Elettronica per le telecomunicazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettronica per le telecomunicazioni"

Transcript

1 POLITENIO DI TOINO Elettronica per le telecomunicazioni Homework Gruppo: A08 Antona Maria Gabriella Matricola: 482 Degno Angela ita Matricola: 4855 Fiandrino laudio Matricola: Miggiano Marco Antonio Matricola: 40560

2 Homework 7/03/200 Esercizio Dato il circuito: V out on la sovrapposizione degli effetti si calcola:. il contributo dato dalla tensione di ingresso sul ramo invertente: V out V out. il contributo dato dalla tensione di ingresso sul ramo non invertente: 2

3 Homework 7/03/200 V V out s V s ( V out ) La tensione di uscita è data da: s V 2 V V out V out V out s 2 La funzione di trasferimento si esprime come: H(s) V out Ponendo s jω: 2 s s s s s H(jω) jω jω jω jω Nella funzione di trasferimento sono presenti un polo ed uno zero:. ω z τ z. ω p τ p 3

4 Homework 7/03/200 Diagrammi di Bode di modulo e fase di H(jω): Modulo: H(jω) db ω Nota: in rosso è rappresentata la risposta finale, mentre in azzurro sono mostrate le risposte asintotiche di polo e zero. Fase I tre contributi alla fase sono: H(jω) 80 arctan(jω) arctan(jω) 80 arctan(jω) arctan(jω) H(jω) ω p ω Nota: in arancione è rappresentato il contributo della costante, mentre in azzurro sono evidenziati i comportamenti sovrapposti di polo e zero. contributo dello zero contributo del polo 4

5 Homework 7/03/200 Il diagramma complessivo è: H(jω) ω p ω Per ottenere un segnale di uscita sfasato di 90 rispetto al segnale di ingresso occorre che: f p 2π 2kHz Ipotizzando di scegliere un valore di resistenza della serie E2: 2.7kΩ Si può determinare il valore da attribuire alla capacità invertendo la formula precedente: 2πf p Sostituendo i valori numerici: 2π( ) (2 0 3 ) 29.48nF Poichè occorre scegliere fra componenti della serie E2 i valori possibili sono 27nF e 33nF. Si è scelto il componente con capacità 27nF perchè garantisce una frequenza del polo reale più vicina ai 2kHz: Mentre: f p 2π 2π ( ) ( ) 2.83kHz f p 2π 2π ( ) ( ).786kHz 5

6 Homework 7/03/200 Esercizio 2 Dato il circuito: L V out Per calcolare la funzione di trasferimento si calcola il parallelo fra il condensatore e l induttore; si ottiene un circuito equivalente: Z V out Z s //sl sl s sc sl sl s s 2 L s sl s 2 L La ripartizione della tensione fra Z e determina l espressione della tensione di uscita: V out sl s 2 L sl s 2 L sl s 2 L V s 2 LsL in s 2 L sl s 2 L sl Quindi la funzione di trasferimento risulta essere: H(s) V out sl s 2 L sl La risposta del filtro è una risposta passa banda. 6

7 Homework 7/03/200 Per riportare la H(s) nella forma: H(s) κsω 0 s 2 2ξω 0 ω 2 0 κsω 0 s 2 s ω 0 Q ω2 0 occorre raccogliere a denominatore il fattore L : A questo punto:. ω 0 L ω 0. Q H(s) L sl s 2 s L Q ω 0. sostituendo: Q L Q Il fattore di qualità può anche essere espresso come: L dove: Q f 0 BW. f 0 è la frequenza centrale;. BW è la banda a 3dB. on i valori dati dal testo: La frequenza centrale: Q f 0 MHz 2π L Si determinano i valori dei componenti con il seguente sistema: 00 L ( 0 6 ) 2π L i sono due equazioni e tre incognite (,, L); ipotizzando di utilizzare come resistenza: 2.7kΩ 7

8 Homework 7/03/200 è possibile risolvere il sistema: 00 ( ) L ( 0 6 ) 2π L ( ) [2π ( 0 6 )] 2 ( L ) 2 ( L ) 2 L [2π ( 0 6 )] 2 Dalla prima equazione si ricava: ( L ) 2 L L [2π ( 0 6 )] 2 L Sostituendo nella seconda si ottiene: L [2π ( 0 6 )] 2 L L 4.298µH [2π ( 0 6 )] 2 Quindi il valore di capacità del condensatore risulta essere: Esercizio 3 ( ) µF 58.9nF Poichè sono tabulate solo le specifiche per il filtro passa basso si provveduto, analiticamente, a riportare la funzione di trasferimento di tipo passa alto nella configurazione passa basso (procedura di scaling): H HP (s) κs 2 s 2 ω 0 Q s ω2 0 posta s ω 0 p con p : H(s) ) 2 κ( ω0 p ( ) 2 ( ) ω0 p ω 0 ω0 Q p ω0 2 H LP (s) κ ω 2 0 Q p 8

9 Homework 7/03/200 formula per il filtro passa basso normalizzato. Analizzando le tabelle di progettazione è stato osservato che solo la risposta in frequenza di hebyshev soddisfa i requisiti; si è scelta la configurazione con ondulazione di banda 0.5 db perchè garantisce minori oscillazioni in banda passante rispetto alla configurazione con ondulazione di banda db. Il numero di celle necessarie minimo che rispetta le specifiche della maschera è 5, quindi saranno presenti una cella del primo ordine e due celle del secondo ordine. Le celle devono essere collegate in modo tale per cui i singoli fattori di qualità siano crescenti per le celle del secondo ordine mentre la cella del primo ordine deve essere posta all inizio della catena. input ordine 2 ordine Q A 2 ordine Q B output Parametri: Q A < Q B ella ω 0 2ξ ordine ordine ordine Inoltre, al fine di evitare la saturazione degli amplificatori operazionali, è necessario che le celle siano disposte con guadagni via via crescenti. Per la cella del primo ordine il circuito di tipo passa alto è il seguente: 2 V out 9

