ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 17 gennaio Soluzioni compito 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 17 gennaio Soluzioni compito 1"

Transcript

1 ANALISI MATEMATICA II Sapiena Univerità di Roma - Laurea in Ingegneria Informatica Eame del 7 gennaio 07 - Soluioni compito E Calcolare il eguente integrale di funione di variabile reale con i metodi della variabile complea Vale co x = Ree ix ) Scriviamo perciò cox) x 4)x ) dx co x x 4)x ) dx = Re R e ix ) x 4)x ) dx Per calcolare l integrale a valore principale e ix R x 4)x) dx chiamiamo ora f) = e i 4)) l etenione complea dell integranda La funione f) ha ingolarità per gli eri del denominatore, cioè 0 =, = i e = i, tutti poli emplici Utiliando il lemma di Jordan, il teorema dei reidui per la ingolarità a parte immaginaria poitiva e il lemma del polo emplice per la ingolarità 0 i trova e ix ) x 4)x ) dx = π i ref), ) π i ref), 0 ) = πi e 8 4i) e i, 80 vito che i due reidui valgono e i ref), ) = i) ) = e ii 4i i) = e 8 4i = e 8 4i) ; 80 ref), 0 ) = ei = e i = co ) i en ) = co) i en ) L integrale cercato vale allora )) co x x dx = Re πi e 8 4i) e i = π ) 4)x ) 80 0 e en E Dire in quale regione del piano compleo converge la eguente erie di Laurent e calcolarne la omma k= k i) k Speando la parte regolare e quella ingolare i trova, e cambiando nella econda gli indici k in m k=0 ) k i k= k i) k = k=0 Poiamo riconocere due erie geometriche, la prima di ragione ) k i m= m i) m i e la econda di ragione i)

2 Riguardo la parte regolare, il dico di convergena i può trovare imponendo la condiione, che ci dà convergena per < i = 0 Per la parte ingolare chiediamo invece i) che ci dà la condiione > i = 0 La erie di Laurent converge allora nella corona intereione dei due iniemi di convergena C 0, 0 0) = { C : < < } 0 0 < <, In queto inieme la erie ha allora per omma la omma della parte regolare e di quella della parte regolare, per cui troviamo: k= k i) k = i i) i) E Calcolare il egnale yt) che riolve il eguente problema y t) t 0 yτ) dτ = t 0 y0) = 0 y 0) = Traformando entrambi i membri i trova Quindi troviamo la Y ) come ) Y ) = Y ) Y ) = i i i), C 0, 0 0) = Y ) = = ) ) =, dove = e i π = i e = e i 4 π = i Gli eri del denominatore ono infatti le tre radici cubiche dell unità: 0 = oltre e appena dette Per invertire Y ) poiamo utiliare i reidui e t ) rebig ) ), = lim e t ) ) ) = e i e t ) re ) ), = lim ) ) ) = e i Troviamo quindi yt) come omma dei due reidui calcolati: e yt) = e t i t e i i e t t ) i i )t )t ) = e t en t = e t = e t e i t i i ; e i t i

3 D i) Definiione di ero di una funione analitica f) e di ordine di uno ero Definiione di punto ingolare iolato di una funione analitica f) Facoltativo: Claificaione dei punti ingolari di una funione f) ii) Dire per quali valori di h Z Z interi relativi) la funione f) definita da f) = en h ) ha in 0 = 0 un punto ingolare Per i valori di h trovati, pecificare il tipo di punto ingolare e calcolare il reiduo di f) nel punto 0 = 0 Dire per quali valori di h la funione f) ha uno ero, pecificandone l ordine ii) Per i valori h < 0 la funione f) ha in 0 una ingolarità eeniale viluppo del eno e la otituione h = k > 0 i trova la crittura Infatti utiliando lo f) = ) n h ) n) n )! n=0 = ) n k ) n) n )! n=0 che ha infiniti termini ingolari con coefficiente non nullo Oervando che il coefficiente c del termine di grado è empre uguale a ero i conclude che il reiduo di f) in 0 in queti cai è empre nullo Per h = 0 la funione è f) = en, ne egue che la funione ha in queto cao un polo emplice in 0, e il reiduo in 0 è en Per i valori h > 0, otituendo lo viluppo di en h = n 0, troviamo lo viluppo n )! ) n hn) f) = Se ne egue che in queti cai 0 = 0 è una ingolarità eliminabile n )! n 0 Dallo viluppo i vede inoltre che in queti cai il prolungamento analitico della funione in 0 ha ) n hn) uno ero di ordine h D i) Definire quando una funione f generalmente continua e π-periodica è ommabile e quando è di quadrato ommabile in un intervallo di periodicità Dimotrare che e f è di quadrato ommabile, allora è ommabile Facoltativo: Provare con un eempio che non vale il vicevera

