LENTI E SISTEMI DI LENTI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LENTI E SISTEMI DI LENTI"

Transcript

1 LENTI E SISTEMI DI LENTI DESCRIZIONE DELLA POSIZIONE DI UN OGGETTO Una grandezza che interviene nello studio di numerosissimi fenomeni fisici e' la POSIZIONE di un sistema di cui si vuole studiare il comportamento. Tale posizione puo' essere costante nel tempo oppure variare, ma, in ogni caso, si deve affrontare il problema di come descriverla qualitativamente e, soprattutto, di come MISURARLA quantitativamente. La posizione di un generico corpo viene definita misurando le sue COORDINATE SPAZIALI rispetto ad un PUNTO FISSO, scelto come ORIGINE delle COORDINATE, secondo direzioni ben precise, quelle degli ASSI COORDINATI. L'origine, insieme agli assi coordinati, costituisce un SISTEMA di RIFERIMENTO, rispetto al quale il corpo possiede le coordinate misurate. Esempio: su un piano, cioe' in uno spazio a 2 dimensioni, si fissi un punto O come origine e le direzioni orientate, cioe' con verso fissato, di due assi tra di loro perpendicolari, x e y, come indicato nella figura di sinistra. La posizione di un punto qualunque P del piano resta definita quando si diano le sue coordinate rispetto agli assi, A e B, ottenute proiettando perpendicolarmente sugli assi stessi il punto P. Le coordinate A e B del punto P cosi' definite, vengono dette COORDINATE CARTESIANE di P ed il sistema di riferimento, costituito dall'origine O e dagli assi x e y, viene detto SISTEMA di RIFERIMENTO CARTESIANO a 2 DIMENSIONI. Se si vuole, invece, definire la posizione di un punto P nello spazio a 3 dimensioni, sara' necessario misurare 3 coordinate, una per dimensione, e definire un sistema di riferimento con tre assi, come indicato nella figura di destra, dove e' riportato un SISTEMA di RIFERIMENTO CARTESIANO nello SPAZIO; esso e' costituito da un origine e 3 assi mutuamente ortogonali: x, y, z. Il punto P' e' la proiezione ortogonale di P sul piano

2 individuato dagli assi x e y. Nello studio dei sistemi ottici (lenti e sistemi di lenti) si e' interessati a sistemi che possono essere descritti in uno spazio unidimensionale. Per definire la posizione dei vari componenti sara', pertanto, sufficiente misurare una sola coordinata, rispetto ad un ounto di origine O, secondo la direzione di un unico asse, che chiameremo asse x. Nella figura x e' la coordinata per la lente L, x 2 per la lente L2, x 3 per lo schermo S. L L2 S O X X2 X3 Generalmente si considerano delle LENTI SOTTILI e si opera con dispositivi che permettono di misurare la coordinata del loro punto centrale, come indicato in figura. Nelle leggi che descrivono il comportamento dei sistemi ottici non intervengono, pero', direttamente le posizioni dei componenti, bensi' le loro distanze, ad esempio, la distanza d tra la lente L e lo schermo S in figura. Tale distanza e' definita, semplicemente da: d=x 3 x La sua misura non sara' pertanto diretta, ma indiretta in quanto essa prevede la misura delle coordinate x e x 3 dei due oggetti e poi l'applicazione della legge che definisce la grandezza distanza d. Di conseguenza, per esprimere l'errore sulla misura di d si dovra' tenere conto degli errori sulle misure delle posizioni x e x 3, cioe' x e x 3 ed utilizzare la formula per il calcolo dell'errore nella misura indiretta di una differenza: d= x x 3 Il valore di x e x 3 sara' la sensibilita' dello strumento di misura utilizzato, dato che si faranno per lo piu' misure singole, e, in genere, sara' x = x 3.

3 RICHIAMI TEORICI MISURE CON LENTI SOTTILI Equazione della lente sottile in approssimazione parassiale: dove: P = distanza oggetto-lente Q = distanza immagine-lente F = distanza focale P Q = F Potere diottrico di una lente: PD= F Se la distanza focale e' espressa in m il potere diottrico e' espresso in diottrie D. Dalla definizione si vede che minore la distanza focale, maggiore il potere diottrico. La relazione che lega il potere diottrico alla distanza focale e' di proporzionalita' inversa. Ingrandimento lineare trasversale: G = M I /M O = - Q/P dove M O è la dimensione trasversale dell oggetto, M I quella dell immagine. Immagine reale e immagine virtuale: quando i raggi luminosi emessi da un punto oggetto A, emergendo da un sistema ottico passano tutti effettivamente per il punto immagine A', questo e' una immagine reale di A; se si pone uno schermo in A', su questo si forma una immagine luminosa (come nel caso di una lente convergente). Se, invece, i raggi emergenti divergono ma i loro prolungamenti passano tutti per il punto A', si ha una immagine virtuale (come nel caso di una lente divergente). In questo caso, ponendo uno schermo in A', su di esso NON si formera' una immagine luminosa. Convenzione per i segni: P + (oggetto reale) per oggetti davanti alla prima superficie della lente (spazio di incidenza) - (oggetto virtuale) per oggetti dietro la prima superficie della lente (spazio di trasmissione) Q + (immagine reale) per immagini dietro la seconda superficie della