10 Homework 7/03/200 Per la cella del secondo ordine si è scelta la cella K di tipo passa alto, il cui schema circuitale è il seguente: B 2 i i 2 i 3 A 3 V x V out 4 V out Esercizio 4 Lo schema circuitale di tipo passa alto della cella Sallen-Key è: i i 2 i 3 n V x V out m V out La funzione di trasferimento generica è: H(s) V out Y Y 3 Y 4 (Y Y 2 Y 3 ) (Y Y 3 ) 0

11 Homework 7/03/200 e per avere una risposta di tipo passa alto si sono scelte: Y s Y 3 s 3 Y 2 2 Y 4 4 Sostituendo queste espressioni nella funzione di trasferimento: H(s) V out s s 3 4 (s 2 s 3 ) (s s 3 ) s 2 3 ( ) s s 3 4 s 2 3 s 2 ( ) s s 4 s 2 s 2 s 2 s ( ) poichè i componenti possono essere identificati attraverso il loro rapporto: omponente Espressione m n La funzione di trasferimento, espressa in funzione di (m,n) N e di,, risulta essere: Si ottiene quindi: e: H(s) ω 2 0 s 2 s 2 s ( m ) mn m 2 n m 2 n ω 0 ( ) ω 0 Q m n mn mn mn Sostituendo l espressione di ω 0 : Q mn n ω 0 mn n mn mn n ()

12 Homework 7/03/200 Per dimensionare i componenti si è proceduto nel seguente modo:. ipotizzando n (i condensatori avranno valori di capacità uguale evitando dispersione): m Q 2Q m 2 m 4Q 2 m si sceglie un valore di capacità per i condensatori pari a 27nF;. si ricava il valore per le resistenze invertendo la formula della frequenza di taglio: f 0 2π m n. sostituendo i valori numerici si ottiene: 2π m n f 0 2π (4 0 3 ) ( ) Ω. moltiplicando il termine ottenuto con m si determina il valore della seconda resistenza: m 9.43kHz. utilizzando la serie E96 per i resistori si scelgono: { 9.3 kω 232Ω m 9.53 kω per la resistenza di valore m sono stati considerati due valori perchè erano entrambi molto vicini;. si ottengono due possibili valori per m: { 40.3 m risolvendo l equazione seguente, ottenuta elaborando la (): da cui: n 2 Q 2 n (2Q 2 m) Q 2 0 n,2 (2Q2 m) ± (2Q 2 m) 2 4Q 4 2Q 2 (2) si ricava il valore di n; 2

13 Homework 7/03/200. per determinare quale valore di m usare è necessario porre il determinante della radice maggiore di 0: > 0 (2Q 2 m) 2 4Q 4 > 0 questa condizione è verificata per: m > 4Q 2 m > il valore di m da usare è quindi 4.08;. a questo punto si può risolvere la (2) sostituendo di valori numerici: n,2 [2 (3.2)2 4.08] ± [2 (3.2) ] 2 4 (3.2) 4 2 (3.2) ± Si ottengono: { n. n ± si sceglie m 2 e si ricalcola il valore di resistenza invertendo la formula della frequenza di taglio: f 0. sostituendo i valori numerici: 2π mn 2π mnf 0 2π 6 (2 0 3 ) ( ) 2.08nF. la capacità n risulta quindi essere 2.32 nf. Utilizzando la serie E2 entrambi i condensatori hanno capacità 2.2nF. Tabella di riepilogo dei componenti: omponente m n Valore 232Ω 9.53 kω 2.2 nf 2.2 nf 3

14 Homework 7/03/200 Esercizio 5 Schema circuitale: 5 i i 2 A i 3 i 3 B V out (V A ) G (V A V out ) s (V A V B ) s 0 (V B V A ) s (V B V out ) G 5 0 V B 0 [ ] [ ] [ ] G s s s VA Vin G s G 5 V out 0 V out G s G 5 (G 2s) s 2 sg s 2 2sG 5 G G 5 La funzione di trasferimento: H(s) V out sg s 2 2sG 5 G G 5 I parametri caratteristici ω 0 e Q valgono: ω ω 0 5 f 0 s s 2 s π 5 ω 0 Q s 2 5 Q 2 5 Secondo i parametri di progetto: f 0 500Hz BW 50Hz 4

15 Homework 7/03/200 si può ricavare il valore di Q: Q f 0 BW Per dimensionare i valori dei componenti è necessario risolvere il sistema: ( ) 500 2π (500 2π ) ( ) (500 2π ) (500 2π ) (500 2π ) 2 20 (500 2π ) Scegliendo 82nF: 94.09Ω kΩ La frequenza a cui va calcolata è la frequenza centrale f 0. Esercizio 6 Indicando con: dove f s f clk. eq f s s eq2 La funzione di trasferimento si esprime come: H(s) eq 3 eq2 s eq2 eq2 s eq 2 s f s 3 L espressione della frequenza di taglio f T è: f s s 3 s eq2 f s 3 f s s f T 2π f s 3 5