4 ii)data la funione ft) periodica di periodo π e definita in [0, π) come e t t 0, π) en t t π, π) ft) = a t = 0 b t = π con a e b parametri reali, determinare i valori di a e b in modo che la erie di Fourier di ft) converga ad ft) in ogni punto t R i) Facoltativo È ufficiente coniderare ft) definita ull intervallo [0, π] come t α, per < α < ii) La funione è regolare a tratti Utiliando il teorema di convergena puntuale ulla erie di Fourier, bata prendere a = f0 ) f0 ) = fπ ) f0 ) b = fπ ) fπ ) per ottenere convergena puntuale ad f t R = eπ = e0 = 4

5 ANALISI MATEMATICA II Sapiena Univerità di Roma - Laurea in Ingegneria Informatica Eame del 7 gennaio 07 - Soluioni compito E Calcolare il eguente integrale di funione di variabile reale con i metodi della variabile complea Vale en x = Ime ix ) Scriviamo perciò en x) x )x ) dx en x x )x ) dx = Im R e ix ) x )x ) dx Per calcolare l integrale a valore principale e ix R x )x ) dx chiamiamo ora f) = e i ) ) l etenione complea dell integranda La funione f) ha ingolarità per gli eri del denominatore ) ), cioè 0 =, = i e = i, tutti poli emplici Utiliando il lemma di Jordan, il teorema dei reidui per la ingolarità a parte immaginaria poitiva e il lemma del polo emplice per la ingolarità 0 i trova e ix x )x ) dx = π i ref), ) π i ref), 0 ) = πi vito che i due reidui valgono ref), ) = e i i) ) = e i ii ) = ref), 0 ) = ei 0 0 = ei L integrale cercato vale allora en x) x dx = Im πi e 4i) )x ) 0 e 4i) 0 e 4i = e 4i) 0 co i en = )) ei = π ) e co ; ) ei, E omma Dire in quale regione del piano compleo converge la eguente erie di Laurent e calcolarne la k= k i) k Speando la parte regolare e quella ingolare i trova, e cambiando nella econda gli indici k in m k=0 ) k i k= k i) k = k=0 Poiamo riconocere due erie geometriche, la prima di ragione ) k i m= m i) m i e la econda di ragione i)

6 Riguardo la parte regolare, il dico di convergena i può trovare imponendo la condiione i <, che ci dà convergena per < i = Per la parte ingolare chiediamo invece <, che i) ci dà la condiione > i = La erie di Laurent converge allora nella corona intereione dei due iniemi di convergena C, 0) = { C : < < } In queto inieme la erie ha allora per omma la omma della parte regolare e di quella della parte regolare, per cui troviamo: k= k i) k = i i) i) E Calcolare il egnale yt) che riolve il eguente problema y t) t 0 yτ) dτ = t 0 y0) = 0 y 0) = Traformando entrambi i membri i trova Quindi troviamo la Y ) come ) Y ) = Y ) Y ) = i i i), C, 0) = Y ) = = ) ) =, dove = e i π = i e = e i π = i Gli eri del denominatore ono infatti le tre radici cubiche di : 0 = oltre e appena dette Per invertire Y ) poiamo utiliare i reidui e t ) re ) ), e t ) re ) ), e t i = lim ) ) ) = e i = lim ) ) ) = e i Troviamo quindi yt) come omma dei due reidui calcolati: e yt) = e t i t e i i t e t ) i )t )t ) = e t en t = e t = e t e i t i ; e i t i 6