4 F G lente (spazio di trasmissione) - (immagine virtuale) per immagini davanti alla seconda superficie della lente (spazio di incidenza) + se il centro di curvatura della prima superficie della lente è nello spazio di trasmissione - se il centro di curvatura della prima superficie della lente è nello spazio di incidenza + se l immagine non è invertita rispetto all oggetto - se l immagine è invertita rispetto all oggetto Costruzione grafica delle immagini :. tracciare il raggio incidente parallelo all asse, che emerge passando per il secondo fuoco F della lente (se la lente è convergente), oppure diverge dalla lente come se provenisse dal secondo fuoco F (se la lente è divergente, cioè per F passa il prolungamento del raggio, mostrato tratteggiato in figura); 2. tracciare il raggio incidente che passa per il primo fuoco F della lente (se la lente è convergente), oppure ha il prolungamento che passa per il primo fuoco F della lente (se la lente è divergente), e che continua, oltre la lente, in direzione parallela all asse; 3. tracciare il raggio incidente che passa per il centro della lente e continua nella stessa direzione oltre la lente. Basta tracciare due qualunque dei tre raggi: all incrocio si trova l immagine. Per la lente divergente l immagine è virtuale: lo si vede perché si trova nello spazio di incidenza o anche perché si trova all incrocio dei prolungamenti dei raggi (mostrati tratteggiati) anziché all incrocio dei raggi stessi (mostrati come linee continue). P Q M O ḟ F 3 f 2 M I spazio di incidenza spazio di trasmissione ` Costruzione grafica dell immagine formata da una lente convergente

5 P M O spazio di incidenza. f M I f. 2 3 spazio di trasmissione Q F Costruzione grafica dell immagine formata da una lente divergente Sistema di due lenti addossate: P Q = F = F F dove F indica la distanza focale del sistema di due lenti, F e F 2 le distanze focali delle lenti singole. Sistema di due lenti non addossate: Per ricavare l'immagine fornita da un sistema di due lenti sottili separate si considerano le due lenti separatamente. P Q Q 2 M O M I M IF D P 2 Si scrive dapprima l'equazione per la prima lente e si determina la posizione dell'immagine fornita da essa, Q : P Q = F Questa immagine non si forma perche' i raggi raggiungono la seconda lente prima di convergere nel punto a distanza Q. L'ingrandimento lineare trasversale dovuto alla prima

6 lente sara': G = M I /M O = - Q /P. Si scrive poi l'equazione per la seconda lente, considerando come oggetto (virtuale) della seconda lente l'immagine della prima lente: in questo caso la distanza oggetto-seconda lente sara': P 2 = D - Q. P 2 Q 2 = F 2 L'ingrandimento lineare trasverso dovuto alla seconda lente e': G 2 = M I F /M I = - Q 2 /P 2 e l'ingrandimento lineare trasverso totale risulta: G = G G 2. E' fondamentale ricordare la convenzione per i segni: nel caso riportato in figura, per esempio, P, Q ed F sono positivi; P 2, invece, e' negativo perche' l'oggetto virtuale si trova nello spazio di trasmissione rispetto alla seconda lente, Q 2 e' positivo, F 2 e' negativo perche' la lente e' divergente.

7 MISURE Distanza focale di una lente convergente Cercate anzitutto di valutare la distanza focale della lente convergente puntando il fascio della lampada contro il muro opposto e cercando con la lente di focalizzare sul muro l immagine del filamento: la distanza lente-muro è circa uguale alla distanza focale. Ponete poi davanti alla sorgente la mascherina traslucida che fungerà da oggetto, disponete la lente convergente sul banco ottico e, dalla parte opposta rispetto alla lente, disponete lo schermo in modo che la sua distanza dall oggetto sia di almeno 60 cm (posizione ). Fissate lo schermo e poi muovete la lente fino a mettere a fuoco l immagine dell oggetto sullo schermo. Misurate la distanza s fra oggetto e lente e la distanza s fra lente e schermo. Calcolate la distanza focale F. Tracciate sul foglio quadrettato la costruzione grafica dell immagine. Ripetete la misura nella posizione simmetrica (scambiando P e Q). Spostate poi lo schermo di una decina di cm (posizione 2) e ripetete la misura, anche nella posizione simmetrica. Spostate poi lo schermo di altri 0 cm (posizione 3) e ripetete la misura, anche nella posizione simmetrica. Spostate infine lo schermo di altri 5 cm (posizione 4) e ripetete la misura, anche nella posizione simmetrica. Riportate tutte le misure nella tabella. Sul muro Posizione Posizione simmetrico Posizione 2 Posizione 2 simmetrico Posizione 3 Posizione 3 simmetrico Posizione 4 Posizione 4 simmetrico Misura P± P Q± Q F

8 Calcolate la media di tutte i valori di F che avete ottenuto e calcolate il suo errore come errore massimo; riportate i valori nella tabella operando gli arrotondamenti opportuni. F = F = Q ual' e' la sensibilita' dello strumento utilizzato per misurare le distanze P e Q? Come e' stato calcolato l'errore sulle misure di P e Q? Perché? Misura dell ingrandimento di una lente convergente Procedete in modo simile all esperimento precedente, ma ora oltre alle distanze P e Q misurate anche le dimensioni trasversali dell immagine,m I, e dell oggetto, M O. Eseguite la misura per le quattro posizioni della lente per le quali l immagine è a fuoco sullo schermo, riportando i dati nella tabella seguente. Pos. Misura P±?P Q±?Q M O ±?M O M M O ±?M O ±D M I Pos. simmetrico Pos. 2 Pos. 2 simmetrico Pos. 3 Pos. 3 simmetrico Pos. 4 Pos. 4 simmetrico Calcolate, per ogni posizione, il valore dell'ingrandimento trasversale G dalle misure di P e Q e dalle misure di M O e M I, riportando i dati nella tabella. Misura G(P, Q) G(M O, M I ) Pos. Pos. simmetrico Pos. 2 Pos. 2 simmetrico Pos. 3 Pos. 3 simmetrico