16 Homework 7/03/200 Mettendo a sistema: f T 2π 0kHz f s 3 2π 3 20log H(s 0) 0 log { π π Scegliendo 5pF della serie commerciale E2: pF 29.8pF Esercizio 7 Spiegazione: le capacità simulano il comportamento di resistori. La capacità posta a monte del blocco sommatore simula le resistenze ed 5 di una cella biquadratica (si segue la stessa notazione introdotta a lezione). La capacità 3 simula la resistenza 3 posta in parallelo al condensatore, infine posta alla fine del circuito simula, insieme all operazionale, un integratore non invertente. Il circuito equivalente con le resistenze è: 5 Blocco non invertente VBP V LP V LP 6

17 Homework 7/03/200 La funzione di trasferimento di tipo passa banda si ricava dal seguente sistema: (V A V BP )G 2 (V A V BP )s (V A )G (V A V LP )G 5 0 Si ottiene: Quindi: Poichè: V A 0 V LP V BP s H BP (s) V BP. G G 5 f ck ;. G 2 f ck 3 ; ( ) V BP G 2 s G 5 G G s s G s 2 2 sg 2 G G 5 La funzione di trasferimento passa banda risulta essere: s G s 2 s G 2 G G 5 2 H BP (s) s f ck s 2 s fck 3 f 2 ck ( ) 2 La funzione di trasferimento di tipo passa basso si ricava dal seguente sistema: (V A V LP )G 5 (V A )G (V A V BP )(s G 2 ) 0 V A 0 V BP s V LP G Si ottiene: Perciò: icordando che: V LP (G 5 s 2() 2 s ) 2G 2 G G G H LP (s) V LP 7 ( ) 2 s 2 s G 2 G 5G ( ) 2

18 Homework 7/03/200. G G 5 f ck ;. G 2 f ck 3 ; La funzione di trasferimento passa basso risulta essere: H LP (s) V LP ( ) 2 s 2 s f ck 3 f 2 ck ( ) 2 Sono stati calcolati i valori f 0 e Q per le due possibili risposte: uscita passa banda: ω 2 0 f 2 ck ( uscita passa basso: ω 2 0 f2 ck ) 2 ω 0 f ck f 0 f ck 2π ω 0 Q f ck 3 Q ω 0 f ck 3 3 ( ) 2 ω 0 f ck f 0 f ck 2π ω 0 Q f ck 3 Q ω 0 f ck 3 3 I due risultati coincidono come ci si aspettava. La risposta passa basso di tipo Butterworth implica avere: 0.5 < Q < < 3 < Imponendo pf: < 3 < pF < 3 < 2pF on i valori dati dal testo (f 0 khz e f ck 00kHz) è possibile ricavare il valore della terza capacità, : f 0 f ck 2π f ck f 0 2π 00kHz khz pf 2π 5.9pF 8

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Formulario Anno Accademico 2009/200 Filtri Filtri del primo ordine Passa basso R 2 C 2 R H(s) = R 2 H(0) = R 2 R sr 2 C 2 R f p = φ = 0 90 2πR

Dettagli

FILTRI in lavorazione. 1

FILTRI in lavorazione. 1 FILTRI 1 in lavorazione. Introduzione Cosa sono i filtri? C o II filtri sono dei quadripoli particolari, che presentano attenuazione differenziata in funzione della frequenza del segnale applicato in ingresso.

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Formulario Anno Accademico 2009/2010 Filtri Filtri del secondo ordine In generale la funzione di trasferimento è: H(s) = a 2 s 2 + a 1 s + a 0

Dettagli

PROGETTO DI UN FILTRO PASSA BASSO

PROGETTO DI UN FILTRO PASSA BASSO orso di elettronica per telecomunicazioni - esercitazione POGETTO DI UN FILTO PASSA BASSO Docente del corso: prof. Giovanni Busatto Galletti iccardo Matr. 65 relazione elettronica per telecomunicazioni

Dettagli

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - +

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + µa741 Cos'è l'amplificazione: Amplificare un segnale significa aumentarne il livello e di conseguenza la potenza. Il fattore

Dettagli

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Si analizzi l amplificatore mostrato in figura, determinando: 1. il valore del guadagno di tensione a frequenze intermedie; 2. le frequenze di taglio

Dettagli

Progettazione di filtri attivi passa-basso e passa-alto di ordine superiore

Progettazione di filtri attivi passa-basso e passa-alto di ordine superiore Progettazione di filtri attivi passabasso e passaalto di ordine superiore Collegando un numero opportuno di filtri del e del ordine è possibile ottenere filtri di ordine superiore, caratterizzati da una

Dettagli

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati Elettronica per telecomunicazioni Contenuto dell unità A Informazioni logistiche e organizzative Applicazione di riferimento caratteristiche e tipologie di moduli Circuiti con operazionali reazionati amplificatori

Dettagli

Lezione A2 - DDC

Lezione A2 - DDC Elettronica per le telecomunicazioni Unità A: Amplificatori, oscillatori, mixer Lezione A.2 Filtri Specifica funzionale e parametri uso di strumenti CAD esempi di realizzazioni con AO tecniche SC 1 Contenuto

Dettagli

ESERCIZIO Punto di riposo

ESERCIZIO Punto di riposo 1/8 ESERCIZIO 1 1.1 - Punto di riposo Selatensioned uscita ènulla, ènullaanchelacorrentenellaresistenza dicaricor L edunque le correnti di canale dei transistor sono uguali tra loro; pertanto, nell ipotesi