7 D i) Definiione di ero di una funione analitica f) e di ordine di uno ero Definiione di punto ingolare iolato di una funione analitica f) Facoltativo: Claificaione dei punti ingolari di una funione f) ii) Dire per quali valori di h Z Z interi relativi) la funione f) definita da f) = co h )) ha in 0 = 0 un punto ingolare Per i valori di h trovati, pecificare il tipo di punto ingolare e calcolare il reiduo di f) nel punto 0 = 0 Dire per quali valori di h la funione f) ha uno ero, pecificandone l ordine ii) Per i valori h < 0 la funione f) ha in 0 una ingolarità eeniale viluppo del coeno e la otituione h = k > 0 i trova la crittura Infatti utiliando lo f) = ) n h ) n) n)! n= = ) n kn n)! n= che ha infiniti termini ingolari con coefficiente non nullo Oervando che il coefficiente c del termine di grado è empre uguale a ero i conclude che il reiduo di f) in 0 in queti cai è empre nullo Per h = 0 la funione è f) = co ), ne egue che la funione ha in queto cao un polo emplice in 0, e il reiduo in 0 è co Per i valori h > 0, otituendo lo viluppo di co = ) n h ) n), troviamo lo viluppo n)! n= n hn f) = ) n)! Se ne egue che in queti cai 0 = 0 è una ingolarità eliminabile n= Dallo viluppo i vede inoltre che in queti cai il prolungamento analitico della funione in 0 ha uno ero di ordine h D i) Definire quando una funione f generalmente continua e π-periodica è ommabile e quando è di quadrato ommabile in un intervallo di periodicità Dimotrare che e f è di quadrato ommabile, allora è ommabile Facoltativo: Provare con un eempio che non vale il vicevera 7

8 ii)data la funione ft) periodica di periodo π e definita in [0, π) come t t 0, π) co t t π, π) ft) = a t = 0 b t = π con a e b parametri reali, determinare i valori di a e b in modo che la erie di Fourier di ft) converga ad ft) in ogni punto t R i) Facoltativo È ufficiente coniderare ft) definita ull intervallo [0, π] come t α, per < α < ii) La funione è regolare a tratti Utiliando il teorema di convergena puntuale ulla erie di Fourier, bata prendere a = f0 ) f0 ) = fπ ) f0 ) b = fπ ) fπ ) per ottenere convergena puntuale ad f t R = π = 0 = 8

METODI MATEMATICI PER INGEGNERIA

METODI MATEMATICI PER INGEGNERIA POLITECNICO DI TORINO DIPLOMA TELEDIDATICO IN INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA ELETTRONICA TELETRUCK batterie di tet per METODI MATEMATICI PER INGEGNERIA maro 999 a cura di Anna Roa SCARAFIOTTI

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 6 febbraio 206 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, il seguente integrale

Dettagli

dove x 0 R n è fissato.

dove x 0 R n è fissato. AMMISSIONE AL QUARTO ANNO: prova di ANALISI MATEMATICA (matematici e fiici) 26 Sia α (, ) (a) Provare che eite c α >, indipendente da t e, tale che (b) Calcolare c /2 (t σ) α (σ ) α dσ = c α, t, () (c)

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 10 giugno Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 10 giugno Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 0 giugno 06 - Soluzioni compito E Si trovi l insieme di definizione I, di convergenza puntuale A e la funzione

Dettagli

Esame di Metodi Matematici per l Ingegneria

Esame di Metodi Matematici per l Ingegneria Eame di Metodi Matematici per l Ingegneria Prof. M. Bramanti Politecnico di Milano, A.A. 5/6 Secondo Appello. 6 febbraio 5. Cognome: Nome N matr. o cod. perona: Domande di teoria ripondere a tre domande

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 7 febbraio Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 7 febbraio Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 7 febbraio 7 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, cos(z ) dz dove é

Dettagli

Esercitazione sulla trasformata di Laplace

Esercitazione sulla trasformata di Laplace Eercitazione ulla traformata di aplace 3 febbraio 03 Eercizio 0 Calcolare la traformata di aplace dei egnali cauali definiti da e 0 < t

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (2)

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (2) Corso di Metodi Matematici per l Ingegneria A.A. 16/17 Esercii svolti sulle funioni di variabile complessa ) Marco Bramanti Politecnico di Milano November 4, 16 Calcolo di integrali in C mediante la definiione,

Dettagli

Esercizio 1. Calcolare per n Z z 2. Soluzione: Per n 0 si ha che l integrale é nullo per il teorema integrale di Cauchy. Per n = 1 si ha che 2

Esercizio 1. Calcolare per n Z z 2. Soluzione: Per n 0 si ha che l integrale é nullo per il teorema integrale di Cauchy. Per n = 1 si ha che 2 Sapienza - Università di Roma Facoltà di Ingegneria - A.A. -4 Esercitazione per il corso di Metodi Matematici per l Ingegneria (Docente Daniela Giachetti) a cura di Ida de Bonis Esercizio. Calcolare per

Dettagli

SEGNALI E SISTEMI 31 agosto 2017

SEGNALI E SISTEMI 31 agosto 2017 SEGNALI E SISTEMI 31 agoto 2017 Eercizio 1. [3+3+3+4 punti] Si conideri il modello ingreo/ucita LTI e cauale decritto dalla eguente equazione differenziale: dove a è un parametro reale. d 2 v(t) 2 +(1

Dettagli

Matematica Applicata Tutoraggio 3. in serie di Laurent nella corona circolare 0 < z 1 < 2.

