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012 Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012 Misure e grandezze Grandezze fondamentali Grandezza fisica Simbolo della grandezza Unità di misura Simbolo dell unità di misura lunghezza

Dettagli

Complementi di Termologia. I parte

Complementi di Termologia. I parte Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si

Dettagli

di questi il SECONDO PRINCIPIO ΔU sistema isolato= 0

di questi il SECONDO PRINCIPIO ΔU sistema isolato= 0 L entropia e il secondo principio della termodinamica La maggior parte delle reazioni esotermiche risulta spontanea ma esistono numerose eccezioni. In laboratorio, ad esempio, si osserva come la dissoluzione

Dettagli

Fenomeni di superficie nei liquidi

Fenomeni di superficie nei liquidi Fenomeni di superficie nei liquidi Interno di un liquido R=0 Superficie di un liquido r R 0 Forze di coesione. Interazioni attrattive o repulsive anche con molecole di altre sostanze Alcuni effetti della

Dettagli

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Termodinamica

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Termodinamica Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Termodinamica 1) In un recipiente di volume V = 20 l sono contenute 0.5 moli di N 2 (PM=28) alla temperatura di 27 0 C.

Dettagli

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007 CORRENTE ELETTRICA INTRODUZIONE Dopo lo studio dell elettrostatica, nella quale abbiamo descritto distribuzioni e sistemi di cariche elettriche in quiete, passiamo allo studio di fenomeni nei quali le

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore La materia è un sistema fisico a molti corpi Gran numero di molecole (N A =6,02 10 23 ) interagenti tra loro Descrizione mediante grandezze macroscopiche (valori medi su un gran numero

Dettagli

GRANDEZZE FISICHE. Prof.ssa Paravizzini M.R.

GRANDEZZE FISICHE. Prof.ssa Paravizzini M.R. GRANDEZZE FISICHE Prof.ssa Paravizzini M.R. PROPRIETA DEL CORPO SOGGETTIVE OGGETTIVE PR.SOGGETTIVE: gusto, bellezza, freschezza, forma MISURABILI PR. OGGETTIVE: massa, temperatura, diametro, ecc.. Le misure

Dettagli

IL NUCLEO ATOMICO E LA MOLE

IL NUCLEO ATOMICO E LA MOLE IL NUCLEO ATOMICO E LA MOLE Gli atomi sono costituiti da un nucleo, formato da protoni (carica elettrica positiva, massa 1,6724 x 10-24 g) e neutroni (nessuna carica elettrica, massa 1,6745 x 10-24 g),

Dettagli

La materia. La materia è ogni cosa che occupa uno spazio (e possiamo percepire con i nostri sensi).

La materia. La materia è ogni cosa che occupa uno spazio (e possiamo percepire con i nostri sensi). La materia La materia è ogni cosa che occupa uno spazio (e possiamo percepire con i nostri sensi). Essa è costituita da sostanze, ciascuna delle quali è formata da un determinato tipo di particelle piccolissime,

Dettagli

Le leggi dei gas. Capitolo 21. 21.1. Le leggi di Boyle e di Gay-Lussac. Massimo Banfi

Le leggi dei gas. Capitolo 21. 21.1. Le leggi di Boyle e di Gay-Lussac. Massimo Banfi Cap. 1 - Le leggi dei gas Capitolo 1 Le leggi dei gas 1.1. Le leggi di Boyle e di Gay-Lussac Lo stato termodinamico di un gas è perfettamente noto quando si conoscano i valori delle tre variabili P, V,

Dettagli

I FENOMENI TERMICI. I fenomeni termici. pag.1

I FENOMENI TERMICI. I fenomeni termici. pag.1 I FENOMENI TERMICI Temperatura Calore Trasmissione del calore Termoregolazione del corpo umano Trasformazioni termodinamiche I o principio della Termodinamica Gas perfetti Gas reali pag.1 Temperatura Proprietà

Dettagli

5. FLUIDI TERMODINAMICI

5. FLUIDI TERMODINAMICI 5. FLUIDI TERMODINAMICI 5.1 Introduzione Un sistema termodinamico è in genere rappresentato da una quantità di una determinata materia della quale siano definibili le proprietà termodinamiche. Se tali

Dettagli

Il vapor saturo e la sua pressione

Il vapor saturo e la sua pressione Il vapor saturo e la sua pressione Evaporazione = fuga di molecole veloci dalla superficie di un liquido Alla temperatura T, energia cinetica di traslazione media 3/2 K B T Le molecole più veloci sfuggono

Dettagli

Capitolo 10 Il primo principio 113

Capitolo 10 Il primo principio 113 Capitolo 10 Il primo principio 113 QUESITI E PROBLEMI 1 Tenuto conto che, quando il volume di un gas reale subisce l incremento dv, il lavoro compiuto dalle forze intermolecolari di coesione è L = n 2