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Homework Gruppo: A0 Antona Maria Gabriella Matricola: 14211 Degno Angela Rita Matricola: 14155 Fiandrino Claudio Matricola: 13436 Miggiano Marco

Dettagli

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Esercizio 1 (8 punti): A media frequenza possiamo approssimare il capacitore C E con un corto. L amplificazione pertanto è g m R C dove

Dettagli

Filtri a quarzo. 6 febbraio 2010

Filtri a quarzo. 6 febbraio 2010 IZ3NPZ Ferdinando e ARIVERONAEST 6 febbraio 2010 Premessa Un cristallo di quarzo ha un comportamento che viene descritto dal seguente circuito: 0 01 Lm ESR m 01 00 11 01 con m e L m parametri che tengono

Dettagli

In elettronica un filtro elettronico è un sistema o dispositivo che realizza

In elettronica un filtro elettronico è un sistema o dispositivo che realizza Filtri V.Russo Cos è un Filtro? In elettronica un filtro elettronico è un sistema o dispositivo che realizza delle funzioni di trasformazione o elaborazione (processing) di segnali posti al suo ingresso.

Dettagli

Soluzione di circuiti RC ed RL del primo ordine

Soluzione di circuiti RC ed RL del primo ordine Principi di ingegneria elettrica Lezione 11 a parte 2 Soluzione di circuiti RC ed RL del primo ordine Metodo sistematico Costante di tempo Rappresentazione del transitorio Metodo sistematico per ricavare

Dettagli

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha 1/16 ESERCIZIO 1 1.1 - Punto di riposo, R 1,R 2 Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha V CE1 = V R E I E1 I E2 ) V 2R E I C = 12.0 V. 1) Nel punto di riposo si ha I B1

Dettagli

Misure su linee di trasmissione

Misure su linee di trasmissione Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare

Dettagli

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013 I.T.I.. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 03/4 OGNOME E NOME Data: 7//03 Quesito ) (50%) Dato il circuito qui a fianco che rappresenta un oscillatore sinusoidale a ponte

Dettagli

I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT

I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT NOME: Marco COGNOME: Salzillo TITOLO: AMPLIFICATORE OPERAZIONALE NON INVERTENTE OBBIETTIVO: REALIZZARE UN CIRCUITO OPERAZIONALE NON INVERTENTE CHE AMPLIFICA DI 11,7dB CIRCUITO TEORICO: CIRCUITO APPLICATIVO:

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018 Fondamenti di Automatica Prof. Luca Bascetta Primo prova intermedia 27 Aprile 28 ESERCIZIO E assegnato il sistema dinamico, a tempo continuo, lineare e invariante con ingresso u(t) e uscita y(t): { ẋ(t)

Dettagli

LSS 2018/19 Canale A-De Esonero 2, testo A

LSS 2018/19 Canale A-De Esonero 2, testo A Cognome Nome LSS 2018/19 Canale A-De Esonero 2, testo A e Matricola Esercizio 1 (8 punti): Progettare un circuito di tipo Sallen-Key passa-basso con frequenza di taglio del singolo polo pari ad 1 khz.

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 1)

Esercizi sulle reti elettriche in corrente alternata (parte 1) Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive

Dettagli

Michele Scarpiniti. L'Amplificatore Operazionale

Michele Scarpiniti. L'Amplificatore Operazionale Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE

Dettagli

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo Esercitazione 3 Biagio Provinzano Aprile 005 Esercizio I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo V A, β = 00, V BE = 0.7V in zona attiva ed infine Cπ = C µ =0pF.

Dettagli

Introduzione ai filtri Filtri di Butterworth Filtri di Chebishev

Introduzione ai filtri Filtri di Butterworth Filtri di Chebishev Introduzione ai filtri Filtri di Butterworth Filtri di Chebishev Filtri passivi 1 Filtri passivi 2 1 Filtri passivi 3 Filtri passivi 4 2 Filtri passivi 5 Filtri passivi 6 3 Filtri passivi 7 Filtri passivi

Dettagli

Filtri. - I filtri passivi, usano solo componenti passivi (resistenze, condensatori e induttanze).

Filtri. - I filtri passivi, usano solo componenti passivi (resistenze, condensatori e induttanze). Filtri Un filtro è un circuito selettivo in frequenza che lascia passare i segnali in una certa banda e blocca, oppure attenua, I segnali al di fuori di tale banda. I filtri possono essere attivi o passivi.

Dettagli

Elettronica. Appunti per le classi quinte I.T.I.S. Cartesio. Andrea Mola

Elettronica. Appunti per le classi quinte I.T.I.S. Cartesio. Andrea Mola Elettronica Appunti per le classi quinte I.T.I.S. Cartesio Andrea Mola 3 maggio 2014 Indice 1 Generatori di forme d onda 3 1.1 Generatori di onde quadre o rettangolari................ 3 1.1.1 Multivibratore

Dettagli

Dispositivi e Tecnologie Elettroniche. Stadi Amplificatori MOSFET

Dispositivi e Tecnologie Elettroniche. Stadi Amplificatori MOSFET Dispositivi e Tecnologie Elettroniche Stadi Amplificatori MOSFET Esercizio 1: si consideri il seguente circuito per la polarizzazione del MOSFET: VDD=15 V R2=560K RD=2.2 K G R1=180K D B VTn=1.5V Βn=20mA/V^2

Dettagli

Metodi di progetto per filtri IIR: soluzione dei problemi proposti

Metodi di progetto per filtri IIR: soluzione dei problemi proposti 7 Metodi di progetto per filtri IIR: soluzione dei problemi proposti P-7.: Usando il metodo dell invarianza all impulso, la funzione di trasferimento del filtro analogico viene trasformata in una funzione