Matematica Applicata Tutoraggio 3. in serie di Laurent nella corona circolare 0 < z 1 < 2. Serie di Laurent Esercizio Sviluppare z 2 in serie di Laurent nella corona circolare 0 < z < 2. Soluzione con il calcolo dei coefficienti. Scomponendo f(z) in frazioni semplici, si ha ( 2 z ) z + il primo

Dettagli

METODI MATEMATICI PER L INGEGNERIA - A.A Primo appello del 9/6/2010. e 2ix dx = e ix 2 dx = t e it dt = [ it e it e it ] π/2

METODI MATEMATICI PER L INGEGNERIA - A.A Primo appello del 9/6/2010. e 2ix dx = e ix 2 dx = t e it dt = [ it e it e it ] π/2 METODI MATEMATICI PER L INGEGNERIA - A.A. 29- Primo appello del 9/6/2 Risolvere i seguenti esercizi, spiegando il procedimento usato. Calcolare la proiezione in L 2 π 2, π 2 di xt = t sul sottospazio generato

Dettagli

Il Luogo delle Radici

Il Luogo delle Radici Il Luogo delle Radici Il luogo delle radici è un procedimento, otanzialmente grafico, che permette di analizzare come varia il poizionamento dei poli di un itema di controllo in retroazione al variare

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo ANALISI COMPLESSA .6 Calcolo di integrali definiti mediante il teorema dei residui Il teorema dei residui (.33) è di grande utilità perché permette non solo di calcolare integrali naturalmente

Dettagli

Esercitazione sulle serie di Fourier

Esercitazione sulle serie di Fourier Esercitazione sulle serie di Fourier 3 novembre. Calcolo dei coefficienti di Fourier e di somme di serie speciali Esercizio. Si consideri il segnale u : R R, -periodico, definito nell intervallo, π, da

Dettagli

Esercizio 1. (i) Si dia la definizione di successione delle somme parziali per una serie di funzioni. (ii) Data la serie n + 1.

Esercizio 1. (i) Si dia la definizione di successione delle somme parziali per una serie di funzioni. (ii) Data la serie n + 1. Sapienza - Università di Roma Facoltà di Ingegneria - A.A. 0-04 Esercitazione per il corso di Metodi Matematici per l Ingegneria a cura di Daniela Giachetti Esercizio. (i) Si dia la definizione di successione

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercii. METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 30 APRILE 05 ESERCIZIO (PUNTEGGIO: 4/30) Si studi il comportamento dell integrale in valore principale al variare

Dettagli

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso.

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso. 5 Luglio 3 econda prova Sia dato un itema dinamico con funzione di traferimento G(), i cui diagrammi di Bode, del modulo e della fae, ono di eguito rappreentati: 6 Bode Diagram Phae (deg) Magnitude (db)

Dettagli

K c s h. P(s) 1/K d. U(s) + Y(s)

K c s h. P(s) 1/K d. U(s) + Y(s) Eame di Fondamenti di Automatica Coro di Laurea Vecchio Ordinamento in Ingegneria Elettronica febbraio 3 Compito A Cognome: Nome Matricola: Email:. Ricavare la funzione di traferimento tra u ed y nel eguente

Dettagli

Trasformazione di Laplace

Trasformazione di Laplace Traformazione di Laplace Gabriele Sicuro. Definizioni fondamentali Sia data una funzione f : C; ea i dice originale e ono oddifatte le eguenti condizioni: () f (t) per t

Dettagli

Lezione 2 - Algebra. x + 1 x 2 a b + b a 2. Problema 2 Siano a, b, c R, provare che

Lezione 2 - Algebra. x + 1 x 2 a b + b a 2. Problema 2 Siano a, b, c R, provare che Lezione - Algebra Problema 1 Siano a, b R +, dimotrare che a b + b a Soluzione: Poniamo x = a, oerviamo che b (x 1) 0 x x + 1 0 x + 1 x dato che x > 0, poiamo dividere ambo i membri per x, otteniamo: Problema