9 Pos. 4 Pos. 4 simmetrico Calcolate il valore medio di G(P, Q) e l'errore come errore massimo, di G(M O, M I) e l'errore come errore massimo e riportateli nella tabella, operando gli arrotondamenti opportuni: G(P,Q)= G(P,Q)= G(M O, M I)= GM O, M )= I I due valori ottenuti sono compatiili? Come lo si puo' stabilire? Qual' e' la sensibilita' dello strumento utilizzato per misurare le distanze, M O e M I? Sistema di due lenti Disponete la lente convergente come negli esercizi precedenti, con lo schermo posto alla distanza massima, nella posizione in cui Q>P. Allontanate poi la lente dall oggetto (di qualche cm): l immagine sullo schermo apparirà sfocata, perché la posizione a cui si formerebbe l immagine nitida è più vicina alla lente. Inserite allora la lente divergente fra la lente convergente e lo schermo, in modo da riportare in fuoco l immagine sullo schermo. Misurate, con errore, le posizioni: -- dell oggetto: A ± DA = -- della lente convergente: B ± DB = -- della lente divergente: C ± DC = -- dello schermo: E±DE = Ricavate dalle misure precedenti : P = B A = DP = D = C B = DD = Q 2 = E C = DQ 2= Scrivete l' equazione della prima lente: P Q = F che fornisce il valore della posizione Q a cui si è formata l immagine della prima lente:

10 Q = P F P F Sostituite i valori di P e F (misurato prima) e ricavate Q = Scrivete, poi, l'equazione della seconda lente: P 2 Q 2 = F 2 che fornisce il valore della posizione Q 2 a cui si è formata l immagine della seconda lente (si ricordi che ora P 2 = D - Q ) : Q 2 = P 2 F 2 P 2 F 2 Sostituite i valori di P 2 e F 2 (letto sulla lente) e ricavate Q 2 = Confrontate il valore di Q 2 ora calcolato con quello ricavato dalle misure. I due valori sono compatibili? Perche'? Fate la costruzione grafica dei raggi principali.

11 Candidato: Torino, 2-9 dicembre 2003 DOMANDE RIASSUNTIVE In un piano si consideri un sistema di coordinate cartesiane con origine O ed assi x, y, come quello indicato in figura. Indicare le coordinate del punto P: x= y=. Si vuole utilizzare un righello millimetrato per misurare la lunghezza del lato corto di una busta rettangolare, come indicato in figura. indicare le coordinate dei punti estremi del lato corto della busta 2. indicare l'errore che si commette nel misurare tali coordinate 3. ricavare la lunghezza voluta ed indicare il valore dell'errore della misura

12 4. dire di che tipo di misura si tratta 5. indicare il valore dell'errore sulla misura della lunghezza che si sarebbe compiuto effettuando la misura con un righello graduato a 0.5 mm. Un oggetto luminoso viene posto davanti ad una lente convergente, ad una distanza P=0 cm da essa. Sapendo che la lente ha distanza focale pari a F = 5 cm, calcolare la distanza Q dalla lente a cui si forma l'immagine dell'oggetto. Se, effettuando piu' volte la misura di tale distanza, si ottiene come risultato il valore medio: Q = (0.± 0.2) cm, si puo' dire che tale valore sia in accordo con il calcolo? Perche'? Effettuare la costruzione grafica dell'immagine dell'oggetto in figura (la freccia), fornita dalla lente convergente di distanza focale F (suggerimento: tracciare i raggi principali e 3) F F P qual e' il segno di Q? l'immagine e' reale o virtuale? l'immagine risulta ingrandita o rimpicciolita?

13 Dire qual e' il potere diottrico di una lente convergente con distanza focale F = 0 cm. Esprimere il risultato in diottrie. Con tale lente, a che distanza dietro di essa si puo' far convergere un fascio di raggi luminosi paralleli? Una lente con potere diottrico 5 D fa convergere il fascio ad una distanza maggiore o minore rispetto alla prima lente?

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT1. Ottica geometrica e polarizzazione

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT1. Ottica geometrica e polarizzazione Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT Ottica geometrica e polarizzazione. Misura della distanza focale di una lente sottile; 2. misura

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT Ottica geometrica e polarizzazione. Misura della distanza focale di una lente sottile; 2. misura

Dettagli

Lenti sottili. Lenti convergenti e divergenti

Lenti sottili. Lenti convergenti e divergenti Lenti sottili Lente: oggetto trasparente con due superfici rifrangenti luce rifrange entrando la lente e rifrange di nuovo uscendo Le due superfici sono approssimativamente sferiche con raggi r " e r #

Dettagli

SPECCHI. Dalla posizione dell'immagine non emergono raggi luminosi; essa si trova sull'immaginario prolungamento dei raggi di luce riflessa.

SPECCHI. Dalla posizione dell'immagine non emergono raggi luminosi; essa si trova sull'immaginario prolungamento dei raggi di luce riflessa. SPECCHI SPECCHI PIANI Per specchio si intende un dispositivo la cui superficie è in grado di riflettere immagini di oggetti posti davanti a essa. Uno specchio è piano se la superficie riflettente è piana.

Dettagli

Effetto convergente di uno specchio concavo: osservazione. Dimostrare la riflessione di raggi paralleli su uno specchio concavo

Effetto convergente di uno specchio concavo: osservazione. Dimostrare la riflessione di raggi paralleli su uno specchio concavo ESPERIENZA 7 Effetto convergente di uno specchio concavo: osservazione 1. Argomenti Dimostrare la riflessione di raggi paralleli su uno specchio concavo 2. Montaggio Fig. 1 3. Note al montaggio 3.1 Fissare

Dettagli

RIFLESSIONE. Riflessione - 1/17

RIFLESSIONE. Riflessione - 1/17 RIFLESSIONE Sommario Leggi della riflessione... 2 Specchi piani... 3 Specchi sferici... 6 Lunghezza focale di specchi sferici... 9 Immagine generata da specchi sferici... 11 Ingrandimento generato da specchi

Dettagli

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Ottica 1. Un fascio di luce di lunghezza λ passa attraverso una fenditura rettangolare di larghezza a. La sua immagine viene

Dettagli

ESPERIENZA 8 Effetto divergente di uno specchio convesso: osservazione

ESPERIENZA 8 Effetto divergente di uno specchio convesso: osservazione ESPERIENZA 8 Effetto divergente di uno specchio convesso: osservazione 1. Argomenti Osservare la riflessione di raggi paralleli su uno specchio convesso 2. Montaggio Fig.1. 3. Note al montaggio 3.1 Fissare

Dettagli

Definizioni riguardo alle lenti sferiche Una lente è un mezzo trasparente limitato da due superfici di cui almeno una curva.