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

I Decibel (db) sono un modo per esprimere rapporti. Un rapporto K può essere espresso in decibel (G)

I Decibel (db) sono un modo per esprimere rapporti. Un rapporto K può essere espresso in decibel (G) Uso dei decibel I Decibel (db) sono un modo per esprimere rapporti Un rapporto K può essere espresso in decibel (G) G = K(dB) = 0 log 0 K Nel caso degli amplificatori i db sono utilizzabili per esprimere

Dettagli

Informazione e comunicazione per la sicurezza Esercizi tipo Telecomunicazioni

Informazione e comunicazione per la sicurezza Esercizi tipo Telecomunicazioni Informazione e comunicazione per la sicurezza Esercizi tipo Telecomunicazioni 1) Dato un canale trasmissivo la cui banda sia da 3 a 4 MHz, ed il cui rapporto segnale - rumore sia 24 db, calcolare la massima

Dettagli

2. La Frequenza di taglio è la f. che separa la Banda Passante ( Banda Chiara ) dalla Banda Attenuata ( Banda Scura ). Per f = ft

2. La Frequenza di taglio è la f. che separa la Banda Passante ( Banda Chiara ) dalla Banda Attenuata ( Banda Scura ). Per f = ft 1. FILTRI - DEFINIZIONI Un filtro è un circuito elettrico selettivo nei confronti della frequenza dei segnali applicati in ingresso. In altre parole, segnali di diversa frequenza non sono elaborati allo

Dettagli

M049 ESAME DI STATO DI ISTITUTO PROFESSIONALE

M049 ESAME DI STATO DI ISTITUTO PROFESSIONALE Sessione ordinaria 009 Seconda prova scritta M049 ESAME DI STATO DI ISTITUTO POFESSIONALE COSO DI ODINAMENTO Indirizzo: TECNICO DELLE INDUSTIE ELETTONICHE Tema di: ELETTONICA, TELECOMUNICAZIONI E APPLICAZIONI

Dettagli

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012 Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/2011 3 Appello 09 Febbraio 2012 Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) Esercizio 1. R 1 = 20 kω, R 2

Dettagli

Tipi di amplificatori e loro parametri

Tipi di amplificatori e loro parametri Amplificatori e doppi bipoli Amplificatori e doppi bipoli Introduzione e richiami Simulatore PSPICE Amplificatori Operazionali e reazione negativa Amplificatori AC e differenziali Amplificatori Operazionali

Dettagli

Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento.

Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento. ITEC - ELETTRONICA ED ELETTROTECNICA Sessione ordinaria 206 ARTICOLAZIONE ELETTRONICA Tema di: ELETTROTECNICA ED ELETTRONICA Soluzione: prof. Stefano Mirandola PRIMA PARTE ) 2) Schema a blocchi e progetto

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM741, con Ad = 100 db, polo di Ad a 10 Hz. La controreazione determina un guadagno ideale pari

Dettagli

Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA

Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 A COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA MATRICOLA: Negli esercizi, ove necessario e salvo indicazioni contrarie, si consideri che i circuiti

Dettagli

ovvero la DC indesidrata più la componente continua dell onda quadra e tutte le sue armoniche. Da Fourier si pone: a 0 = 2 T

ovvero la DC indesidrata più la componente continua dell onda quadra e tutte le sue armoniche. Da Fourier si pone: a 0 = 2 T 1 Filtro passa banda Il segnale di interesse è una onda quadra da 0 ad A mentre il rumore è composto, oltre che da rumore bianco (equamente distribuito in frequenza), anche da una elevata componente in

Dettagli

Filtri. Filtri RF per segnali di antenna. Filtri canale IF. Filtri banda base o banda audio

Filtri. Filtri RF per segnali di antenna. Filtri canale IF. Filtri banda base o banda audio Filtri Filtri RF per segnali di antenna Filtri canale IF Filtri banda base o banda audio Filtri attivi e passivi Un filtro è un circuito selettivo in frequenza che lascia passare i segnali (in genere tensioni

Dettagli

Filtri attivi. Lezione 15 1

Filtri attivi. Lezione 15 1 Filtri attivi Per realizzare filtri si può evitare l utilizzazione di induttori con schemi circuitali utilizzanti amplificatori operazionali (filtri attivi) Lezione 15 1 Realizzazione di un filtro passa

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

Esercitazione 3 (B7- U9) Misure su amplificatori. Modulo SISTEMI ELETTRONICI AA ESERCITAZIONI DI LABORATORIO - 3. Scopo dell esercitazione

Esercitazione 3 (B7- U9) Misure su amplificatori. Modulo SISTEMI ELETTRONICI AA ESERCITAZIONI DI LABORATORIO - 3. Scopo dell esercitazione Esercitazione 3 (B7- U9) Misure su amplificatori Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Analizzare il comportamento e misurare i parametri di moduli amplificatori, - Verificare

Dettagli

jω, che esprime il legame tra una grandezza di OUT ( V o I ) e una _ G(jω) = Vout / Vin

jω, che esprime il legame tra una grandezza di OUT ( V o I ) e una _ G(jω) = Vout / Vin FILTRI - DEFINIZIONI 1. Un filtro è un circuito elettrico selettivo nei confronti della frequenza dei segnali applicati in ingresso. In altre parole, segnali di diversa frequenza non sono elaborati allo

Dettagli

ELETTRONICA I - Ingegneria MEDICA. Caratteristiche e criteri di Sintesi (progetto) di FILTRI analogici attivi e passivi