Dettagli

Errori e cifre significative. Incontro iniziale LAB2GO

Errori e cifre significative. Incontro iniziale LAB2GO Errori e cifre ignificative Incontro iniziale LABGO La ditribuzione gauiana f tinyurl.com/labcalcquiz Propagazione degli errori Miure dirette: la grandezza fiica viene miurata direttamente (ad e. Speore

Dettagli

ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI. corso: Teoria dei Circuiti. docente: Stefano PASTORE. 1 Esempio di tableau dinamico (tempo e Laplace)

ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI. corso: Teoria dei Circuiti. docente: Stefano PASTORE. 1 Esempio di tableau dinamico (tempo e Laplace) ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI coro: Teoria dei Circuiti docente: Stefano PASTORE 1 Eempio di tableau dinamico (tempo e Laplace) 1.1 Dominio del tempo Conideriamo il eguente circuito dinamico

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c ; P 1 1( ( + 4 ; P ( ( + ( + 3 ;

Dettagli

Esercitazione sui numeri complessi

Esercitazione sui numeri complessi . Esponeniali e logaritmi. Sviluppi in serie di potene 3. Singolarità e residui 4. Integrali su circuiti semplici. Esponeniali e logaritmi Esercitaione sui numeri complessi February 7, 03 Eserciio. Calcolare

Dettagli

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2 Analisi Matematica II 6 aprile 07 Cognome: Nome: Matricola:. (0 punti) Si consideri la seguente corrispondenza tra R ed R f(x, y) = Determinare l insieme di definizione A R di f e sin[π(x + y /5)] x +

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c 2 ; P 1 1( ( + 4 ; P 2 ( ( + 1 (

Dettagli

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2016 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2016 A.A. 2016/2017. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 6 A.A. 6/7. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria

Dettagli

Complementi di Matematica - Ingegneria Energetica/Elettrica/Sicurezza Prova scritta intermedia del 7 dicembre nx 1 + n α x 2.

Complementi di Matematica - Ingegneria Energetica/Elettrica/Sicurezza Prova scritta intermedia del 7 dicembre nx 1 + n α x 2. Complementi di Matematica - Ingegneria Energetica/Elettrica/Sicurezza Prova scritta intermedia del 7 dicembre 7. Si consideri la successione di funzioni f n, dove f n : [, [ R è definita da e dove α >

Dettagli

Funzioni razionali proprie

Funzioni razionali proprie Funzioni razionali proprie Riga 5: P n P αk αkt n e = R α k k k e = = Q Q' α k α t k P e Q ono polinomi di Il grado di P è inferiore a quello di Q α k k=,..n ono gli zeri tutti emplici di Q R α = P α α

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. 1 Dom Es. 1 Es. Es. 3 Es. 4 Totale Analisi e Geometria 1 Primo appello 16 febbraio 16 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola:

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. 1 Dom Es. 1 Es. Es. 3 Es. 4 Totale Analisi e Geometria 1 Primo appello 16 febbraio 016 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola:

Dettagli

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode 1 Coro di Fondamenti di Automatica A.A. 015/16 Diagrammi di Bode Prof. Carlo Coentino Dipartimento di Medicina Sperimentale e Clinica Univerità degli Studi Magna Graecia di Catanzaro tel: 0961-3694051

Dettagli

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A)

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A) Politecnico di Milano, Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 216 Terza parte (Compito A) Sia data, per ogni valore del parametro reale

Dettagli

Trasformata di Laplace

Trasformata di Laplace Traformata di Laplace In matematica e in particolare nell'analii funzionale la traformata di Laplace di una funzione f (t ) (definita per tutti i numeri reali e localmente integrabile) è la funzione F

Dettagli

Teorema dei residui: applicazioni

Teorema dei residui: applicazioni Teorema dei residui: applicazioni Docente:Alessandra Cutrì ichiamo: Teorema dei residui Teorema dei esidui:sia f H(A \ {z, z 2,... z N }), z, z 2,... z N singolarità isolate per f e sia γ una curva chiusa,

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I (A) Ingegneria Edile, 19 dicembre 2000 () 1. Studiare il seguente ite: x 0 log 2 (cos x) ( 3 1 x 1 ) e (x3 ) 1. 2. Dire per quali numeri complessi entrambe le radici quadrate

Dettagli

Progetto di reti correttrici e controllori PID e traduzione nel discreto con il metodo di emulazione

Progetto di reti correttrici e controllori PID e traduzione nel discreto con il metodo di emulazione Progetto di reti correttrici e controllori PID e traduione nel dicreto con il metodo di emulaione Eerciio. Si conideri lo chema di controllo rappreentato in figura dove P () = con a = 40. a + r(t) + S

Dettagli

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine. t come riportato in figura.