Dettagli

ESERCIZI DA SVOLGERE PER GLI STUDENTI DELLE CLASSI 2, CON GIUDIZIO SOSPESO IN FISICA PER L ANNO SCOLASTICO 2014-2015

ESERCIZI DA SVOLGERE PER GLI STUDENTI DELLE CLASSI 2, CON GIUDIZIO SOSPESO IN FISICA PER L ANNO SCOLASTICO 2014-2015 ESERCIZI DA SVOLGERE PER GLI STUDENTI DELLE CLASSI 2, CON GIUDIZIO SOSPESO IN FISICA PER L ANNO SCOLASTICO 2014-2015 Sul libro del primo anno: L AMALDI 2.0 Pag 257: n.23 Pag 258: n.28 Pag 259: n.33,n.39

Dettagli

Simulazione test di ingresso Ingegneria Industriale Viterbo. Quesiti di Logica, Chimica e Fisica. Logica

Simulazione test di ingresso Ingegneria Industriale Viterbo. Quesiti di Logica, Chimica e Fisica. Logica Simulazione test di ingresso Ingegneria Industriale Viterbo Quesiti di Logica, Chimica e Fisica Logica L1 - Come continua questa serie di numeri? 1-4 - 10-22 - 46-94 -... A) 188 B) 190 C) 200 D) 47 L2

Dettagli

Transizioni di fase. O (g) evaporazione O (s) H 2. O (l) H 2. O (g) sublimazione...

Transizioni di fase. O (g) evaporazione O (s) H 2. O (l) H 2. O (g) sublimazione... Transizioni di fase Una sostanza può esistere in tre stati fisici: solido liquido gassoso Il processo in cui una sostanza passa da uno stato fisico ad un altro è noto come transizione di fase o cambiamento

Dettagli

TECNOLOGIE E DIAGNOSTICA PER LA CONSERVAZIONE E IL RESTAURO PERCORSO FORMATIVO DISCIPLINARE DI FISICA A.A. 2015/2016

TECNOLOGIE E DIAGNOSTICA PER LA CONSERVAZIONE E IL RESTAURO PERCORSO FORMATIVO DISCIPLINARE DI FISICA A.A. 2015/2016 TECNOLOGIE E DIAGNOSTICA PER LA CONSERVAZIONE E IL RESTAURO PERCORSO FORMATIVO DISCIPLINARE DI FISICA A.A. 2015/2016 Docente: GASPARRINI FABIO Testo di riferimento: D. Halliday, R. Resnick, J. Walker,

Dettagli

I GAS...2 IL COMPORTAMENTO FISICO DEI GAS...2 Introduzione: i parametri di stato...2 La pressione...3 La pressione idrostatica nei liquidi...

I GAS...2 IL COMPORTAMENTO FISICO DEI GAS...2 Introduzione: i parametri di stato...2 La pressione...3 La pressione idrostatica nei liquidi... Appunti di Chimica Capitolo 4 Stati di aggregazione della materia I GAS... IL COMPORTAMENTO FISICO DEI GAS... Introduzione: i parametri di stato... La pressione...3 La pressione idrostatica nei liquidi...3

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

LEGAME CHIMICO In natura solo i gas nobili si ritrovano allo stato monoatomico. Gli altri atomi tendono a legarsi spontaneamente fra di loro per formare delle MOLECOLE, raggiungendo una condizione di MAGGIORE

Dettagli

POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA

POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA 1 POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA Per ogni punto del programma d esame vengono qui di seguito indicate le pagine corrispondenti nel testo G. Tonzig,

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN.

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN. PIANO DI LAVORO DELLA DISCIPLINA: FISICA CLASSI: TERZE CORSO: LICEO SCIENTIFICO AS 2014-2015 Linee generali dell insegnamento della fisica nel liceo scientifico, da indicazioni ministeriali In particolare

Dettagli

Esercizi di Fisica Generale

Esercizi di Fisica Generale Esercizi di Fisica Generale 2. Temodinamica prof. Domenico Galli, dott. Daniele Gregori, prof. Umberto Marconi dott. Alessandro Tronconi 27 marzo 2012 I compiti scritti di esame del prof. D. Galli propongono

Dettagli

I fosfolipidi. Figura 3: tipica struttura di un fosfolipide. Schema 1. Struttura del fosfolipide POPE.