ELETTRONICA I - Ingegneria MEDICA. Caratteristiche e criteri di Sintesi (progetto) di FILTRI analogici attivi e passivi ELETTRONICA I - Ingegneria MEDICA Caratteristiche e criteri di Sintesi (progetto) di FILTRI analogici attivi e passivi FILTRI Introduzione Caratterizzazione nel dominio del tempo e della frequenza vi(t)

Dettagli

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2 Elettronica II Modello per piccoli segnali del diodo a giunzione Valentino Liberali ipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

SisElnB5 12/19/01. B - AMPLIFICATORI E DOPPI BIPOLI B.5 - Catene di moduli

SisElnB5 12/19/01. B - AMPLIFICATORI E DOPPI BIPOLI B.5 - Catene di moduli Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.5 - Catene di moduli» Applicazione dei metodi di analisi visti nelle lezioni precedenti» Passaggio da reti con

Dettagli

FILTRI ED AMPLIFICATORI ACCORDATI. Classificazione in termini di funzione di trasferimento

FILTRI ED AMPLIFICATORI ACCORDATI. Classificazione in termini di funzione di trasferimento FILTRI ED AMPLIFICATORI ACCORDATI Classificazione in termini di funzione di trasferimento Specifiche per un filtro passa basso (LP) Fattore di selettività ω / ω s p Esempio di Funzione di Trasferimento

Dettagli

Moduli Analogici e Amplificatori Operazionali (parte B e C) -1

Moduli Analogici e Amplificatori Operazionali (parte B e C) -1 Moduli Analogici e Amplificatori Operazionali (parte B e ) -1 Esercizi (con risultati numerici) Esercizio 1-000719 a) alcolare Vu (V1, V2) per = 0, Ad = oo b) Tracciare il diagramma di Bode di Vu/V1, per

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

SisElnB2 12/4/2002. B - AMPLIFICATORI E DOPPI BIPOLI B.2 - Tipologie di amplificatori

SisElnB2 12/4/2002. B - AMPLIFICATORI E DOPPI BIPOLI B.2 - Tipologie di amplificatori Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.2 - Tipologie di amplificatori» Comportamento dinamico di amplificatori» Risposta in frequenza e al transitorio»

Dettagli

Esercitazione 2 (B4 U6) Misure su circuiti RC. Modulo SISTEMI ELETTRONICI AA ESERCITAZIONI DI LABORATORIO - 2. Scopo dell esercitazione

Esercitazione 2 (B4 U6) Misure su circuiti RC. Modulo SISTEMI ELETTRONICI AA ESERCITAZIONI DI LABORATORIO - 2. Scopo dell esercitazione Esercitazione 2 (B4 U6) Misure su circuiti RC Scopo dell esercitazione Questa esercitazione sperimentale ha due obiettivi principali: - richiamare le tecniche per l utilizzo della strumentazione base di

Dettagli

P4 OSCILLATORI SINUSOIDALI

P4 OSCILLATORI SINUSOIDALI P4 OSILLATOI SINUSOIDALI P4. Dimensionare un oscillatore a ponte di Wien con amplificatore operazionale, per una frequenza f 6 khz, utilizzando un termistore NT per il controllo automatico di guadagno.

Dettagli

12. F.d.T. con uno ZERO nell'origine ed un POLO non nell origine: Derivatore invertente reale. Per prima cosa troviamo Z 1. Quindi: eq

12. F.d.T. con uno ZERO nell'origine ed un POLO non nell origine: Derivatore invertente reale. Per prima cosa troviamo Z 1. Quindi: eq Appunti di ELETTONIA lassi QUINTE Integratori e Derivatori attivi:.d.t., diagrammi di Bode, risposte nel tempo A.S. 999-000 - martedì 7 dicembre 999 Pagina n. 53..d.T. con uno EO nell'origine ed un POLO

Dettagli

Circuiti Elettrici Lineari Risposta in frequenza

Circuiti Elettrici Lineari Risposta in frequenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Circuiti Elettrici ineari isposta in frequenza Circuiti Elettrici ineari a.a. 89 Prof.

Dettagli

F I L T R I. filtri PASSIVI passa alto passa basso passa banda. filtri ATTIVI passa alto passa basso passa banda

F I L T R I. filtri PASSIVI passa alto passa basso passa banda. filtri ATTIVI passa alto passa basso passa banda F I L T R I Un filtro è un dispositivo che elabora il segnale posto al suo ingresso; tipicamente elimina (o attenua) determinate (bande di) frequenze mentre lascia passare tutte le altre (eventualmente

Dettagli

M320 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE

M320 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE Pag. 1/2 Sessione ordinaria 2008 Seconda prova scritta M320 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE CORSO DI ORDINAMENTO Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA (Testo valevole

Dettagli

Le radici della D(s) forniscono i poli della funzione di trasferimento T(s).