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine.  t come riportato in figura. Eercitazione Noembre ircuiti dinamici del econdo ordine ircuito L- erie Per quanto riguarda queto circuito, l eercizio egue la traccia della oluzione del compito d eame numero, reperibile in rete al olito

Dettagli

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4 Appunti di Controlli Automatici 1 Capitolo 5 parte II Il contorno delle radici Introduzione... 1 Eempio di cotruzione del contorno delle radici... 1 Eempio... 4 Introduzione Il procedimento per la cotruzione

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

Esercizi di Segnali e Sistemi. GLI ESERCIZI 1,2,3,4,11 COSTITUISCONO UN TEMA D ESAME TIPICO

Esercizi di Segnali e Sistemi. GLI ESERCIZI 1,2,3,4,11 COSTITUISCONO UN TEMA D ESAME TIPICO Eercizi di Segnali e Sitemi. GLI ESERCIZI,2,3,4, COSTITUISCONO UN TEMA D ESAME TIPICO Eempio Conideriamo la funzione di traferimento G() = + Si calcoli la forma di Smith Mc-Millan. Soluzione: G() = N(),

Dettagli

Controlli Automatici LA Risposte dei sistemi

Controlli Automatici LA Risposte dei sistemi //8 Controlli Automatici LA Analii dei itemi dinamici lineari Ripote al gradino di itemi tipici Relazioni Funzione di Traferimento/Ripote Prof. Carlo Roi DEIS-Univerità di Bologna Tel. 5 93 Email: croi@dei.unibo.it

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 2/A

Modelli e Metodi Matematici della Fisica. Scritto 2/A Modelli e Metodi Matematici della Fisica. Scritto /A Cesi/Presilla A.A. 007 08 Nome Cognome Il voto dello scritto sostituisce gli esoneri 1 Devo verbalizzare il primo modulo da 4 crediti? S N problema

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Punteggi degli esercizi: Es.1: 6 punti; Es.2: 10 punti; Es.3: 7 punti; Es.4: 7 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Punteggi degli esercizi: Es.1: 6 punti; Es.2: 10 punti; Es.3: 7 punti; Es.4: 7 punti. Es. 1 Es. 2 Es. 3 Es. 4 Totale Analisi e Geometria 1 Terzo appello 10 Settembre 2012 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es.1:

Dettagli

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di Fourier Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 1 / 37 Polinomi trigonometrici Definizione Si dice

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 9 dicembre 4 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo. Tempo

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 27 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Docente:Alessandra Cutrì Richiamo:Zeri di Funzioni olomorfe (o analitiche) Sia f : A C C A aperto connesso,

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano December 20, 2017 Parte 1. Elementi di analisi funzionale.

Dettagli

Uso della trasformata di Laplace per il calcolo della risposta

Uso della trasformata di Laplace per il calcolo della risposta Uo della traformata di Laplace per il calcolo della ripota Conigli generali (Aggiornato 7//) ) Si vuole qui richiamare l attenzione ul fatto che la preenza di zeri o di una truttura triangolare a blocchi

Dettagli

Lezione 18. Stabilità di sistemi retroazionati. F. Previdi - Fondamenti di Automatica - Lez. 18 1

Lezione 18. Stabilità di sistemi retroazionati. F. Previdi - Fondamenti di Automatica - Lez. 18 1 Lezione 18. Stabilità di itemi retroazionati F. Previdi - Fondamenti di Automatica - Lez. 18 1 Schema 1. Stabilità di itemi retroazionati 2. Diagramma di Nyquit 3. Criterio di Nyquit 4. Etenioni del Criterio

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del terzo appello, 19 febbraio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del terzo appello, 19 febbraio 2018 Testi 1 Scritto del terzo appello, 9 febbraio 208 Testi Prima parte, gruppo.. Per ciascuno dei seguenti punti dare le coordinate (polari o cartesiane) che mancano: a) = 0, = ; r = α = b) = 3, = 3; r = α = c) r