I fosfolipidi. Figura 3: tipica struttura di un fosfolipide. Schema 1. Struttura del fosfolipide POPE. Proprietà chimico-fisiche di modelli di sistemi biologici Materiale didattico per lo stage presso il laboratorio NanoBioLab Abstract L attività è basata sull utilizzo di tecniche sperimentali avanzate

Dettagli

PROPRIETÁ CHIMICHE, ELETTRICHE E MAGNETICHE DELL ACQUA

PROPRIETÁ CHIMICHE, ELETTRICHE E MAGNETICHE DELL ACQUA Se si considera l equilibrio alla traslazione verticale tra la tensione superficiale e la forza peso del volume di acqua contenuta in un vaso capillare, si perviene all espressione della quota h che può

Dettagli

3.7 LA SOLIDIFICAZIONE DELL ACQUA NEI MICRO-PORI DELLE COSTRUZIONI IN ASSENZA DI PIOGGIA O DI ACQUA AMBIENTALE

3.7 LA SOLIDIFICAZIONE DELL ACQUA NEI MICRO-PORI DELLE COSTRUZIONI IN ASSENZA DI PIOGGIA O DI ACQUA AMBIENTALE μm), è estremamente benefica nel buon comportamento del materiale nei confronti della formazione del ghiaccio: infatti queste micro-bolle fungono da vasi di espansione capaci di ospitare l acqua liquida

Dettagli

LEZIONE 5-6 GAS PERFETTI, CALORE, ENERGIA TERMICA ESERCITAZIONI 1: SOLUZIONI

LEZIONE 5-6 GAS PERFETTI, CALORE, ENERGIA TERMICA ESERCITAZIONI 1: SOLUZIONI LEZIONE 5-6 G PERFETTI, CLORE, ENERGI TERMIC EERCITZIONI 1: OLUZIONI Gas Perfetti La temperatura è legata al movimento delle particelle. Un gas perfetto (ovvero che rispetta la legge dei gas perfetti PV

Dettagli

Quesiti e problemi. 10 Un gas viene compresso a temperatura costante. 11 Un cilindro con un pistone ha un volume di 250 ml. v f. v f.

Quesiti e problemi. 10 Un gas viene compresso a temperatura costante. 11 Un cilindro con un pistone ha un volume di 250 ml. v f. v f. SUL LIBRO DA PAG 110 A PAG 114 Quesiti e problemi ESERCIZI 1 I gas ideali e la teoria cinetico-molecolare 1 Che cosa si intende per gas ideale? Rispondi in cinque righe. 2 Vero o falso? a) Le molecole

Dettagli

Università telematica Guglielmo Marconi. Chimica

Università telematica Guglielmo Marconi. Chimica Università telematica Guglielmo Marconi Chimica 1 Termodinamica 1 Argomenti Nell unità didattica dedicata alla termodinamica verranno affrontati i seguenti argomenti: L energia interna di un sistema Le

Dettagli

Corso di Chimica Fisica A. Appunti delle lezioni

Corso di Chimica Fisica A. Appunti delle lezioni Università di Torino Corso di Studi in Chimica - Laurea Triennale Anno Accademico 2006-2007 Corso di Chimica Fisica A Appunti delle lezioni Roberto Dovesi Loredana Valenzano (19 febbraio 2007) Indice

Dettagli

SCIENZE. Le scienze e il metodo sperimentale, la materia e le sue proprietà. Le scienze e il metodo sperimentale 01.1

SCIENZE. Le scienze e il metodo sperimentale, la materia e le sue proprietà. Le scienze e il metodo sperimentale 01.1 il testo: 01.1 sperimentale Le scienze studiano i fenomeni della natura (fenomeni naturali). Spesso noi osserviamo la natura e ci chiediamo perché avvengono certi fenomeni. Ad esempio, ti sarà capitato

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

GAS PERFETTO M E M B R A N A CONCENTRAZIONI IONICHE ALL'EQUILIBRIO INTERNO ESTERNO. K + 400 mm/l. K + 20 mm/l. Na + 440 mm/l.

GAS PERFETTO M E M B R A N A CONCENTRAZIONI IONICHE ALL'EQUILIBRIO INTERNO ESTERNO. K + 400 mm/l. K + 20 mm/l. Na + 440 mm/l. GAS PERFETTO Usando il principio di semplicità, si definisce il sistema termodinamico più semplice: il gas perfetto composto da molecole che non interagiscono fra loro se non urtandosi. Sfere rigide che

Dettagli

Leggi dei gas ideali. P V = n R T (1)

Leggi dei gas ideali. P V = n R T (1) Leggi dei gas ideali ( a cura di Raffaella Gianferri e Giuliano Moretti) (In questa prima versione non sono state inserite le foto che illustrano gli apparati sperimentali impiegati.) 1. Derivazione dell