Le radici della D(s) forniscono i poli della funzione di trasferimento T(s). F I L T R I A T T I V I D E L 2 O R D I N E I filtri del 2 ordine hanno la caratteristica di avere al denominatore della funzione di trasferimento una funzione di 2 grado nella variabile s: oppure nella

Dettagli

Terza esercitazione - Circuito che emula una catena di acquisizione del segnale. Vout. Sistema di conversione (10kHz; 0 +5V)

Terza esercitazione - Circuito che emula una catena di acquisizione del segnale. Vout. Sistema di conversione (10kHz; 0 +5V) Terza esercitazione - Circuito che emula una catena di acquisizione del segnale Progettare un sistema che acquisisce un segnale analogico 10Hz 10Vpp e lo converte in un segnale digitale codificato su due

Dettagli

APPUNTI del CORSO di TEORIA dei CIRCUITI 2 Oscillatore di Colpitts

APPUNTI del CORSO di TEORIA dei CIRCUITI 2 Oscillatore di Colpitts Università degli Studi di Trieste Facoltà di Ingegneria Laurea in Ingegneria dell Informazione a.a. 2004/2005 APPUNTI del CORSO di TEORIA dei CIRCUITI 2 Oscillatore di Colpitts docente: Stefano Pastore

Dettagli

Funzioni di trasferimento

Funzioni di trasferimento 1 Funzioni di trasferimento Introduzione 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: introduzione uso dei decibel e delle scale logaritmiche diagrammi di Bode 4 Funzione di trasferimento

Dettagli

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

MISURA DELLA TENSIONE DI OFFSET DI UN AMPLIFICATORE OPERAZIONALE COMPENSAZIONE DELL OFFSET

MISURA DELLA TENSIONE DI OFFSET DI UN AMPLIFICATORE OPERAZIONALE COMPENSAZIONE DELL OFFSET Elettronica Applicata a.a. 2015/2016 Esercitazione N 4 MISURA DELLA TENSIONE DI OFFSET DI UN AMPLIFICATORE OPERAZIONALE COMPENSAZIONE DELL OFFSET Elettronica applicata Prof. Ing. Elena Biagi Sig. Marco

Dettagli

. Applicando la KT al percorso chiuso evidenziato si ricava v v v v4 n Applicando la KC al nodo si ricava: i i i4 i n i i : n i v v v v 4 : n i 4 v v i i.7 Dalla relazione tra le correnti del trasformatore

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003 Esercizi & Domande per il Compito di Elettrotecnica del 7 settembre 003 ESERCIZIO v a i a i b v b R v 0 Nel circuito in figura determinare il valore di v o e i o Si ponga: R 6kΩ, R kω, e i o R v o ; i

Dettagli

SisElnB5 12/19/ Dec SisElnB DDC V G. 19-Dec SisElnB DDC. Diagramma di Bode. Risposta al transitorio.

SisElnB5 12/19/ Dec SisElnB DDC V G. 19-Dec SisElnB DDC. Diagramma di Bode. Risposta al transitorio. SisElnB5 12/19/1 Ingegneria dell Informazione Obiettivi del gruppo di lezioni Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.5 - Catene di moduli» Applicazione dei metodi di analisi visti

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2 Circuiti in corrente alternata. Uso di un generatore di funzioni (onda quadra e sinusoidale); 2.

Dettagli

Filtri. Laboratorio di Segnali e Sistemi II - Filtri

Filtri. Laboratorio di Segnali e Sistemi II - Filtri Filtri Costituiscono un pezzo importante dei sistemi di comunicazione e di elaborazione dei segnali. E uno dei pochi settori dell elettronica in cui esistono strumenti teorici molto accurati per la progettazione

Dettagli

Fondamenti di Elettronica

Fondamenti di Elettronica N ELENCO: Politecnico di Milano Facoltà di Ingegneria dell Informazione Fondamenti di Elettronica Anno Accademico 2004/2005 Nome: Cognome: Matricola: Aula: Banco: Data: Docente del corso: Lezione di laboratorio:

Dettagli

Esonero del Corso di Elettronica I 23 aprile 2001

Esonero del Corso di Elettronica I 23 aprile 2001 Esonero del Corso di Elettronica I 23 aprile 2001 1) Nell amplificatore MO di figura k=5.10-4 A/V 2, V T = 2 V, = 10K Ω, =10V, =3V. eterminare il guadagno di tensione per un segnale applicato tra gate

Dettagli

Laboratorio di Segnali e Sistemi - a.a. 2016/ Prova del 21/12/2016

Laboratorio di Segnali e Sistemi - a.a. 2016/ Prova del 21/12/2016 A Cognome e Nome (Scrivere Cognome e Nome su questo foglio e consegnarlo insieme allo svolgimento del compito) Laboratorio di Segnali e Sistemi - a.a. 206/207 - Prova del 2/2/206 Esercizio (0 punti) Determinare

Dettagli

Di norma non devono essere inseriti o cambiati componenti durante l esercitazione.

Di norma non devono essere inseriti o cambiati componenti durante l esercitazione. Esercitazione 1 Misure su circuiti RC 1. Introduzione Scopo dell esercitazione Questa esercitazione sperimentale ha due obiettivi principali: - fornire le tecniche per l utilizzo della strumentazione base

Dettagli

Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra

Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra TABELLE DEI COLORI 4 ANELLI. 1 ANELLO 2 ANELLO 3 ANELLO 4 ANELLO Nero. 0 x 1 - Marrone 1 1 x 10 - Rosso

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Laurea di I Livello in Ingegneria Informatica Sede di Mantova TEORIA DEI CIRCUITI II prova in itinere 3.2.2003 Problema I Nel circuito indicato in figura si ha v 1 = 10 cos (1000 t sec ) V Determinare

Dettagli

Elettronica I - Lab. Did. Elettronica Circuitale - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Lab. Did. Elettronica Circuitale - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Lab. Did. Elettronica Circuitale - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni T T i - TG2000 Generatore di Funzioni T T i - TG2000 Genera i segnali di