Dettagli

Compito di Fondamenti di Automatica settembre 2006

Compito di Fondamenti di Automatica settembre 2006 Compito di Fondamenti di Automatica ettembre 2006 Eercizio 1. Si conideri lo chema di figura (operazionale ideale, eccetto per il guadagno che puó eere definito da una G(), reitenze uguali, condenatori

Dettagli

Analisi Reale e Complessa - a.a. 2008/2009

Analisi Reale e Complessa - a.a. 2008/2009 Terzo appello Esercizio Analisi Reale e Complessa - a.a. 8/9 Sia (a) Si provi che f L (R); f(x) eix x i. (b) Si calcoli con metodi di variabile complessa la trasformata di Fourier di f. (a) Si osservi

Dettagli

Metodi Matematici della Fisica. S3

Metodi Matematici della Fisica. S3 Metodi Matematici della Fisica. S Filippo Cesi 0 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 6 CFU 8 CFU 4 + 6 CFU altro: problema 4 5 6 7 8 9 0 test totale voto in trentesimi voto

Dettagli

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007 Prova scritta del 23 gennaio 2007 Esercizio 1. Sia f : R R una funzione misurabile e non negativa; si consideri la successione di funzioni f n (x) = max3f(x) 2n, 0}, x R, n N. Provare che se f è integrabile

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 7-8 Scritto del secondo appello, 5 febbraio 8 Testi Prima parte, gruppo.. Trovare r > e α [ π, π] per cui vale l identità 3 sin 3 cos = r sin( + α)..

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 2014 2015 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi

Dettagli

ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST

ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST PROPRIETÀ DEI SISTEMI IN RETROAZIONE U E G () H () Si fa riferimento ad un generico itema in retroazione con funzione di traferimento a ciclo chiuo.

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Eserciziario del corso di Metodi Matematici per l Ingegneria. (Proff. Ugo Gianazza - Giuseppe Savaré)

Eserciziario del corso di Metodi Matematici per l Ingegneria. (Proff. Ugo Gianazza - Giuseppe Savaré) Eserciziario del corso di Metodi Matematici per l Ingegneria (Proff. Ugo Gianazza - Giuseppe Savaré) Dott. Antonio Marigonda 6 febbraio 9 Dipartimento di Matematica F. Casorati Università di Pavia Ufficio

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R Serie di Fourier Richiami di teoria Funzioni periodiche Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R 2π-periodiche. Esempio 1. Consideriamo il prolungamento 2π-periodico

Dettagli

Corso di Laurea in Matematica Applicata PROVA DI ANALISI MATEMATICA 1 Mod. 1-2/2/2015 Tipologia A

Corso di Laurea in Matematica Applicata PROVA DI ANALISI MATEMATICA 1 Mod. 1-2/2/2015 Tipologia A Corso di Laurea in Matematica Applicata PROVA DI ANALISI MATEMATICA Mod. - 2/2/25 Tipologia A. Si enunci il criterio del rapporto per la convergenza delle serie..2 Se f : R R è una funzione continua e

Dettagli

Appunti ed esercitazioni di Microonde 2

Appunti ed esercitazioni di Microonde 2 Appunti ed eercitazioni di Microonde Studio di una linea priva di perdite in regime impulivo di impedenza caratteritica =5Ω, chiua u di un carico R erie avente R==5Ω, =mh, =nf. Si aume come velocità di

Dettagli

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2008/2009 Prof. F. Cesi e C. Presilla. Prova Finale 2 Febbraio 2010

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2008/2009 Prof. F. Cesi e C. Presilla. Prova Finale 2 Febbraio 2010 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 8/9 Prof. F. Cesi e C. Presilla Prova Finale Febbraio 1 Cognome Nome Canale Cesi (Astrofisica) Presilla (Fisica) intendo MANTENEE il voto degli esoneri 1 penalità

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

ESERCIZI DI MATEMATICA APPLICATA

ESERCIZI DI MATEMATICA APPLICATA ANTONIO LEACI Analisi Complessa ( È data la funzione: f(z (z2 + e z sin z Si studi l analiticità di f(z nel piano complesso C Si determinino e si classifichino le eventuali singolarità Si calcoli il residuo