Definizioni riguardo alle lenti sferiche Una lente è un mezzo trasparente limitato da due superfici di cui almeno una curva. 1 Le lenti Definizioni riguardo alle lenti sferiche Una lente è un mezzo trasparente limitato da due superfici di cui almeno una curva. Si chiama asse ottico della lente la retta che congiunge i centri

Dettagli

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2 OTTICA GEOMETRICA L ottica geometrica si occupa di tutta quella branca della fisica che ha a che fare con lenti, specchi, vetri e cose simili. Viene chiamata geometrica in quanto non interessa la natura

Dettagli

Formazione dell'immagine

Formazione dell'immagine Ottica geometrica Percepiamo la luce perché ci arriva direttamente dalla sorgente oppure riflessa dagli oggetti L'emissione della luce è complessa da capire, mentre la propagazione è, di solito, più semplice

Dettagli

I raggi luminosi. Per secoli si sono contrapposti due modelli della luce. il modello ondulatorio (Christiaan Huygens)

I raggi luminosi. Per secoli si sono contrapposti due modelli della luce. il modello ondulatorio (Christiaan Huygens) I raggi luminosi Per secoli si sono contrapposti due modelli della luce il modello corpuscolare (Newton) * la luce è un flusso di particelle microscopiche il modello ondulatorio (Christiaan Huygens) *

Dettagli

ONDE ELETTROMAGNETICE OTTICA LEZIONE 33

ONDE ELETTROMAGNETICE OTTICA LEZIONE 33 ONDE ELETTROMAGNETICE OTTICA LEZIONE 33 L'Ottica Geometrica è la più antica branca dell'ottica: essa studia i fenomeni ottici assumendo che la luce si propaghi mediante raggi rettilinei. Dal punto di vista

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

Microscopia (specchi, lenti, ecc.) Principio generale per cui si creano le immagini nel nostro occhio:

Microscopia (specchi, lenti, ecc.) Principio generale per cui si creano le immagini nel nostro occhio: Microscopia (specchi, lenti, ecc.) Principio generale per cui si creano le immagini nel nostro occhio: Specchi piani O e un oggetto (= sorgente di luce), nel caso piu semplice e puntiforme Immagine virtuale

Dettagli

Ottica (1/2) Ottica geometrica Lezione 17, 3/12/2018, JW ,

Ottica (1/2) Ottica geometrica Lezione 17, 3/12/2018, JW , Ottica (1/2) Ottica geometrica Lezione 17, 3/12/2018, JW 19.1-19.2, 19.5-19.7 1 1. Fronti d'onda e raggi Se lasciamo cadere un sasso in una pozza, dal punto di impatto partono onde circolari. Le circonferenze

Dettagli

LE LENTI E L OCCHIO UMANO Prof. Erasmo Modica erasmo@galois.it

LE LENTI E L OCCHIO UMANO Prof. Erasmo Modica erasmo@galois.it LE LENTI E L OCCHIO UMANO Prof. Erasmo Modica erasmo@galois.it LE LENTI E LE LORO PROPRIETÀ Una lente è uno strumento costituito da un mezzo trasparente delimitato da due superfici curve, oppure da una

Dettagli

LE LENTI GLI ELEMENTI CARATTERISTICI DI UNA LENTE

LE LENTI GLI ELEMENTI CARATTERISTICI DI UNA LENTE LE LENTI Le lenti sono corpi omogenei trasparenti costituiti da due superfici curve oppure una curva e una piana; di solito si utilizzano sistemi di lenti con superfici sferiche, attraverso cui la luce

Dettagli

Esercizi Ottica: la rifrazione

Esercizi Ottica: la rifrazione Esercizi Ottica: la rifrazione " = = = "# "# 1) Scrivere la legge di snell tra due superfici di indice di rifrazione n1 (mezzo dove parte l onda) e n2 (mezzo dove l onda arriva). Se l indice di rifrazione

Dettagli

LENTI SOTTILI. Le lenti sottili sono gli strumenti ottici più importanti tra quelli più semplici.

LENTI SOTTILI. Le lenti sottili sono gli strumenti ottici più importanti tra quelli più semplici. LENTI SOTTILI Chiamiamo lente un qualsiasi corpo trasparente limitato da due superfici curve o da una superficie piana ed una curva, in grado di trasmettere un fascio di luce focalizzandolo in modo da

Dettagli

Esperienza n 1: LENTI

Esperienza n 1: LENTI NOZIONI TEORICHE DI BASE: Approssimazione di Gauss Diottro sferico Lenti sottili Sistema di lenti Distribuzione gaussiana Propagazione degli errori Test di Student Esperienza n : LENTI Lente sottile convergente

Dettagli

Una selezione di esercizi proposti nei compiti degli anni passati

Una selezione di esercizi proposti nei compiti degli anni passati Una selezione di esercizi proposti nei compiti degli anni passati ESERCIZIO n 1 Una lente sottile di lunghezza focale f 1 = 25 cm è posta a diretto contatto con un altra il cui potere diottrico vale D

Dettagli

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile)

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile) Ottica geometrica Propagazione per raggi luminosi (pennello di luce molto sottile) All interno di un mezzo omogeneo la propagazione e rettilinea: i raggi luminosi sono pertanto rappresentati da tratti

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

d >> λ rettilinea raggio luminoso riflessione rifrazione

d >> λ rettilinea raggio luminoso riflessione rifrazione Ottica geometrica Proprietà più macroscopiche della luce d >> λ Propagazione rettilinea della luce (no diffrazione) Fondamentale concetto di raggio luminoso il cui percorso è determinato dalle leggi della

Dettagli

OTTICA (1) RIFLESSIONE E SPECCHI Lezione17, 4/12/2017, JW

OTTICA (1) RIFLESSIONE E SPECCHI Lezione17, 4/12/2017, JW OTTICA (1) RIFLESSIONE E SPECCHI Lezione17, 4/12/2017, JW 19.1-19.4 1 1. Fronti d'onda e raggi Se lasciamo cadere un sasso in una pozza, dal punto di impatto partono onde circolari. Le circonferenze indicano

Dettagli

I prolungamenti di due raggi riflessi si incrociano in un punto che diventa l'immagine dell'oggetto.