Dettagli

Calore, temperatura e passaggi di stato

Calore, temperatura e passaggi di stato Calore, temperatura e passaggi di stato Temperatura e calore sono due concetti molto simili, al punto tale che molto spesso vengono utilizzati come sinonimi. In realtà i due termini esprimono due concetti

Dettagli

13 La temperatura - 8. Il gas perfetto

13 La temperatura - 8. Il gas perfetto La mole e l equazione del gas perfetto Tutto ciò che vediamo intorno a noi è composto di piccolissimi grani, che chiamiamo «molecole». Per esempio, il ghiaccio, l acqua liquida e il vapore acqueo sono

Dettagli

Carica positiva e carica negativa

Carica positiva e carica negativa Elettrostatica Fin dal 600 a.c. si erano studiati alcuni effetti prodotti dallo sfregamento di una resina fossile, l ambra (dal cui nome in greco electron deriva il termine elettricità) con alcuni tipi

Dettagli

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione REAZIONI ORGANICHE Variazioni di energia e velocità di reazione Abbiamo visto che i composti organici e le loro reazioni possono essere suddivisi in categorie omogenee. Per ottenere la massima razionalizzazione

Dettagli

Programma di Fisica Classe I A AFM a.s. 2014/15

Programma di Fisica Classe I A AFM a.s. 2014/15 Classe I A AFM Il metodo sperimentale. Misurazione e misura. Il Sistema Internazionale Grandezze fondamentali: lunghezza, massa e tempo. Grandezze derivate Unità di misura S.I. : metro, kilogrammo e secondo.

Dettagli

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Solvente (componente presente in maggior quantità) SOLUZIONE Soluti

Dettagli

I GAS GAS IDEALI. PV=nRT. Pressione Volume numero di moli Temperatura Costante dei gas. P V n T R. n, T= cost Legge di Boyle

I GAS GAS IDEALI. PV=nRT. Pressione Volume numero di moli Temperatura Costante dei gas. P V n T R. n, T= cost Legge di Boyle I GAS Pressione Volume numero di moli Temperatura Costante dei gas GAS IDEALI P V n T R n = 1 Isoterma: pv = cost Isobara: V/T = cost. Isocora: P/t = cost. n, T= cost Legge di Boyle n, P = cost Legge di

Dettagli

Spettroscopia atomica

Spettroscopia atomica Spettroscopia atomica La spettroscopia atomica è una tecnica di indagine qualitativa e quantitativa, in cui una sostanza viene decomposta negli atomi che la costituiscono tramite una fiamma, un fornetto

Dettagli

Chimica Fisica I. a.a. 2012/2013 S. Casassa

Chimica Fisica I. a.a. 2012/2013 S. Casassa a.a. 2012/2013 S. Casassa 1 Note Tecniche 2 Testi consigliati: G.K. Vemulapalli, Chimica Fisica", EdiSES, Napoli (1995). D.A. Mc Quarrie e J.D. Simon, Chimica Fisica: un approccio molecolare", Zanichelli,

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

Statica e dinamica dei fluidi. A. Palano

Statica e dinamica dei fluidi. A. Palano Statica e dinamica dei fluidi A. Palano Fluidi perfetti Un fluido perfetto e incomprimibile e indilatabile e non possiede attrito interno. Forza di pressione come la somma di tutte le forze di interazione

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

Unità Didattica 1. La radiazione di Corpo Nero

Unità Didattica 1. La radiazione di Corpo Nero Diapositiva 1 Unità Didattica 1 La radiazione di Corpo Nero Questa unità contiene informazioni sulle proprietà del corpo nero, fondamentali per la comprensione dei meccanismi di emissione delle sorgenti

Dettagli

Termodinamica: legge zero e temperatura

Termodinamica: legge zero e temperatura Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita

Dettagli

1. Talco (più tenero) 2. Gesso 3. Calcite 4. Fluorite 5. Apatite 6. Ortoclasio 7. Quarzo 8. Topazio 9. Corindone 10. Diamante (più duro)

1. Talco (più tenero) 2. Gesso 3. Calcite 4. Fluorite 5. Apatite 6. Ortoclasio 7. Quarzo 8. Topazio 9. Corindone 10. Diamante (più duro) 1. Lo stato solido Lo stato solido è uno stato condensato della materia; le particelle (che possono essere presenti come atomi, ioni o molecole) occupano posizioni fisse e la loro libertà di movimento

Dettagli

ENERGIA NELLE REAZIONI CHIMICHE

ENERGIA NELLE REAZIONI CHIMICHE ENERGIA NELLE REAZIONI CHIMICHE Nelle trasformazioni chimiche e fisiche della materia avvengono modifiche nelle interazioni tra le particelle che comportano sempre variazioni di energia "C è un fatto,

Dettagli