Dettagli

Esame di Stato. a.s

Esame di Stato. a.s Esame di Stato Classe 5ª Elettronici Materia Elettronica Argomento Esami di Stato a.s. -3 Un sistema elettronico di registrazione e visualizzazione dell'attività elettrica del cuore è realizzato secondo

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta

Dettagli

1 Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli R 2. v out R 1

1 Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli R 2. v out R 1 Prova scritta di fine corso di Meccanica Applicata alle Macchine, modulo da 5CFU Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli motori DC Il circuito mostrato in figura è uno

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali Luglio 2014 Esercizio 1 Si determini la risposta totale nel dominio complesso e si studi la stabilita asintotica e BIBO del sistema descritto dalla seguente

Dettagli

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esonero del 14 giugno 2006

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esonero del 14 giugno 2006 Esonero del 14 giugno 2006 Dato il circuito di figura C 2 R 3 OP v IN C 1 v o in cui = =0.5K!, R 3 =250!, C 1 =1µF, C 2 =1nF e v IN (V) 2 1 2 t (µs) 2 determinare l evoluzione temporale di V 0, supponendo

Dettagli

Modellazione e controllo Ca1 (a,b,c) Ca2 (d,e,f,g) Mec(a,c,d,e,g)

Modellazione e controllo Ca1 (a,b,c) Ca2 (d,e,f,g) Mec(a,c,d,e,g) Modellazione e controllo Ca1 (a,b,c) Ca (d,e,f,g) Mec(a,c,d,e,g) 13 Luglio 011 a) Una corpo di massa M e soggetto a una forza di richiamo elastica F el = K(x)x, una forza di attrito F att = hẋ e una forza

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

ELETTRONICA APPLICATA I (DU) Guida alle esercitazioni di laboratorio - AA Circuiti con Amplificatori Operazionali

ELETTRONICA APPLICATA I (DU) Guida alle esercitazioni di laboratorio - AA Circuiti con Amplificatori Operazionali Guida alle esercitazioni di laboratorio AA 19992000 Esercitazione n. 4 Circuiti con Amplificatori Operazionali 4.1 Amplificatore AC Montare il circuito riportato nello schema a lato, con alimentazione

Dettagli

Esercizi aggiuntivi Unità A2

Esercizi aggiuntivi Unità A2 Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 A2 ircuiti in corrente alternata monofase 1 Un circuito serie, con 60 Ω e 30 mh, è alimentato con tensione V 50 V e assorbe la corrente 0,4 A. alcolare:

Dettagli

PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M

PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M. 270/04) 27/01/2017 [B] ESERCIZIO 1 [A] [B] DATI: β = 100; k = 4 ma/v 2 ; VTH

Dettagli

ESAME di STATO 2009 ISTITUTO PROFESSIONALE per l INDUSTRIA e l ARTIGIANATO

ESAME di STATO 2009 ISTITUTO PROFESSIONALE per l INDUSTRIA e l ARTIGIANATO ESAME di STATO 2009 ISTITUTO PROFESSIONALE per l INDUSTRIA e l ARTIGIANATO Materia: ELETTRONICA TELECOMUNICAZIONI & APPLICAZIONI Il circuito proposto appare abbastanza semplice perché si tratta di un dispositivo

Dettagli

Laboratorio di Telecomunicazioni

Laboratorio di Telecomunicazioni I.I.S. Perlasca sez. ITIS Vobarno (BS) Data 16/10/15 Laboratorio di Telecomunicazioni Castellini Fabio Cognome e Nome Relazione n 2 Classe Gruppo 4 Titolo: I filtri attivi Obiettivo L esperienza, suddivisa

Dettagli

RELAZIONE DI LABORATORIO

RELAZIONE DI LABORATORIO RELAZIONE DI LABORATORIO Esercitazione di laboratorio di Elettrotecnica N 4 Svolta in data 11/01/2011 Corso di laurea in Ingegneria Aerospaziale Docente del corso ZICH RICCARDO Squadra (A,B,C) B Tavolo

Dettagli

Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI

Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI Un filtro passivo in elettronica ha il compito di elaborare un determinato segnale in ingresso. Ad esempio una sua funzione può

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria Esercizio. Determinare la costante di tempo del circuito di figura per k =.5 Ω,.5 Ω, Ω. τ = ms,.5 ms, 6 ms. Ω Ω.5 Ω i [A] k i [V] mh V Il circuito contiene un

Dettagli

OSCILLATORE A SFASAMENTO

OSCILLATORE A SFASAMENTO Elettronica Applicata a.a. 2013/2014 Esercitazione N 5 OSCILLATORE A SFASAMENTO Fabio Cioria Andrea Giombetti Giulio Pelosi (fabio.cioria@insono.com) (giombetti@unifi.it) (giulio.pelosi@insono.it) www.echommunity.com/courses.htm

Dettagli

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC 23. Guadagno di un quadripolo Filtri passivi isposta in frequenza dei circuiti C-L-LC In un quadripolo generico (fig. ) si definisce guadagno G il rapporto tra il valore d uscita e quello d ingresso della

Dettagli

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione)

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione) Esame di eoria dei Circuiti 15 ennaio 2015 (Soluzione) Esercizio 1 I 1 R 2 I R2 R 4 αi R2 βi R3 + V 3 I 3 R 1 V 2 I 4 I R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 3/2 3/2

Dettagli

I parametri dell amplificatore operazionale reale

I parametri dell amplificatore operazionale reale I parametri dell amplificatore operazionale reale Gli amplificatori operazionali disponibili in commercio sono realizzati mediante circuiti integrati monolitici e hanno un funzionamento che si avvicina

Dettagli