I prolungamenti di due raggi riflessi si incrociano in un punto che diventa l'immagine dell'oggetto. Riflessione e specchi Immagini reali e immagini virtuali Abbiamo applicato le leggi della riflessione per studiare le immagini che si vengono a creare in presenza di uno specchio piano. L'immagine che

Dettagli

5 Lenti e Specchi. Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali

5 Lenti e Specchi. Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Laboratorio di didattica della Fisica (III modulo): Metodologie di insegnamento del Laboratorio di Ottica Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali 5

Dettagli

Ottica Geometrica. (λà 0 trascuriamo i fenomeni di diffrazione )

Ottica Geometrica. (λà 0 trascuriamo i fenomeni di diffrazione ) Ottica Geometrica Ottica Geometrica Metodo approssimato che permette di studiare il comportamento della luce quando incontra discontinuità nello spazio in cui si propaga, nei casi in cui la lunghezza d

Dettagli

Esercizi di Fisica LB - Ottica

Esercizi di Fisica LB - Ottica Esercizi di Fisica LB - Ottica Esercitazioni di Fisica LB per ingegneri - A.A. 2003-2004 Esercizio Un sistema ottico centrato è costituito (da sinistra a destra) da una lente sottile biconcava (l indice

Dettagli

RIFLESSIONE TOTALE, DIOTTRO

RIFLESSIONE TOTALE, DIOTTRO RIFLESSIONE TOTALE, DIOTTRO 11.1. In un parallelepipedo di quarzo (n q = 1.553) è scavato un cilindro di raggio R = 10 cm ripieno di acetone (n a = 1.358). Un fascio uniforme di luce di sezione LxL = 20x20

Dettagli

ESPERIENZA 6 La legge della riflessione

ESPERIENZA 6 La legge della riflessione ESPERIENZA 6 La legge della riflessione 1. Argomenti Determinare la direzione del raggio riflesso sulla superficie di uno specchio piano a diversi angoli di incidenza. Confrontare gli angoli di incidenza

Dettagli

Lezione 12. Sistemi di Lenti. TRE Università degli Studi ROMA. Laboratorio di Calcolo per l Ottica 1/9

Lezione 12. Sistemi di Lenti. TRE Università degli Studi ROMA. Laboratorio di Calcolo per l Ottica 1/9 Lezione 12 Sistemi di Lenti 1/9 Ingrandimento angolare Abbiamo visto che quando si pone un oggetto tra il fuoco e il centro di una lente semplice, l immagine risulta Virtuale e Ingrandita. L ingrandimento

Dettagli

ESPERIMENTO SULL OTTICA. L ottica geometrica può essere considerata un metodo per la costruzione di immagini date

ESPERIMENTO SULL OTTICA. L ottica geometrica può essere considerata un metodo per la costruzione di immagini date ESPERIMENTO SULL OTTICA Introduzione L ottica geometrica può essere considerata un metodo per la costruzione di immagini date da sistemi ottici quali lenti e specchi. Essa costituisce una teoria approssimata,

Dettagli

Esperimento sull ottica

Esperimento sull ottica Esperimento sull ottica Gruppo: Valentina Sotgiu, Irene Sini, Giorgia Canetto, Federica Pitzalis, Federica Schirru, Jessica Atzeni, Martina Putzu, Veronica, Orgiu e Deborah Pilleri. Teoria di riferimento:

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

1 S/f. M = A t = A + CT = 1 S f

1 S/f. M = A t = A + CT = 1 S f Ot Una lente sottile con focale f 50 mm è utilizzata per proiettare su di uno schermo l immagine di un oggetto posto a 5 m. SI determini la posizione T dello schermo e l ingrandimento che si ottiene La

Dettagli

Interferenza da doppia fenditura

Interferenza da doppia fenditura Corso di Fisica per Scienze Biologiche A.A. 2016-17 Esperienza di laboratorio: OTTICA - ESPERIMENTO DI YOUNG Interferenza da doppia fenditura Nomi degli studenti:......... Data:... Introduzione L'obiettivo

Dettagli

La luce Pagina 1 di 12. I raggi di luce

La luce Pagina 1 di 12. I raggi di luce La luce Pagina di I raggi di luce L ottica è quella parte della fisica che studia la propagazione della luce e la sua interazione con i corpi materiali. L esperienza comune ci consente di affermare che

Dettagli

MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE

MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE La distanza focale f di una lente convergente sottile è data dalla formula: da cui 1 f = 1 p + 1 q f = pq p + q dove p e q sono, rispettivamente, le

Dettagli

LABORATORIO DI FISICA 4 relazione: misure di focometria. De Mauro Giuseppe, Degradi Pablo, Restieri Andrea

LABORATORIO DI FISICA 4 relazione: misure di focometria. De Mauro Giuseppe, Degradi Pablo, Restieri Andrea LABORATORIO DI FISICA 4 relazione: misure di focometria De Mauro Giuseppe, Degradi Pablo, Restieri Andrea Scopo dell'esperienza misura della distanza focale di una lente convergente e divergente e dei