Dettagli

Corso Tecnologie dei Sistemi di Controllo. Controllo PID

Corso Tecnologie dei Sistemi di Controllo. Controllo PID Coro Controllo PID Ing. Valerio Scordamaglia Univerità Mediterranea di Reggio Calabria, Loc. Feo di Vito, 896, RC, Italia D.I.M.E.T. : Dipartimento di Informatica, Matematica, Elettronica e Traporti Struttura

Dettagli

9/11/2010 (I prova in itinere): solo test a risposta multipla

9/11/2010 (I prova in itinere): solo test a risposta multipla 9/11/2010 (I prova in itinere): solo test a risposta multipla 23/12/2010 (II prova in itinere, II parte) Esercizio 1. Posto Σ = {(x, y, z) R 3 x 2 + y 2 + z 2 = 4, z 1}, si chiede di calcolare il flusso

Dettagli

Numeri Complessi. Perché i numeri complessi? PSfrag replacements

Numeri Complessi. Perché i numeri complessi? PSfrag replacements Numeri Complessi Sono numeri del tipo = a + ib, dove a e b R, e i = 1 è detta unità immaginaria i R e i = 1 3 + 3i i i L insieme dei numeri complessi è indicato con C. a è detta parte reale del numero

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo appello, 1 Luglio 010 Cognome: Nome: Matricola: Compito A Es. 1: 6 punti Es. : 1 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016 Domande-tipo di teoria sulla prima metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016 Domande-tipo di teoria sulla prima metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 215/216 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano November 4, 215 Parte 1. Richiami di analisi funzionale 1.

Dettagli

Lezione 25 - Flessione deviata e sforzo normale eccentrico

Lezione 25 - Flessione deviata e sforzo normale eccentrico Lezione 5 - Fleione deviata e forzo normale eccentrico ü [A.a. 011-01 : ultima reviione 1 gennaio 01] Con lo tudio della fleione fuori del piano i e' eaurito l'eame delle ollecitazioni emplici di De Saint

Dettagli

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2 Corso di Laurea in Matematica Analisi 4 - SOLUZIONI /9/8) Docente: Claudia Anedda ) Data la funzione yx) x + π, x, π) prolungarla su tutto R in modo tale che sia una funzione π-periodica pari, disegnare

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla. Prova di recupero 14 settembre 2005

METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla. Prova di recupero 14 settembre 2005 METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla Prova di recupero 4 settembre 2005 Cognome Nome Corso di Laurea in sostituzione delle prove in itinere segnare) 2 3 penalità esercizio voto

Dettagli

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009)

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) 1. Sia S = { } (x, y, z) : x 2 + y 2 = 4, 0 z 3 + x. Scrivere le equazioni parametriche di una superficie regolare che abbia S come sostegno. 2. Enunciare

Dettagli

Esponenziale complesso

Esponenziale complesso Esponenziale complesso Paola Rubbioni Analisi Matematica II - CdL in Ingegneria Informatica ed Elettronica a.a. 2016/2017 1 Serie nel campo complesso Per fornire il concetto di serie nel campo complesso

Dettagli

Compito A. Prova intermedia di Analisi Matematica I

Compito A. Prova intermedia di Analisi Matematica I Compito A Prova intermedia di Analisi Matematica I L Aquila, 5 novembre 2005 Docente: B. Rubino Cognome e nome: Matricola: Esercizio 1 Applicando il principio di induzione, dimostrare la seguente proprietà:

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 22 luglio 2016 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2011/2012 Prof. C. Presilla. Prova A3 19 settembre 2012

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2011/2012 Prof. C. Presilla. Prova A3 19 settembre 2012 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2011/2012 Prof. C. Presilla Prova A3 19 settembre 2012 Cognome Nome II anno III anno o successivi penalità esercizio voto 1 2 3 4 5 6 Esercizio 1 Siano n e

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaboraione di segnali e immagini: modulo segnali Giugno 2014 Tempo a disposiione: 3 ore per il totale, 2 ore il pariale. Eserciio 1 Si determini la risposta totale nel dominio complesso utiliando la trasformata

Dettagli

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 MATRICOLA:...NOME e COGNOME:............................................. Desidero sostenere la prova orale al prossimo appello

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Terzo appello 8 Settembre 4 Compito B Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es.:

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale aa 2012 2013 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico /3 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9//3 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1 Lezione 5. Calcolo dell aniraormaa di Laplace. Previdi - Auomaica - Lez. 5 Schema della lezione. Inroduzione. Aniraormazione di Laplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale 5. Teorema

Dettagli