Dettagli

Capitolo 4. Sistemi ottici

Capitolo 4. Sistemi ottici Capitolo 4 Sistemi ottici Si chiama sistema ottico un sistema di lenti e specchi, cioé dispositivi riflettenti e rifrangenti, quindi una successione di superfici riflettenti e rifrangenti che delimitano

Dettagli

I esonero di Ottica Geometria a.a compito A

I esonero di Ottica Geometria a.a compito A I esonero di Ottica Geometria a.a. 2016-17 compito A Un onda elettromagnetica piana con frequenza 5x10 12 Hz entra con incidenza normale in un mezzo spesso 10 Km. Sapendo che la luce impiega un tempo t=50

Dettagli

Il diottro : c s o t s r t u r zi z on o e gra r f a i f ca c a dell immag a ine

Il diottro : c s o t s r t u r zi z on o e gra r f a i f ca c a dell immag a ine Il diottro : costruzione grafica dell immagine Il diottro: superficie sferica che separa due mezzi con diversi indici di rifrazione Deviazione della luce sulla superficie di separazione Legge di Snell

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

o i Π = Π La forma generale è: n1/o + nu/i = n1/f1 = nu/f2 dove nu = indice di rifrazione dell ultimo mezzo Pertanto f1/f2 = n1/nu 1

o i Π = Π La forma generale è: n1/o + nu/i = n1/f1 = nu/f2 dove nu = indice di rifrazione dell ultimo mezzo Pertanto f1/f2 = n1/nu 1 Richiami di ottica geometrica: Sistema diottrico: successione di mezzi omogenei, diversamente rifrangenti, in genere delimitati da superfici sferiche Centrato: i centri di curvatura giacciono sull asse

Dettagli

Interferenza da doppia fenditura

Interferenza da doppia fenditura Corso di Fisica per Scienze Biologiche A.A. 2017-18 Esperienza di laboratorio: OTTICA - ESPERIMENTO DI YOUNG Interferenza da doppia fenditura Introduzione Lo scopo di questa esperienza di laboratorio consiste

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

OTTICA. Piano Lauree Scientifiche 1 febbraio 2013

OTTICA. Piano Lauree Scientifiche 1 febbraio 2013 OTTICA Ottica geometrica Ottica fisica Ignora il carattere ondulatorio della luce e parla di raggi luminosi che si propagano in linea retta. Fenomeni descritti dall ottica geometrica: riflessione e rifrazione

Dettagli

GLI SPECCHI SPECCHI SFERICI (CONCAVI E CONVESSI) E PIANI

GLI SPECCHI SPECCHI SFERICI (CONCAVI E CONVESSI) E PIANI GLI SPECCHI SPECCHI SFERICI (CONCAVI E CONVESSI) E PIANI Specchi sferici In approssimazione parassiale l equazione dei punti coniugati in uno specchio sferico è l: posizione oggetto (S nella figura) l

Dettagli

Tutti gli esercizi della verifica di Ottobre più altri

Tutti gli esercizi della verifica di Ottobre più altri 1) Nell equazione generica della retta y = mx + q, che cosa rappresenta q? 2) Scrivere l equazione della retta che passa per il punto A(0;4) e perpendicolare a quella di equazione y = 1 3 x 5 ; b. tracciare

Dettagli

1 p. 1 q 1 R. altrimenti se il mezzo circostante ha un indice di rifrazione n 0. , al posto di n si deve usare

1 p. 1 q 1 R. altrimenti se il mezzo circostante ha un indice di rifrazione n 0. , al posto di n si deve usare 2 Lenti Le lenti sono costituite da un mezzo rifrangente, di indice di rifrazione n, omogeneo, delimitato da superfici sferiche nel caso in cui il mezzo circostante é l aria: l equazione delle lenti é

Dettagli

OTTICA DELLA VISIONE. Disegno schematico dell occhio umano

OTTICA DELLA VISIONE. Disegno schematico dell occhio umano OTTICA DELLA VISIONE Disegno schematico dell occhio umano OTTICA DELLA VISIONE Parametri fisici Raggio di curvatura (cm) Cornea 0.8 Anteriore del cristallino Posteriore del cristallino.0 0.6 Indice di

Dettagli

ESERCIZI DI OTTICA GEOMETRICA

ESERCIZI DI OTTICA GEOMETRICA ESERCIZI DI OTTICA GEOMETRICA Prima di ogni argomento sono raccolte alcune formule utili, e non banali, per lo svolgimento degli esercizi. Si presuppongono lo studio e la comprensione teorica delle stesse.

Dettagli

Lezione 7 Specchi Sferici Concavi, Convessi e Piani

Lezione 7 Specchi Sferici Concavi, Convessi e Piani Lezione 7 Specchi Sferici Concavi, Convessi e Piani 1/13 Per determinare l immagine prodotta da uno specchio è necessario applicare la legge della riflessione di Snell Angolo di incidenza (misurato rispetto

Dettagli

Titolo: Occhiali da vista

Titolo: Occhiali da vista Plan Titolo: Occhiali da vista Argomenti: Occhiali da vista Tempo: 90 minuti (2 lezioni) Età:15 16 anni Differenziazione: Linee guida, supporti ICT, etc.: Agli alunni più capaci può essere richiesto di

Dettagli

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Ottica 28/2/2006

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Ottica 28/2/2006 a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Ottica 28/2/2006 Leggi dell ottica 1. Il raggio incidente, il raggio riflesso e il raggio rifratto giacciono sullo stesso piano 2.

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

MISURE DI OTTICA GEOMETRICA CON UN BANCO OTTICO

MISURE DI OTTICA GEOMETRICA CON UN BANCO OTTICO MISURE DI OTTICA GEOMETRICA CON UN BANCO OTTICO Il materiale a disposizione consiste in un banco ottico, una sorgente luminosa, alcuni corpi ottici (lenti di plexiglass, prisma a base trapezoidale in plexiglass,

Dettagli

OTTICA GEOMETRICA. L ottica geometrica è valida quando la luce interagisce solo con oggetti di dimensioni molto maggiori della sua lunghezza d onda.

OTTICA GEOMETRICA. L ottica geometrica è valida quando la luce interagisce solo con oggetti di dimensioni molto maggiori della sua lunghezza d onda. Un raggio di luce si propaga rettilineamente in un mezzo omogeneo ed isotropo con velocità: c v =, n > 1 n OTTICA GEOMETRICA L ottica geometrica è valida quando la luce interagisce solo con oggetti di

Dettagli

Lezione 3 Lenti sottili e diagrammi a raggi Equazioni delle lenti sottili e ingrandimento Equazione del costruttore di lenti

Lezione 3 Lenti sottili e diagrammi a raggi Equazioni delle lenti sottili e ingrandimento Equazione del costruttore di lenti Corso di in Dr. Andrea Malizia Equazioni delle lenti sottili e ingrandimento Equazione del costruttore di lenti lente: corpo delimitato da superfici curve che rifrangono la luce creando un immagine asse

Dettagli

Istituto. Nome. Data Docente. Original site: Italian site:

Istituto. Nome. Data Docente. Original site:  Italian site: Istituto Nome Data Docente Original site: http://webphysics.davidson.edu/applets/optics/ Italian site: http://ww2.unime.it/weblab/ Studio della costruzione delle immagini con le lenti Questo documento

Dettagli

5 Fondamenti di Ottica

5 Fondamenti di Ottica Laboratorio 2B A.A. 2012/2013 5 Fondamenti di Ottica Formazione immagini Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Ottica geometrica In ottica geometrica si analizza la formazione

Dettagli

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE Scopo dell esperimento: studiare l ottica geometrica e i fenomeni di diffrazione MATERIALE A DISPOSIZIONE: 1 banco ottico 1 blocco di plexiglass 2 lenti con

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 21 giugno 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 21 giugno 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) giugno 08 Problema Due lenti sottili, biconvesse e simmetriche, hanno raggio di curvatura R = 0.0 cm e indice di rifrazione n =.5. Queste

Dettagli

Misure di fenomeni di aberrazione di una lente

Misure di fenomeni di aberrazione di una lente Padova, gennaio 00 Misure di fenomeni di aberrazione di una lente Indicare il numero identificativo e le caratteristiche geometriche della lente utilizzata: Lente num. =... Spessore =... Spigolo =... Indice

Dettagli

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II 1. (a.a. 2002-2003 e 2001-2002) Prova scritta del 22/06/2004 Qual è la probabilità che, in 6 lanci, due dadi diano la somma 9 (a) una volta,

Dettagli

VISIONE_01 OTTICA GEOMETRICA. FGE aa

VISIONE_01 OTTICA GEOMETRICA. FGE aa VISIONE_01 OTTICA GEOMETRICA FGE aa.2015-16 OBIETTIVI Principi di refrazione delle lenti, indice di refrazione Lenti biconcave e lenti biconvesse, fuoco principale e distanza focale Potere refrattivo di

Dettagli

Lenti. Capitolo Lenti sottili

Lenti. Capitolo Lenti sottili Capitolo 3 Lenti 3. Lenti sottili Indichiamo con il termine lente un sistema ottico costituito da materiale trasparente e omogeneo limitato da due superfici che possono essere entrambe sferiche oppure

Dettagli

09/10/15. 1 I raggi luminosi. 1 I raggi luminosi. L ottica geometrica

09/10/15. 1 I raggi luminosi. 1 I raggi luminosi. L ottica geometrica 1 I raggi luminosi 1 I raggi luminosi Per secoli si sono contrapposti due modelli della luce il modello corpuscolare (Newton) la luce è un flusso di particelle microscopiche il modello ondulatorio (Christiaan

Dettagli

FISICA. CdS Scienze Biologiche. Stefania Spagnolo. Dip. di Matematica e Fisica Ennio De Giorgi

FISICA. CdS Scienze Biologiche. Stefania Spagnolo. Dip. di Matematica e Fisica Ennio De Giorgi FISICA CdS Scienze Biologiche Stefania Spagnolo Dip. di Matematica e Fisica Ennio De Giorgi http://www.dmf.unisalento.it/~spagnolo stefania.spagnolo@le.infn.it (please, usate oggetto/subject: CdSBiologia)

Dettagli

Focometria Relazione sperimentale

Focometria Relazione sperimentale 1 Relazione sperimentale Lo scopo di questa esperienza è quello di ottenere la distanza focale di lenti convergenti e divergenti mediante differenti approcci di misura. Inizialmente considereremo le lenti

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

I- Visione, lenti, microscopio

I- Visione, lenti, microscopio AA 20/202 Corso di Basi Fisiche Prof Tommaso Bellini I- Visione, lenti, microscopio Formare un immagine Ingredienti: -Luce - Supporto dell immagine - retina - pellicola fotografica - sensore macchina fotografica

Dettagli

Lezione 22 - Ottica geometrica

Lezione 22 - Ottica geometrica Lezione 22 - Ottica geometrica E possibile, in certe condizioni particolari, prescindere dal carattere ondulatorio della radiazione luminosa e descrivere la propagazione della luce usando linee rette e

Dettagli

Ottica geometrica con il Cabri géomètre II (pubblicato su CABRIRRSAE n. 34 gen 2003)

Ottica geometrica con il Cabri géomètre II (pubblicato su CABRIRRSAE n. 34 gen 2003) Ottica geometrica con il Cabri géomètre II (pubblicato su CABRIRRSAE n. 34 gen 003) Autore: Pietro Romano E-mail: pr.romano@tin.it Sede di servizio: Liceo Scientifico Statale Leonardo Via Veneto s.n.c.

Dettagli

I Esonero di Elementi di Ottica del 13/06/2011

I Esonero di Elementi di Ottica del 13/06/2011 I Esonero di Elementi di Ottica del 13/06/2011 1) L onda elettromagnetica piana sinusoidale di frequenza f= 100 khz emessa da un sottomarino in superficie, si propaga orizzontalmente sia nell aria che

Dettagli

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Esperimenti principali relativi all ottica eseguiti sul banco ottico U17145 Istruzioni per l uso 5/11/ALF/MEC 1. Panoramica degli esperimenti Esperimento 1: Dimostrazione di diversi

Dettagli

Ottica Geometrica. Lente sottile (caso ideale):

Ottica Geometrica. Lente sottile (caso ideale): Lente sottile (caso ideale): Sistema Ottico Centrato composto da 2 diottri separati da distanza trascurabile rispetto alle altre distanze in gioco dalla reversibilità nel caso di lente (n 1 ) nello stesso

Dettagli

Misurare la lunghezza focale di uno specchio Newton

Misurare la lunghezza focale di uno specchio Newton Misurare la lunghezza focale di uno specchio Newton Da gerlos http://gerlos.altervista.org/misurare-lunghezza-focale-specchio-newton In questa pagina mostro un semplice metodo per misurare la lunghezza

Dettagli

Matematica Lezione 6

Matematica Lezione 6 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 6 Sonia Cannas 25/10/2018 Retta passante per un punto e direzione assegnata Data l equazione di una retta in forma esplicita y = mx

Dettagli

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Set dimostrativo di ottiche per laser U17300 e set supplementare Istruzioni per l uso 1/05 ALF Sommario Pagina N. esp. Esperimento Kit da utilizzare 1 Introduzione 2 Fornitura 3 E1

Dettagli

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2 Corso di Laurea in Astronomia Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA A.A. 01-013 Indice 1 Introduzione 5 1.1 Indice di rifrazione.............................. 5 1. Riflessione e rifrazione............................

Dettagli

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Set dimostrativo di ottiche per laser Set supplementare Istruzioni per l uso 06/18 ALF Sommario Pagina 1 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 N. esp. E1

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 2 novembre 2017

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 2 novembre 2017 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) novembre 07 Problema Quattro sorgenti identiche di onde elettromagnetiche (λ = 3.0 cm) puntiformi, di potenza P =.0 W, sono disposte

Dettagli

LA FORMAZIONE DELLE IMMAGINI

LA FORMAZIONE DELLE IMMAGINI LA FORMAZIONE DELLE IMMAGINI I nostri occhi, i microscopi, i telescopi, le macchine fotografiche etc. utilizzano la riflessione e la rifrazione per formare le immagini che forniscono una rappresentazione

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Coordinate Cartesiane

Coordinate Cartesiane - - Coordinate Cartesiane Su di una retta r consideriamo un punto, detto origine, un verso positivo indicato con una freccia ed un segmento unitario U. In questo caso la retta r dicesi asse delle ascisse

Dettagli

Strumenti ottici Gli strumenti ottici sono sistemi ottici progettati allo scopo di aumentare il potere risolutivo dell'occhio. Trattiamo per primo,

Strumenti ottici Gli strumenti ottici sono sistemi ottici progettati allo scopo di aumentare il potere risolutivo dell'occhio. Trattiamo per primo, Strumenti ottici Gli strumenti ottici sono sistemi ottici progettati allo scopo di aumentare il potere risolutivo dell'occhio. Trattiamo per primo, come strumento ottico proprio l occhio. Schema dell occhio

Dettagli

Dr. Andrea Malizia Prof. Maria Guerrisi

Dr. Andrea Malizia Prof. Maria Guerrisi 1 Dr. Andrea Malizia Prof. Maria Guerrisi Parte 2 Indice di rifrazione e legge di Snell Riflessione totale e sua applicazione alle fibre ottiche Lenti sottili e diagrammi a raggi Equazioni delle lenti

Dettagli

1 LENTE SPESSA Calcoliamo la matrice dei raggi di una lente spessa, ovvero di una lente in cui non sia possibile trascurare la propagazione interna tr

1 LENTE SPESSA Calcoliamo la matrice dei raggi di una lente spessa, ovvero di una lente in cui non sia possibile trascurare la propagazione interna tr 1 LENTE SPESSA Calcoliamo la matrice dei raggi di una lente spessa, ovvero di una lente in cui non sia possibile trascurare la propagazione interna tra le due rifrazioni. In analogia al caso di lente sottile,

Dettagli

25 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

25 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Appunti per la classe terza. Geometria Analitica

Appunti per la classe terza. Geometria Analitica Istituto Professionale L. Lagrange Torino A.S. 008-009 Appunti per la classe terza Geometria Analitica Autore: Di Liscia Francesca Indice 1 Piano cartesiano 1.1 Punto medio......................................

Dettagli

Percorso ottico attraverso un corpo semicircolare: osservazione. Studio del cammino dei raggi di luce attraverso un corpo semicircolare

Percorso ottico attraverso un corpo semicircolare: osservazione. Studio del cammino dei raggi di luce attraverso un corpo semicircolare ESPERIENZA 4 Percorso ottico attraverso un corpo semicircolare: osservazione 1 Argomenti Studio del cammino dei raggi di luce attraverso un corpo semicircolare 2 Montaggio Fig. 1 3 Note al montaggio 3.1

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

Corso di Laurea in Ottica e Optometria Laboratorio di Ottica Geometrica

Corso di Laurea in Ottica e Optometria Laboratorio di Ottica Geometrica Corso di Laurea in Ottica e Optometria Laboratorio di Ottica Geometrica Richiami teorici Equazione della lente sottile in approssimazione parassiale: p + q = () f dove: p = distanza oggetto-lente q = distanza

Dettagli